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Uniform factorization for compact sets of
weakly compact operators

by

KRISTEL MIKKOR and EVE OJA (Tartu)

Abstract. We prove uniform factorization results that describe the factorization of
compact sets of compact and weakly compact operators via Holder continuous homeo-
morphisms having Lipschitz continuous inverses. This yields, in particular, quantitative
strengthenings of results of Graves and Ruess on the factorization through ¢,-spaces and
of Aron, Lindstrém, Ruess, and Ryan on the factorization through universal spaces of
Figiel and Johnson. Our method is based on the isometric version of the Davis—Figiel-
Johnson—Pelczynski factorization construction due to Lima, Nygaard, and Oja.

1. Introduction. Let X and Y be Banach spaces. We denote by £(X,Y)
the Banach space of all continuous linear operators from X to Y, and by
F(X,Y), F(X,Y), K(X,Y), and W(X,Y) its subspaces of finite rank, ap-
proximable, compact, and weakly compact operators. If A is F, F, K, W,
or £, then A« (X*,Y) denotes the subspace of A(X*,Y') consisting of those
operators which are weak*-weak continuous.

In 1987, Graves and Ruess (see [GR2, Theorem 2.1|) proved the following

factorization result for compact operators between special spaces.

THEOREM 1 (Graves and Ruess). Let X be an Li-space (respectively,
an Loo-space) and let Y be a Banach space. Let C be a relatively compact
subset of K(X,Y). Then there exist an operator u € K(X, 1) (respectively,
u € K(X,cp)) and a relatively compact subset {Ag : S € C} of K(¢1,Y)
(respectively, of K(co,Y)) such that S = Agowu for all S € C.

The uniform factorization of compact operators in a general setting was
studied by Aron, Lindstrém, Ruess, and Ryan. In 1999, the following result
was obtained (see [ALRR, Theorem 1]) where Zr; denotes a universal factor-
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ization space of Figiel [F] and Johnson [J] (for instance, Zpy = (ZWCCP W)
where W runs through the closed subspaces of C), for any fixed p).

THEOREM 2 (Aron et al.). Let X and Y be Banach spaces and let C
be a relatively compact subset of Ky« (X*,Y). Then there exist operators
u € Ky (X*, Zry) and v € K(Zpy3,Y), and a relatively compact subset {Ag :
S €C} of K(Zwy, Zwy) such that S =vo Agowu for all S €C.

Since, in the setting of Theorem 1, every single compact operator factors
compactly through ¢; (see [R, Corollary 7]) or, respectively, through ¢y (see
[T, p. 252] or [Da, Proposition 5.12]), Theorem 2 easily implies Theorem 1
(see [ALRR, Corollary 4]).

Theorems 1 and 2, together with their proofs in [GR2] and [ALRR], do
not give much information about mapping properties of the correspondence
S +— Ag, S € C. For instance, one does not even have any estimate for
diam{Ag : S € C}.

A purpose of this article is to get quantitative strengthenings of Theo-
rems 1 and 2 (see Theorems 14 and 10). Actually, we apply a general unified
approach, different from [GR2] and [ALRR], and, in our opinion, much eas-
ier, to obtain uniform factorization results for compact subsets of compact
operators as well as of weakly compact operators. The idea (see Lemmas 4
and 5) consists in constructing a mapping S — Ag from a compact subset
C of weakly compact operators that preserves compact operators, as well as
finite rank operators. This mapping is Hélder continuous, being also bijective
and having a 1-Lipschitz continuous inverse, and diam{Ag : S € C} = diamC
whenever 0 € C.

Our construction will be based on the isometric version of the famous
Davis—Figiel-Johnson—Pelczynski factorization lemma [DFJP] due to Lima,
Nygaard, and Oja [LNO]. For comparison, let us remark that the technical
proof in [GR2| relies on Ruess’s characterization [Ru] of relatively compact
sets in KCu+(X™*,Y), and uses Saphar’s tensor products machinery [S]. The
paper [ALRR] presents two different methods of proof: one being essentially
based on Grothendieck’s characterization |G| of relatively compact sets in
the projective tensor product of Banach spaces, the other—on the Banach—
Dieudonné theorem.

Our notation is rather standard. A Banach space X will always be re-
garded as a subspace of its bidual X** under the canonical embedding. The
closed unit ball of X is denoted by Bx. The closure of a set A C X is de-
noted by A. The linear span of A is denoted by span A and the closed convex
hull by convA. Let us recall that 7' € £(X*,Y) is weak*-weak continuous
if and only if ranT* C X. Recall also that L,«(X*,Y) = Wy« (X*,Y) (if
T € L(X*,Y) is weak*-weak continuous, then T'(Bx~) is weakly compact
because Bx- is compact in the weak® topology).
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For the definition and basic properties of £, y-spaces and L,-spaces, 1 <
p < 00, 1 <\ < oo, the reader is referred to [LP] and [LR], or [JL, pp. 57-60].
For the universal spaces Cp, 1 < p < oo, see |J] or, e.g., [Si, pp. 422-426]. We
use the symbol /., for the Banach space of null sequences, usually denoted
by Co.

2. Main factorization lemmas for compact subsets of weakly
compact operators. Our main Lemmas 4 and 5 below rely on Lemma 3
which is an isometric version of the famous Davis—Figiel-Johnson—Petczynski
factorization lemma [DFJP| due to Lima, Nygaard, and Oja [LNO]. Let us
recall the relevant construction.

Define f : (1,00) — (0, 00) by

00 an 1/2
fla)= (Z @ 1)2) -
n=1

The function f is continuous, strictly decreasing, lim, 14+ f(a) = oo, and
lim, . f(a) = 0. Hence, there exists a unique a € (1, 00) such that f(a) = 1.
Let us fix this a.

Let Y be a Banach space and let K be a closed absolutely convex subset
of By. For each n € N, put B,, = a"?K + a_”/QBy. The gauge of B,, gives
an equivalent norm || - ||, on Y. Set

ol = (S 1912)
n=1

define Y = {y € Y : ||y||lx < oo}, and let Jx : Y — Y denote the identity
embedding.

LEMMA 3 (see [DFJP] and [LNOJ). With notation as above, the following
holds:

i) Yo = (Yk, || - [|x) is a Banach space and ||Jk|| < 1.
(ii) K C By, C By.
(i) Iy € K, then [lylf, < (1/4+1/ma) .
(iv) The Y-norm and Yi-norm topologies coincide on K.
) Ji is injective.

) Jx is compact if and only if K is compact; in this case Yi is sep-
arable.
(vii) Yx is reflexive if and only if K is weakly compact.

REMARK. By [LNO] a “good” estimate of a is exp(4/9). This is an esti-
mate from below. Hence

1/4+1/Ina < 5/2.
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LEMMA 4. Let X and Y be Banach spaces. Let C be a compact subset
of Ly+(X*,Y). Then there exist a weakly compact absolutely convex subset
K of By, which is compact whenever C is contained in ICy«(X*,Y), and a
linear mapping @ : spanC — Ly« (X*, Yk) such that S = Jg o @(S) for all
S € spanC and | Ji|| = 1. Moreover, if S € spanC, then

(i) S has finite rank if and only if ®(S) has finite rank,
(ii) S is compact if and only if @(S) is compact.

The mapping P restricted to C U {0} is a homeomorphism satisfying
1S =T < [|&(S) — 2(T)||
< min{d,d"?(1/4 +1/Ina)"/?||S - T||*/?}, S,T € c U{0},

where

d =diamC U {0}.
In particular, if —S € C for some S € C, then
|2(S) | < min{d/2, (d/2)Y2(1/4 +1/lna)/2|S]2}.
Proof. Let
K =conv{d (S —T)a*: S,T € CU{0}, 2* € Bx-}.

Then K is contained in By, K is closed and absolutely convex, hence weakly
closed.

To prove that K is weakly compact, fix an arbitrary € > 0. We shall find
a weakly compact subset K. of Y such that K C K, +cBy. Then the weak
compactness of K will be immediate from Grothendieck’s lemma (see, e.g.,
[D, p. 227]). Let {Uy,...,Uy} be an e-net in the compact subset

{d™YS-T):8,T eCcu{0}}

of L« (X*,Y). Denoting by K. the closed convex hull of the weakly compact
set Up(Bx+) U---UU,(Bx~), which is weakly compact by a classical result
of Krein and Smulian, it is straightforward to verify that K C K. + By as
desired.

If C is contained in ICp(X*,Y), then K. is compact (by a theorem of
Mazur), implying that also K is compact.

Let the Banach space Y and the identity embedding Jx : Y — Y with
/K| <1 be as in Lemma 3. Since K C By,

|kl = sup |zl > sup 2] >d™! sup [|S-T| =1
zeK

2E€By,, S, TeCu{0}

Hence ||Jk|| = 1.
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Let S € spanC. Then
ranS C span{Sz*: S €, z* € X"}
Cspan{(S —T)z": S, T € CU{0}, 2™ € Bx~}
C span K C span By,, = Y.
This permits us to define @(S5) : X* — Yk by
O(S)z* = Sz*, e X"

Since @(5) is algebraically the same operator as S, we see that @(S) is linear,
and S = Jg o §(9).

Let S,T € CU{0}. Then d~!(S — T)az* € K C By, for all z* € Bx-.
Hence
(1) S-T) = sw |(S-T)'llx <d, ST ecuio}.

Tr*EBx*
This implies, in particular, that ||@(S5)|| < oo for all S € spanC. Every
@(S), S € spanC, is also weak*-weak continuous because, Jj(Y™*) being
norm dense in Y;¢ (since Jj is injective by Lemma 3), we have
(@(9)" (V) = (2(9))" (JE(Y*)) € ((2(5))* o Ji) (V™)
=5*(Y*)Cc X = X.

Consequently, @ is a linear mapping from spanC to Ly« (X™, Yk ).

Since S € spanC and @(S) are algebraically the same operators, clearly
(i) holds. Condition (ii) holds by Lemma 3(iv) (and by the linearity of &)
because d1S(Bx+) C K for all S € C.

Finally, let S,T € C U {0}. Then, by (1),

15 =TI < IJx[HI@(S = T)|| = |2(5) = 2(T)]| < d.
Since d71(S — T)z* € K for all 2* € Bx+, using Lemma 3(iii), we also have
12(5) = 2(T)|| = sup (S —T)z"|[x
T*EBx*
<dY2(1/4+1/ma)'? sup (S —T)z*|"/?
ZL‘*EBx*
= dY2(1/4 +1/Ina)Y?||S — T||V/2.
If, in particular, S, —S € C, then the desired estimate for the norm of

D(S) = (2(S) — (—95))/2 immediately follows from the above. u

LEMMA 5. Let X and Y be Banach spaces. Let C be a compact subset
of Ly+(X*,Y). Then there exist a reflexive Banach space Z, a norm one
operator J € Ly+(X*,Z), and a linear mapping & : spanC — L(Z,Y)
satisfying conditions (i) and (ii) of Lemma 4 such that S = &(S) o J for
all S € spanC. Moreover, Z = Xy and J = Jj for some weakly compact
absolutely convex subset K of Bx, and if C is contained in Ky~ (X*,Y), then
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Z is separable and J € Ky (X*, Z). The mapping ® restricted to C U {0} is
a homeomorphism satisfying the conclusions of Lemma 4.

Proof. Applying Lemma 4 to the compact subset C* = {S* : S € C}
of Ly+(Y*, X), we can find a weakly compact absolutely convex subset K
of Bx, which is compact whenever C is contained in ICp+(X™*,Y") (since S*
is compact if and only if S is). We can also find a linear mapping

U :spanC* — Lo+ (Y", Xk)

satisfying the conclusions of Lemma 4 such that S* = Jg o ¥(S*) for all
S € spanC, and we know that ||Jx| = 1.

Let Z = Xj; and J = Jj. Then Z is reflexive by Lemma 3(vii), ||.J|| = 1,
and J € L, (X*, Z) since ran Ji© C X because Z is reflexive. The reflexive
space Z is separable and the operator J is compact whenever C is contained
in KCpp+ (X*,Y) (see Lemma 3(vi)).

Define @ : spanC — L(Z,Y) by

O(S) = (¥(S%)*, S espanC.
The properties of ¥ clearly imply that @ is a linear mapping satisfying con-
ditions (i) and (ii) of Lemma 4. If S € spanC, then S** = S (because
S* € Ly(Y*, X)) and therefore S = (Jg o ¥(S*))* = &(S) o J. Since
1S=T1| = [|5*=T"[| and ||2(S)=D(T)|| = [[#(S*) =& (T™)]| for S, T € spanC,
the mapping @ restricted to C U {0} obviously satisfies the conclusions of
Lemma 4. =

REMARK. Observe that diam®(C U {0}) = diamC U {0} in Lemmas 4
and 5.

3. Quantitative versions of the uniform factorization for com-
pact sets of operators. For Banach spaces X and Y, let us consider the
following infinite direct sum in the sense of /5:

o = (3258), = (220,

where K and L run through the weakly compact absolutely convex subsets
of By and By, respectively. The space Zx y is reflexive (see Lemma 3(vii)).
In Theorems 6-8 below, Z(x y) will serve as a universal factorization space
for all compact sets of the space L« (X*,Y).

THEOREM 6. Let X and Y be Banach spaces. For every compact subset
C of Li+(X™,Y), there exist a linear mapping @ : spanC — Ly (X", Z(x y))
which preserves finite rank and compact operators and a norm one operator
v € L(Z(xy),Y) such that S = v o ®(S) for all S € spanC. The mapping
@ restricted to C U {0} is a homeomorphism satisfying the conclusions of
Lemma 4. Moreover, if C is contained in KCy(X™,Y'), thenv € K(Z(x y),Y)-
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Proof. Let L and ¢ be, respectively, the weakly compact absolutely con-
vex subset of By and the linear mapping from spanC to L~ (X*, Yy) given
by Lemma 4. Let Iy, : Y], — Z(x y) denote the natural norm one embedding
and PL, : Z(xy) — YL the natural norm one projection. It is straightforward
to verify that the mappings @, defined by @(S) = I o ¢(S), S € spanC,
and v = Jp o P, have the desired properties (use Lemma 3(v) and the fact
that 1 = ||Jp|| = |Jvo IL]| < ||v|; for the “moreover” part, use Lemma

3(vi)). m

THEOREM 7. Let X and Y be Banach spaces. For every compact sub-
set C of Ly+(X*,Y), there exist a norm one operator u € Ly+(X*, Z(x y)
and a linear mapping @ : spanC — L(Zxy),Y) which preserves finite
rank and compact operators such that S = @(S) o u for all S € spanC.
The mapping ® restricted to C U {0} is a homeomorphism satisfying the
conclusions of Lemma 4. Moreover, if C is contained in Ky« (X*,Y), then
u € ICw*(X*,Z(XA/)).

Proof. The proof relies on Lemma 5 and it is similar to that of Theo-
rem 6. m

THEOREM 8. Let X and Y be Banach spaces. For every compact subset
C of Liy+(X*,Y), there evist norm one operators u € Lo+ (X*, Z(xy)) and
v € L(Zxy),Y), and a linear mapping ® : spanC — L(Z(xy), Z(x,y))
which preserves finite rank and compact operators such that S = vo®(S)ou
for all S € spanC. The mapping ® restricted to C U{0} is a homeomorphism
satisfying

IS - T| < |&(S) - &(T)]|
< min{d,d¥*(1/4 + 1/lna)®*||S — T||"/*}, S, T € CU{0},

where d = diam C U {0}. In particular, if =S € C for some S € C, then
12(S)[| < min{d/2, (d/2)**(1/4+ 1/lna)**||S|'/*}.

Moreover, if C is contained in Ky(X*,Y), then u € Ky~ (X", Z(x y)) and
v E K:(Z()Qy), Y)

Proof. Let K C Bx, J = Jj € Ly (X* X}), and ¢ : spanC —
L(X7},Y) be, respectively, the weakly compact absolutely convex subset,
the norm one operator, and the linear mapping given by Lemma 5.

Since ¢(C) is a compact subset of L(X};,Y) = L+ (X}, Y) (recall that
X is reflexive), we can apply Lemma 4. Let L C By and % : span¢(C) —
L (X5,YL) be, respectively, the weakly compact subset and the linear
mapping given by Lemma 4.

Let Ix : Xir — Z(xy) and I, : Y, — Z(xy) denote the natural norm
one embeddings, and let Pk : Z(xy) — X} and P : Z(xy) — YL denote



92 K. Mikkor and E. Oja

the natural norm one projections. It is straightforward to verify (observing
that diam¢(C U {0}) = d) that the mappings u = I o J, @ defined by
D(S) = I, o(p(S)) o Pk for S € spanC, and v = J, o P, have the desired
properties. In particular, for all S € spanC,

S = @(8) 0 J = Jy 0 b((S)) o J = Jy 0 Py oI 0 h(e(S)) 0 Prco Iic ]
=vod(S)ou.

The “moreover” part uses the fact that J € K« (X*, X};) whenever C C
Kuw+(X*,Y) (see Lemma 5) and that, in this case, ¢(C) is a compact subset
of Ky+(X},Y), implying (by Lemmas 4 and 3(vi)) the compactness of the
operator Jy. m

REMARK. Observe that diam®(C U {0}) = diamC U {0} in Theorems
6-8.

REMARK. Theorem 8 represents a quantitative strengthening of the fol-
lowing result by Aron et al. (see [ALRR, Proposition 2|): for Banach spaces
X and Y, there exists a reflexive Banach space Z = Z(X,Y') such that, for
every relatively compact subset C of Ly+(X*,Y), there exist operators u €
Loy+(X*,Z) and v € L(Z,Y), and a relatively compact subset {Ag : S € C}
of L(Z,Z) such that S = vo Agowu for all S € C. Note that our definition
of Z(x,y) is much simpler than that of Z(X,Y’), but similar.

Since W(X,Y) and L+ (X, Y) = Wy« (X*,Y), and also £(X,Y) and
K+ (X**,Y) are canonically isometrically isomorphic under the mapping
S — S5** Theorems 6-8 yield immediate applications to factoring compact
subsets of W(X,Y') and (X,Y). We only state the corresponding applica-
tion of Theorem 8, the others being similar.

COROLLARY 9. Let X and Y be Banach spaces, and let Z = Z(x+ y).
For every compact subset C of W(X,Y), there exist norm one operators
ueW(X,Z) andv e W(Z,Y), and a linear mapping ¢ : spanC — W(Z, Z)
which preserves finite rank and compact operators such that S = vo®(S)ou
for all S € spanC. The mapping P restricted to C U {0} is a homeomor-
phism satisfying the conclusions of Theorem 8. Moreover, if C is contained

in K(X,Y), thenu € K(X,Z) andv € K(Z,Y).

4. Quantitative versions of the uniform factorization for com-
pact sets of compact operators. Theorem 8, combined with the well
known factorization methods by Johnson [J] and Figiel [F], yield the follow-
ing quantitative strengthening of Theorem 2 of Aron et al. (see the Intro-
duction).

THEOREM 10. Let X and Y be Banach spaces and let C be a compact
subset of KCuw+(X*,Y). Then, for every ¢ > 0, there exist operators u €
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K« (X*, Zry) and v € K(Zp;,Y) with 1 < |ju||,||v|| < 1+ ¢, and a linear
mapping @ : spanC — K(Zrj, Zr;) such that S = vo ®(S)ow for all S €
spanC. The mapping P restricted to C U {0} is a homeomorphism satisfying
the conclusions of Theorem 8.

Proof. Let A € Ky (X", Z(xy)), B € K(Z(xy),Y), and ¢ : spanC —
K(Z(x ), Z(x,y)) be the norm one operators and the linear mapping given
by Theorem 8. It follows from the proofs of [J, Theorem 1] and [F, Proposi-
tion 3.1] that there exist V' € K(Z(x y), Zry) and v € K(Zp;,Y) such that
IVI|=1,1<|v|]| <1+¢,and B =voV. Similarly to [J, Proposition 1], we
can show that the subspace of F,«(X*, Z) (where Z is any Banach space)
consisting of operators 7" which admit a factorization T' = (3 o a for some
operators a € F+(X*,Cp) and 3 € F(Cyp, Z), is a Banach space under the
norm

ITllc, = mnf{[IBll lall : T = Boa, a € Fu(X",Cp), B € F(Cp, Z)}.

This enables us to obtain, arguing similarly to the proofs of [J, Theorem 1]
and [F, Proposition 3.1], for A € Ku+(X™, Z(xy)) with ||A]| = 1, two op-
erators u € Ky (X™, Zry) and U € K(Zpy, Z(x,y)) such that 1 < [lul| <
1+¢, U] =1, and A = U owu. Since, for all S € spanC,

S=Boyp(S)oA=voVop(S)oU ou,

the mapping @ defined by &(S) =V o p(S)o U, S € spanC, has the desired
properties. m

In the same vein like the space Zx yy was “replaced” by Zp; in Theorem
8 to obtain Theorem 10, one can “replace” Z x y) by Zrj also in Theorems 6
and 7 (or, equivalently, one may base on Lemmas 4 and 5 instead of Theorems
6 and 7). We shall not state the corresponding results.

Instead, we would like to point out an important case when Z x y) may
be “replaced” by any C}, 1 < p < oo. Here we only present the result that
relies on Theorem 6. Similar results based on Theorems 7 and 8 can then be
easily stated and proved.

THEOREM 11. Let X and Y be Banach spaces such that Y has the
approzimation property and let 1 < p < oo. Let C be a compact subset
of Kw+(X*,Y). Then, for every ¢ > 0, there exist a linear mapping @ :
spanC — Ky (X*, Cp) and an operator v € K(Cp,Y) with 1 < ||v|| <1+¢
such that S = v o ®(S) for all S € spanC. The mapping @ restricted to
C U {0} is a homeomorphism satisfying the conclusions of Lemma 4.

Proof. Let ¢ : spanC — Ku+(X*,Z(xy)) and B € K(Z(xy),Y) be
the linear mapping and the norm one operator given by Theorem 6. Since
Y has the approximation property, it is well known that K(Z(xy),Y) =

f(Z(X’y),Y). Therefore, from the proof of [J, Theorem 1], it follows that
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B admits a factorization B = v oV with V' € K(Zxy),Cyp), V] = 1,
and v € K(Cp,Y), 1 < |lv|| £ 1+ e. The mapping @ defined by &(5) =
Vop(S), S €spanC, has the needed properties. =

If we use, in the above proof, the factorization argument [J, Theorem 2]
by Johnson instead of [J, Theorem 1], then we get the following quantitative
strengthening of the symmetric version of Theorem 1 of Graves and Ruess
for all £,-spaces, 1 < p < oo. Recall that /., denotes the space cy.

THEOREM 12. Let X be a Banach space and let Y be an L, \-space
(1 <p<oo, 1 <X<o0) IfCis a compact subset of Ky (X*,Y), then,
for every € > 0, there exist a linear mapping @ : spanC — Ky« (X*, £,) and
an operator v € K(€,,Y) with 1 < |jv|]| < XA+ ¢ such that S = v o @(S) for
all S € spanC, and the mapping @ restricted to CU{0} is a homeomorphism

satisfying the conclusions of Lemma 4.

Recall that K(X,Y) = Ky« (X*,Y). Therefore Theorems 10 and 11
together with their analogs and Theorem 12 immediately yield seven corre-
sponding factorization results for compact subsets of K(X,Y).

Let us now point out an application of Theorems 11 and 12 to represent-

ing compact subsets of the injective tensor product X @ Y of Banach spaces
X and Y.

COROLLARY 13. Let 1 < p < 00 and let X and Y be Banach spaces
such that X has the approzimation property (respectively, is an L, x-space).
Let C be a compact subset of X @ Y. Then, for every ¢ > 0, there ezist a
linear mapping @ from spanC to C, @ Y (respectively, to £, ® Y) and an
operator A € K(Cp, X) with 1 < ||A]| < 1+ ¢ (respectively, A € K({,, X)
with 1 < ||A]] < A+ ¢) such that w = (A ® Id)(Pu) for all u € spanC.
The mapping ® restricted to C U {0} is a homeomorphism satisfying the
conclusions of Lemma 4.

Proof. Recall that X @ Y = K+ (Y*, X) whenever X or Y has the ap-
proximation property (see |G, Ch. I, p. 165]). Recall also that £,-spaces, Cp,
and /, have the approximation property, and apply Theorems 11 and 12. To
verify the equality u = (A®Id)(Pu), rely on the (easy) fact that if v € C,QY
(respectively, v € I, ® Y) is canonically identified with ¥ € Ky (Y™, Cp) (re-
spectively, U € Ky+ (Y™, £p)), then (A®Id)v € X ®Y is canonically identified
with the operator Ao® € Ky (Y*, X). m

Let us consider the particular case of Corollary 13 when YV = C(K),
the Banach space of continuous functions on a compact Hausdorff space K.
Then X ®Y = C(K; X), the Banach space of continuous X-valued functions
on K. And Corollary 13 yields the representation of C C C(K; X) through
the subset @(C) of C'(K; Cp) (respectively, of C(K;¢,)) so that f = Ao (Pf)
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for all f € spanC. Corollary 13 may also be applied to identifications of
X ®Y as spaces of X-valued measures (e.g., when Y = L;(u) or Y = ba(B),
B being a Boolean algebra; see [DU, pp. 223-224] and |GR1]).

We conclude with a quantitative strengthening of Theorem 1 of Graves
and Ruess (see the Introduction) for all £,-spaces, 1 < p < oo, which is a
symmetric version of Theorem 12. Let us recall that X is an £,-space if and
only if X* is an L,-space where 1/¢+ 1/p = 1 with ¢ = oo if p = 1 and
q=1if p=cc.

THEOREM 14. Let 1 < p < oo and 1 < XA < oo. Let X be an L,-
space such that X* is an Lg-space (where 1/q + 1/p = 1 with ¢ = o0
ifp=1and ¢ =1 if p = o) and let Y be a Banach space. If C is
a compact subset of K(X,Y), then, for every ¢ > 0, there exist a lin-
ear mapping ¢ : spanC — K(£,,Y) and an operator u € K(X,£,) with
1 < |lul]| <X+ ¢ such that S = &(S) o u for all S € spanC, and the map-
ping ® restricted to C U {0} is a homeomorphism satisfying the conclusions
of Lemma 4.

Proof. Suppose first that 1 < p < co. Observe that C* = {S* : S € C}
is a compact subset of /Cp+ (Y™, X*) (recall that ran S** C Y whenever
S € K(X,Y)) and apply Theorem 12. Let ¢ > 0 and let ¢ : spanC* —
Kuw+(Y*,£y) and v € K({y, X*) be given by Theorem 12. Then £; = ¢,
and (p(5*)* € K(¢p,Y) if S € spanC. Define @ : spanC — K(¢p,Y) by
D(S) = (¢(5%))*, S € spanC, and u € K(X,{,) by v = v*|x. These map-
pings have the desired properties. In particular, if S € spanC, then

P(S) ou = ((p(57))" 0v")|x = (vop(S%)) |x = 57|x =5

Suppose now that p = oco. Let Z be the reflexive space, U € K(X, Z)
the norm one operator, and ¢ : spanC — K(Z,Y") the linear mapping given
by Theorem 7. Observe that, in fact, U € F(X,Z) because X*, being an
L1-space, has the approximation property.

Let € > 0. Consider any T' € F(X, Z). Then T* € F(Z*, X*) and, sim-
ilarly to the proof of [J, Theorem 2|, we can choose a finite-dimensional
subspace E of X* with ranT* C FE, a positive integer n, and an isomor-
phism L from E onto £} such that, e.g., |L|| =1and 1 < ||L7Y| < A +¢/2.
Denoting by V : Z* — FE the astriction of T* and by j : £ — X™ the identity
embedding, we have V* € F(E*,Z) and T = V* o j*|x. Hence, T admits a
factorization T'= [ o a for some operators « € F(X, /%) and € F({L,Z)
with ||| < A +¢/2 and ||B]| < ||T||. Since ¢p is isometrically isomorphic to
the infinite direct sum (), ¢% ) in the sense of ¢y, we have, for the norm
Il - Il¢, introduced in [J, Proposition 1],

1Tl = inf{[|Bll [lal| : T = Boa, a € F(X,co), B € Flco, Z)}
< (A+e/2)|T]).
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Consequently, || - ||¢, is equivalent to the operator norm on F(X,Z) and,
since F(X, Z) is dense in F(X, Z), it follows from [J, Proposition 1] that,
in particular, U admits a factorization U = v o u with u € F(X,cp),
v € F(co, Z), and ||U]| = 1 < [Jv||Jul]] < A+ )||U]| = A + . We may
clearly assume that 1 < |lu|| < XA+ ¢ and |v|| = 1. Since, for all S €
spanC,

S=p(S)oU =p(S)ovou,

the mapping @ defined by ®(S) = ¢(S) ov, S € spanC, has the desired
properties. =
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