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Uniform fatorization for ompat sets ofweakly ompat operatorsby
Kristel Mikkor and Eve Oja (Tartu)Abstrat. We prove uniform fatorization results that desribe the fatorization ofompat sets of ompat and weakly ompat operators via Hölder ontinuous homeo-morphisms having Lipshitz ontinuous inverses. This yields, in partiular, quantitativestrengthenings of results of Graves and Ruess on the fatorization through ℓp-spaes andof Aron, Lindström, Ruess, and Ryan on the fatorization through universal spaes ofFigiel and Johnson. Our method is based on the isometri version of the Davis�Figiel�Johnson�Peªzy«ski fatorization onstrution due to Lima, Nygaard, and Oja.1. Introdution. LetX and Y be Banah spaes. We denote by L(X,Y )the Banah spae of all ontinuous linear operators from X to Y , and by

F(X,Y ), F(X,Y ), K(X,Y ), and W(X,Y ) its subspaes of �nite rank, ap-proximable, ompat, and weakly ompat operators. If A is F , F , K, W ,or L, then Aw∗(X∗, Y ) denotes the subspae of A(X∗, Y ) onsisting of thoseoperators whih are weak∗-weak ontinuous.In 1987, Graves and Ruess (see [GR2, Theorem 2.1℄) proved the followingfatorization result for ompat operators between speial spaes.Theorem 1 (Graves and Ruess). Let X be an L1-spae (respetively ,an L∞-spae) and let Y be a Banah spae. Let C be a relatively ompatsubset of K(X,Y ). Then there exist an operator u ∈ K(X, ℓ1) (respetively ,
u ∈ K(X, c0)) and a relatively ompat subset {AS : S ∈ C} of K(ℓ1, Y )
(respetively , of K(c0, Y )) suh that S = AS ◦ u for all S ∈ C.The uniform fatorization of ompat operators in a general setting wasstudied by Aron, Lindström, Ruess, and Ryan. In 1999, the following resultwas obtained (see [ALRR, Theorem 1℄) where ZFJ denotes a universal fator-2000 Mathematis Subjet Classi�ation: Primary 46B04, 46B20, 46B28, 46B50,47A68, 47B07; Seondary 46B25.Key words and phrases: Banah spaes, ompat subsets of weakly ompat operators,uniform fatorization, uniform ompat fatorization, ompat subsets of injetive tensorproduts, Lp-spaes, universal spaes Cp.This researh was partially supported by Estonian Siene Foundation Grant 5704.[85℄



86 K. Mikkor and E. Ojaization spae of Figiel [F℄ and Johnson [J℄ (for instane, ZFJ = (
∑

W⊂Cp
W )pwhere W runs through the losed subspaes of Cp for any �xed p).Theorem 2 (Aron et al.). Let X and Y be Banah spaes and let Cbe a relatively ompat subset of Kw∗(X∗, Y ). Then there exist operators

u ∈ Kw∗(X∗, ZFJ) and v ∈ K(ZFJ, Y ), and a relatively ompat subset {AS :
S ∈ C} of K(ZFJ, ZFJ) suh that S = v ◦AS ◦ u for all S ∈ C.Sine, in the setting of Theorem 1, every single ompat operator fatorsompatly through ℓ1 (see [R, Corollary 7℄) or, respetively, through c0 (see[T, p. 252℄ or [Da, Proposition 5.12℄), Theorem 2 easily implies Theorem 1(see [ALRR, Corollary 4℄).Theorems 1 and 2, together with their proofs in [GR2℄ and [ALRR℄, donot give muh information about mapping properties of the orrespondene
S 7→ AS , S ∈ C. For instane, one does not even have any estimate for
diam{AS : S ∈ C}.A purpose of this artile is to get quantitative strengthenings of Theo-rems 1 and 2 (see Theorems 14 and 10). Atually, we apply a general uni�edapproah, di�erent from [GR2℄ and [ALRR℄, and, in our opinion, muh eas-ier, to obtain uniform fatorization results for ompat subsets of ompatoperators as well as of weakly ompat operators. The idea (see Lemmas 4and 5) onsists in onstruting a mapping S 7→ AS from a ompat subset
C of weakly ompat operators that preserves ompat operators, as well as�nite rank operators. This mapping is Hölder ontinuous, being also bijetiveand having a 1-Lipshitz ontinuous inverse, and diam{AS : S ∈ C} = diam Cwhenever 0 ∈ C.Our onstrution will be based on the isometri version of the famousDavis�Figiel�Johnson�Peªzy«ski fatorization lemma [DFJP℄ due to Lima,Nygaard, and Oja [LNO℄. For omparison, let us remark that the tehnialproof in [GR2℄ relies on Ruess's haraterization [Ru℄ of relatively ompatsets in Kw∗(X∗, Y ), and uses Saphar's tensor produts mahinery [S℄. Thepaper [ALRR℄ presents two di�erent methods of proof: one being essentiallybased on Grothendiek's haraterization [G℄ of relatively ompat sets inthe projetive tensor produt of Banah spaes, the other�on the Banah�Dieudonné theorem.Our notation is rather standard. A Banah spae X will always be re-garded as a subspae of its bidual X∗∗ under the anonial embedding. Thelosed unit ball of X is denoted by BX . The losure of a set A ⊂ X is de-noted by A. The linear span of A is denoted by spanA and the losed onvexhull by convA. Let us reall that T ∈ L(X∗, Y ) is weak∗-weak ontinuousif and only if ranT ∗ ⊂ X. Reall also that Lw∗(X∗, Y ) = Ww∗(X∗, Y ) (if
T ∈ L(X∗, Y ) is weak∗-weak ontinuous, then T (BX∗) is weakly ompatbeause BX∗ is ompat in the weak∗ topology).



Uniform fatorization for ompat sets 87For the de�nition and basi properties of Lp,λ-spaes and Lp-spaes, 1 ≤
p ≤ ∞, 1 ≤ λ <∞, the reader is referred to [LP℄ and [LR℄, or [JL, pp. 57�60℄.For the universal spaes Cp, 1 ≤ p ≤ ∞, see [J℄ or, e.g., [Si, pp. 422�426℄. Weuse the symbol ℓ∞ for the Banah spae of null sequenes, usually denotedby c0.2. Main fatorization lemmas for ompat subsets of weaklyompat operators. Our main Lemmas 4 and 5 below rely on Lemma 3whih is an isometri version of the famous Davis�Figiel�Johnson�Peªzy«skifatorization lemma [DFJP℄ due to Lima, Nygaard, and Oja [LNO℄. Let usreall the relevant onstrution.De�ne f : (1,∞) → (0,∞) by

f(a) =

( ∞∑

n=1

an

(an + 1)2

)1/2

.The funtion f is ontinuous, stritly dereasing, lima→1+ f(a) = ∞, and
lima→∞ f(a) = 0. Hene, there exists a unique a ∈ (1,∞) suh that f(a) = 1.Let us �x this a.Let Y be a Banah spae and let K be a losed absolutely onvex subsetof BY . For eah n ∈ N, put Bn = an/2K + a−n/2BY . The gauge of Bn givesan equivalent norm ‖ · ‖n on Y . Set

‖y‖K =
( ∞∑

n=1

‖y‖2
n

)1/2
,de�ne YK = {y ∈ Y : ‖y‖K <∞}, and let JK : YK → Y denote the identityembedding.Lemma 3 (see [DFJP℄ and [LNO℄). With notation as above, the followingholds:(i) YK = (YK , ‖ · ‖K) is a Banah spae and ‖JK‖ ≤ 1.(ii) K ⊂ BYK

⊂ BY .(iii) If y ∈ K, then ‖y‖2
K ≤ (1/4 + 1/ln a)‖y‖.(iv) The Y-norm and YK-norm topologies oinide on K.(v) J∗∗

K is injetive.(vi) JK is ompat if and only if K is ompat ; in this ase YK is sep-arable.(vii) YK is re�exive if and only if K is weakly ompat.Remark. By [LNO℄ a �good� estimate of a is exp(4/9). This is an esti-mate from below. Hene
1/4 + 1/ln a < 5/2.



88 K. Mikkor and E. OjaLemma 4. Let X and Y be Banah spaes. Let C be a ompat subsetof Lw∗(X∗, Y ). Then there exist a weakly ompat absolutely onvex subset
K of BY , whih is ompat whenever C is ontained in Kw∗(X∗, Y ), and alinear mapping Φ : span C → Lw∗(X∗, YK) suh that S = JK ◦ Φ(S) for all
S ∈ span C and ‖JK‖ = 1. Moreover , if S ∈ span C, then(i) S has �nite rank if and only if Φ(S) has �nite rank ,(ii) S is ompat if and only if Φ(S) is ompat.The mapping Φ restrited to C ∪ {0} is a homeomorphism satisfying

‖S − T‖ ≤ ‖Φ(S) − Φ(T )‖

≤ min{d, d1/2(1/4 + 1/ln a)1/2‖S − T‖1/2}, S, T ∈ C ∪ {0},where
d = diam C ∪ {0}.In partiular , if −S ∈ C for some S ∈ C, then

‖Φ(S)‖ ≤ min{d/2, (d/2)1/2(1/4 + 1/ln a)1/2‖S‖1/2}.Proof. Let
K = conv{d−1(S − T )x∗ : S, T ∈ C ∪ {0}, x∗ ∈ BX∗}.Then K is ontained in BY , K is losed and absolutely onvex, hene weaklylosed.To prove that K is weakly ompat, �x an arbitrary ε > 0. We shall �nda weakly ompat subset Kε of Y suh that K ⊂ Kε + εBY . Then the weakompatness of K will be immediate from Grothendiek's lemma (see, e.g.,[D, p. 227℄). Let {U1, . . . , Un} be an ε-net in the ompat subset

{d−1(S − T ) : S, T ∈ C ∪ {0}}of Lw∗(X∗, Y ). Denoting by Kε the losed onvex hull of the weakly ompatset U1(BX∗) ∪ · · · ∪ Un(BX∗), whih is weakly ompat by a lassial resultof Krein and �mulian, it is straightforward to verify that K ⊂ Kε + εBY asdesired.If C is ontained in Kw∗(X∗, Y ), then Kε is ompat (by a theorem ofMazur), implying that also K is ompat.Let the Banah spae YK and the identity embedding JK : YK → Y with
‖JK‖ ≤ 1 be as in Lemma 3. Sine K ⊂ BYK

,

‖JK‖ = sup
z∈BYK

‖z‖ ≥ sup
z∈K

‖z‖ ≥ d−1 sup
S,T∈C∪{0}

‖S − T‖ = 1.

Hene ‖JK‖ = 1.



Uniform fatorization for ompat sets 89Let S ∈ span C. Then
ranS ⊂ span{Sx∗ : S ∈ C, x∗ ∈ X∗}

⊂ span{(S − T )x∗ : S, T ∈ C ∪ {0}, x∗ ∈ BX∗}

⊂ spanK ⊂ spanBYK
= YK .This permits us to de�ne Φ(S) : X∗ → YK by

Φ(S)x∗ = Sx∗, x∗ ∈ X∗.Sine Φ(S) is algebraially the same operator as S, we see that Φ(S) is linear,and S = JK ◦ Φ(S).Let S, T ∈ C ∪ {0}. Then d−1(S − T )x∗ ∈ K ⊂ BYK
for all x∗ ∈ BX∗ .Hene

(1) ‖Φ(S − T )‖ = sup
x∗∈BX∗

‖(S − T )x∗‖K ≤ d, S, T ∈ C ∪ {0}.This implies, in partiular, that ‖Φ(S)‖ < ∞ for all S ∈ span C. Every
Φ(S), S ∈ span C, is also weak∗-weak ontinuous beause, J∗

K(Y ∗) beingnorm dense in Y ∗
K (sine J∗∗

K is injetive by Lemma 3), we have
(Φ(S))∗(Y ∗

K) = (Φ(S))∗(J∗
K(Y ∗)) ⊂ ((Φ(S))∗ ◦ J∗

K)(Y ∗)

= S∗(Y ∗) ⊂ X = X.Consequently, Φ is a linear mapping from span C to Lw∗(X∗, YK).Sine S ∈ span C and Φ(S) are algebraially the same operators, learly(i) holds. Condition (ii) holds by Lemma 3(iv) (and by the linearity of Φ)beause d−1S(BX∗) ⊂ K for all S ∈ C.Finally, let S, T ∈ C ∪ {0}. Then, by (1),
‖S − T‖ ≤ ‖JK‖ ‖Φ(S − T )‖ = ‖Φ(S) − Φ(T )‖ ≤ d.Sine d−1(S − T )x∗ ∈ K for all x∗ ∈ BX∗ , using Lemma 3(iii), we also have

‖Φ(S) − Φ(T )‖ = sup
x∗∈BX∗

‖(S − T )x∗‖K

≤ d1/2(1/4 + 1/ln a)1/2 sup
x∗∈BX∗

‖(S − T )x∗‖1/2

= d1/2(1/4 + 1/ln a)1/2‖S − T‖1/2.If, in partiular, S,−S ∈ C, then the desired estimate for the norm of
Φ(S) = (Φ(S) − Φ(−S))/2 immediately follows from the above.Lemma 5. Let X and Y be Banah spaes. Let C be a ompat subsetof Lw∗(X∗, Y ). Then there exist a re�exive Banah spae Z, a norm oneoperator J ∈ Lw∗(X∗, Z), and a linear mapping Φ : span C → L(Z, Y )satisfying onditions (i) and (ii) of Lemma 4 suh that S = Φ(S) ◦ J forall S ∈ span C. Moreover , Z = X∗

K and J = J∗
K for some weakly ompatabsolutely onvex subset K of BX , and if C is ontained in Kw∗(X∗, Y ), then



90 K. Mikkor and E. Oja
Z is separable and J ∈ Kw∗(X∗, Z). The mapping Φ restrited to C ∪ {0} isa homeomorphism satisfying the onlusions of Lemma 4.Proof. Applying Lemma 4 to the ompat subset C∗ = {S∗ : S ∈ C}of Lw∗(Y ∗, X), we an �nd a weakly ompat absolutely onvex subset Kof BX , whih is ompat whenever C is ontained in Kw∗(X∗, Y ) (sine S∗is ompat if and only if S is). We an also �nd a linear mapping

Ψ : span C∗ → Lw∗(Y ∗, XK)satisfying the onlusions of Lemma 4 suh that S∗ = JK ◦ Ψ(S∗) for all
S ∈ span C, and we know that ‖JK‖ = 1.Let Z = X∗

K and J = J∗
K . Then Z is re�exive by Lemma 3(vii), ‖J‖ = 1,and J ∈ Lw∗(X∗, Z) sine ran J∗∗

K ⊂ X beause Z is re�exive. The re�exivespae Z is separable and the operator J is ompat whenever C is ontainedin Kw∗(X∗, Y ) (see Lemma 3(vi)).De�ne Φ : span C → L(Z, Y ) by
Φ(S) = (Ψ(S∗))∗, S ∈ span C.The properties of Ψ learly imply that Φ is a linear mapping satisfying on-ditions (i) and (ii) of Lemma 4. If S ∈ span C, then S∗∗ = S (beause

S∗ ∈ Lw∗(Y ∗, X)) and therefore S = (JK ◦ Ψ(S∗))∗ = Φ(S) ◦ J . Sine
‖S−T‖ = ‖S∗−T ∗‖ and ‖Φ(S)−Φ(T )‖ = ‖Ψ(S∗)−Ψ(T ∗)‖ for S, T ∈ span C,the mapping Φ restrited to C ∪ {0} obviously satis�es the onlusions ofLemma 4.Remark. Observe that diamΦ(C ∪ {0}) = diam C ∪ {0} in Lemmas 4and 5.3. Quantitative versions of the uniform fatorization for om-pat sets of operators. For Banah spaes X and Y , let us onsider thefollowing in�nite diret sum in the sense of ℓ2:

Z(X,Y ) =
( ∑

K

X∗
K

)

2
⊕2

( ∑

L

YL

)

2where K and L run through the weakly ompat absolutely onvex subsetsof BX and BY , respetively. The spae Z(X,Y ) is re�exive (see Lemma 3(vii)).In Theorems 6�8 below, Z(X,Y ) will serve as a universal fatorization spaefor all ompat sets of the spae Lw∗(X∗, Y ).Theorem 6. Let X and Y be Banah spaes. For every ompat subset
C of Lw∗(X∗, Y ), there exist a linear mapping Φ : span C → Lw∗(X∗, Z(X,Y ))whih preserves �nite rank and ompat operators and a norm one operator
v ∈ L(Z(X,Y ), Y ) suh that S = v ◦ Φ(S) for all S ∈ span C. The mapping
Φ restrited to C ∪ {0} is a homeomorphism satisfying the onlusions ofLemma 4. Moreover , if C is ontained in Kw∗(X∗, Y ), then v ∈ K(Z(X,Y ), Y ).



Uniform fatorization for ompat sets 91Proof. Let L and ϕ be, respetively, the weakly ompat absolutely on-vex subset of BY and the linear mapping from span C to Lw∗(X∗, YL) givenby Lemma 4. Let IL : YL → Z(X,Y ) denote the natural norm one embeddingand PL : Z(X,Y ) → YL the natural norm one projetion. It is straightforwardto verify that the mappings Φ, de�ned by Φ(S) = IL ◦ ϕ(S), S ∈ span C,and v = JL ◦ PL have the desired properties (use Lemma 3(v) and the fatthat 1 = ‖JL‖ = ‖v ◦ IL‖ ≤ ‖v‖; for the �moreover� part, use Lemma3(vi)).Theorem 7. Let X and Y be Banah spaes. For every ompat sub-set C of Lw∗(X∗, Y ), there exist a norm one operator u ∈ Lw∗(X∗, Z(X,Y ))and a linear mapping Φ : span C → L(Z(X,Y ), Y ) whih preserves �niterank and ompat operators suh that S = Φ(S) ◦ u for all S ∈ span C.The mapping Φ restrited to C ∪ {0} is a homeomorphism satisfying theonlusions of Lemma 4. Moreover , if C is ontained in Kw∗(X∗, Y ), then
u ∈ Kw∗(X∗, Z(X,Y )).Proof. The proof relies on Lemma 5 and it is similar to that of Theo-rem 6.Theorem 8. Let X and Y be Banah spaes. For every ompat subset
C of Lw∗(X∗, Y ), there exist norm one operators u ∈ Lw∗(X∗, Z(X,Y )) and
v ∈ L(Z(X,Y ), Y ), and a linear mapping Φ : span C → L(Z(X,Y ), Z(X,Y ))whih preserves �nite rank and ompat operators suh that S = v ◦Φ(S) ◦ufor all S ∈ span C. The mapping Φ restrited to C ∪{0} is a homeomorphismsatisfying

‖S − T‖ ≤ ‖Φ(S) − Φ(T )‖

≤ min{d, d3/4(1/4 + 1/ln a)3/4‖S − T‖1/4}, S, T ∈ C ∪ {0},where d = diam C ∪ {0}. In partiular , if −S ∈ C for some S ∈ C, then
‖Φ(S)‖ ≤ min{d/2, (d/2)3/4(1/4 + 1/ln a)3/4‖S‖1/4}.Moreover , if C is ontained in Kw∗(X∗, Y ), then u ∈ Kw∗(X∗, Z(X,Y )) and

v ∈ K(Z(X,Y ), Y ).Proof. Let K ⊂ BX , J = J∗
K ∈ Lw∗(X∗, X∗

K), and ϕ : span C →
L(X∗

K , Y ) be, respetively, the weakly ompat absolutely onvex subset,the norm one operator, and the linear mapping given by Lemma 5.Sine ϕ(C) is a ompat subset of L(X∗
K , Y ) = Lw∗(X∗

K , Y ) (reall that
X∗

K is re�exive), we an apply Lemma 4. Let L ⊂ BY and ψ : spanϕ(C) →
Lw∗(X∗

K , YL) be, respetively, the weakly ompat subset and the linearmapping given by Lemma 4.Let IK : X∗
K → Z(X,Y ) and IL : YL → Z(X,Y ) denote the natural normone embeddings, and let PK : Z(X,Y ) → X∗

K and PL : Z(X,Y ) → YL denote



92 K. Mikkor and E. Ojathe natural norm one projetions. It is straightforward to verify (observingthat diamϕ(C ∪ {0}) = d) that the mappings u = IK ◦ J , Φ de�ned by
Φ(S) = IL ◦ ψ(ϕ(S)) ◦ PK for S ∈ span C, and v = JL ◦ PL have the desiredproperties. In partiular, for all S ∈ span C,

S = ϕ(S) ◦ J = JL ◦ ψ(ϕ(S)) ◦ J = JL ◦ PL ◦ IL ◦ ψ(ϕ(S)) ◦ PK ◦ IK ◦ J

= v ◦ Φ(S) ◦ u.The �moreover� part uses the fat that J ∈ Kw∗(X∗, X∗
K) whenever C ⊂

Kw∗(X∗, Y ) (see Lemma 5) and that, in this ase, ϕ(C) is a ompat subsetof Kw∗(X∗
K , Y ), implying (by Lemmas 4 and 3(vi)) the ompatness of theoperator JL.Remark. Observe that diamΦ(C ∪ {0}) = diam C ∪ {0} in Theorems6�8.Remark. Theorem 8 represents a quantitative strengthening of the fol-lowing result by Aron et al. (see [ALRR, Proposition 2℄): for Banah spaes

X and Y , there exists a re�exive Banah spae Z = Z(X,Y ) suh that , forevery relatively ompat subset C of Lw∗(X∗, Y ), there exist operators u ∈
Lw∗(X∗, Z) and v ∈ L(Z, Y ), and a relatively ompat subset {AS : S ∈ C}of L(Z,Z) suh that S = v ◦ AS ◦ u for all S ∈ C. Note that our de�nitionof Z(X,Y ) is muh simpler than that of Z(X,Y ), but similar.Sine W(X,Y ) and Lw∗(X∗∗, Y ) = Ww∗(X∗∗, Y ), and also K(X,Y ) and
Kw∗(X∗∗, Y ) are anonially isometrially isomorphi under the mapping
S 7→ S∗∗, Theorems 6�8 yield immediate appliations to fatoring ompatsubsets of W(X,Y ) and K(X,Y ). We only state the orresponding applia-tion of Theorem 8, the others being similar.Corollary 9. Let X and Y be Banah spaes, and let Z = Z(X∗,Y ).For every ompat subset C of W(X,Y ), there exist norm one operators
u ∈ W(X,Z) and v ∈ W(Z, Y ), and a linear mapping Φ : span C → W(Z,Z)whih preserves �nite rank and ompat operators suh that S = v ◦Φ(S) ◦ufor all S ∈ span C. The mapping Φ restrited to C ∪ {0} is a homeomor-phism satisfying the onlusions of Theorem 8. Moreover , if C is ontainedin K(X,Y ), then u ∈ K(X,Z) and v ∈ K(Z, Y ).4. Quantitative versions of the uniform fatorization for om-pat sets of ompat operators. Theorem 8, ombined with the wellknown fatorization methods by Johnson [J℄ and Figiel [F℄, yield the follow-ing quantitative strengthening of Theorem 2 of Aron et al. (see the Intro-dution).Theorem 10. Let X and Y be Banah spaes and let C be a ompatsubset of Kw∗(X∗, Y ). Then, for every ε > 0, there exist operators u ∈



Uniform fatorization for ompat sets 93
Kw∗(X∗, ZFJ) and v ∈ K(ZFJ, Y ) with 1 ≤ ‖u‖, ‖v‖ ≤ 1 + ε, and a linearmapping Φ : span C → K(ZFJ, ZFJ) suh that S = v ◦ Φ(S) ◦ u for all S ∈
span C. The mapping Φ restrited to C ∪ {0} is a homeomorphism satisfyingthe onlusions of Theorem 8.Proof. Let A ∈ Kw∗(X∗, Z(X,Y )), B ∈ K(Z(X,Y ), Y ), and ϕ : span C →
K(Z(X,Y ), Z(X,Y )) be the norm one operators and the linear mapping givenby Theorem 8. It follows from the proofs of [J, Theorem 1℄ and [F, Proposi-tion 3.1℄ that there exist V ∈ K(Z(X,Y ), ZFJ) and v ∈ K(ZFJ, Y ) suh that
‖V ‖ = 1, 1 ≤ ‖v‖ ≤ 1+ ε, and B = v ◦V . Similarly to [J, Proposition 1℄, wean show that the subspae of Fw∗(X∗, Z) (where Z is any Banah spae)onsisting of operators T whih admit a fatorization T = β ◦ α for someoperators α ∈ Fw∗(X∗, Cp) and β ∈ F(Cp, Z), is a Banah spae under thenorm

‖T‖Cp
= inf{‖β‖ ‖α‖ : T = β ◦ α, α ∈ Fw∗(X∗, Cp), β ∈ F(Cp, Z)}.This enables us to obtain, arguing similarly to the proofs of [J, Theorem 1℄and [F, Proposition 3.1℄, for A ∈ Kw∗(X∗, Z(X,Y )) with ‖A‖ = 1, two op-erators u ∈ Kw∗(X∗, ZFJ) and U ∈ K(ZFJ, Z(X,Y )) suh that 1 ≤ ‖u‖ ≤

1 + ε, ‖U‖ = 1, and A = U ◦ u. Sine, for all S ∈ span C,

S = B ◦ ϕ(S) ◦ A = v ◦ V ◦ ϕ(S) ◦ U ◦ u,the mapping Φ de�ned by Φ(S) = V ◦ϕ(S) ◦U, S ∈ span C, has the desiredproperties.In the same vein like the spae Z(X,Y ) was �replaed� by ZFJ in Theorem8 to obtain Theorem 10, one an �replae� Z(X,Y ) by ZFJ also in Theorems 6and 7 (or, equivalently, one may base on Lemmas 4 and 5 instead of Theorems6 and 7). We shall not state the orresponding results.Instead, we would like to point out an important ase when Z(X,Y ) maybe �replaed� by any Cp, 1 ≤ p ≤ ∞. Here we only present the result thatrelies on Theorem 6. Similar results based on Theorems 7 and 8 an then beeasily stated and proved.Theorem 11. Let X and Y be Banah spaes suh that Y has theapproximation property and let 1 ≤ p ≤ ∞. Let C be a ompat subsetof Kw∗(X∗, Y ). Then, for every ε > 0, there exist a linear mapping Φ :
span C → Kw∗(X∗, Cp) and an operator v ∈ K(Cp, Y ) with 1 ≤ ‖v‖ ≤ 1 + εsuh that S = v ◦ Φ(S) for all S ∈ span C. The mapping Φ restrited to
C ∪ {0} is a homeomorphism satisfying the onlusions of Lemma 4.Proof. Let ϕ : span C → Kw∗(X∗, Z(X,Y )) and B ∈ K(Z(X,Y ), Y ) bethe linear mapping and the norm one operator given by Theorem 6. Sine
Y has the approximation property, it is well known that K(Z(X,Y ), Y ) =

F(Z(X,Y ), Y ). Therefore, from the proof of [J, Theorem 1℄, it follows that
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B admits a fatorization B = v ◦ V with V ∈ K(Z(X,Y ), Cp), ‖V ‖ = 1,and v ∈ K(Cp, Y ), 1 ≤ ‖v‖ ≤ 1 + ε. The mapping Φ de�ned by Φ(S) =
V ◦ ϕ(S), S ∈ span C, has the needed properties.If we use, in the above proof, the fatorization argument [J, Theorem 2℄by Johnson instead of [J, Theorem 1℄, then we get the following quantitativestrengthening of the symmetri version of Theorem 1 of Graves and Ruessfor all Lp-spaes, 1 ≤ p ≤ ∞. Reall that ℓ∞ denotes the spae c0.Theorem 12. Let X be a Banah spae and let Y be an Lp,λ-spae
(1 ≤ p ≤ ∞, 1 ≤ λ < ∞). If C is a ompat subset of Kw∗(X∗, Y ), then,for every ε > 0, there exist a linear mapping Φ : span C → Kw∗(X∗, ℓp) andan operator v ∈ K(ℓp, Y ) with 1 ≤ ‖v‖ ≤ λ + ε suh that S = v ◦ Φ(S) forall S ∈ span C, and the mapping Φ restrited to C ∪{0} is a homeomorphismsatisfying the onlusions of Lemma 4.Reall that K(X,Y ) = Kw∗(X∗∗, Y ). Therefore Theorems 10 and 11together with their analogs and Theorem 12 immediately yield seven orre-sponding fatorization results for ompat subsets of K(X,Y ).Let us now point out an appliation of Theorems 11 and 12 to represent-ing ompat subsets of the injetive tensor produt X ⊗̌Y of Banah spaes
X and Y .Corollary 13. Let 1 ≤ p ≤ ∞ and let X and Y be Banah spaessuh that X has the approximation property (respetively , is an Lp,λ-spae).Let C be a ompat subset of X ⊗̌ Y . Then, for every ε > 0, there exist alinear mapping Φ from span C to Cp ⊗̌ Y (respetively , to ℓp ⊗̌ Y ) and anoperator A ∈ K(Cp, X) with 1 ≤ ‖A‖ ≤ 1 + ε (respetively , A ∈ K(ℓp, X)with 1 ≤ ‖A‖ ≤ λ + ε) suh that u = (A ⊗ Id)(Φu) for all u ∈ span C.The mapping Φ restrited to C ∪ {0} is a homeomorphism satisfying theonlusions of Lemma 4.Proof. Reall that X ⊗̌ Y = Kw∗(Y ∗, X) whenever X or Y has the ap-proximation property (see [G, Ch. I, p. 165℄). Reall also that Lp-spaes, Cp,and ℓp have the approximation property, and apply Theorems 11 and 12. Toverify the equality u = (A⊗Id)(Φu), rely on the (easy) fat that if v ∈ Cp⊗̌Y(respetively, v ∈ lp ⊗̌ Y ) is anonially identi�ed with v̂ ∈ Kw∗(Y ∗, Cp) (re-spetively, v̂ ∈ Kw∗(Y ∗, ℓp)), then (A⊗Id)v ∈ X ⊗̌Y is anonially identi�edwith the operator A ◦ v̂ ∈ Kw∗(Y ∗, X).Let us onsider the partiular ase of Corollary 13 when Y = C(K),the Banah spae of ontinuous funtions on a ompat Hausdor� spae K.Then X ⊗̌Y = C(K;X), the Banah spae of ontinuous X-valued funtionson K. And Corollary 13 yields the representation of C ⊂ C(K;X) throughthe subset Φ(C) of C(K;Cp) (respetively, of C(K; ℓp)) so that f = A◦ (Φf)



Uniform fatorization for ompat sets 95for all f ∈ span C. Corollary 13 may also be applied to identi�ations of
X ⊗̌Y as spaes of X-valued measures (e.g., when Y = L1(µ) or Y = ba(B),
B being a Boolean algebra; see [DU, pp. 223�224℄ and [GR1℄).We onlude with a quantitative strengthening of Theorem 1 of Gravesand Ruess (see the Introdution) for all Lp-spaes, 1 ≤ p ≤ ∞, whih is asymmetri version of Theorem 12. Let us reall that X is an Lp-spae if andonly if X∗ is an Lq-spae where 1/q + 1/p = 1 with q = ∞ if p = 1 and
q = 1 if p = ∞.Theorem 14. Let 1 ≤ p ≤ ∞ and 1 ≤ λ < ∞. Let X be an Lp-spae suh that X∗ is an Lq,λ-spae (where 1/q + 1/p = 1 with q = ∞if p = 1 and q = 1 if p = ∞) and let Y be a Banah spae. If C isa ompat subset of K(X,Y ), then, for every ε > 0, there exist a lin-ear mapping Φ : span C → K(ℓp, Y ) and an operator u ∈ K(X, ℓp) with
1 ≤ ‖u‖ ≤ λ + ε suh that S = Φ(S) ◦ u for all S ∈ span C, and the map-ping Φ restrited to C ∪ {0} is a homeomorphism satisfying the onlusionsof Lemma 4.Proof. Suppose �rst that 1 ≤ p < ∞. Observe that C∗ = {S∗ : S ∈ C}is a ompat subset of Kw∗(Y ∗, X∗) (reall that ranS∗∗ ⊂ Y whenever
S ∈ K(X,Y )) and apply Theorem 12. Let ε > 0 and let ϕ : span C∗ →
Kw∗(Y ∗, ℓq) and v ∈ K(ℓq, X

∗) be given by Theorem 12. Then ℓ∗q = ℓpand (ϕ(S∗))∗ ∈ K(ℓp, Y ) if S ∈ span C. De�ne Φ : span C → K(ℓp, Y ) by
Φ(S) = (ϕ(S∗))∗, S ∈ span C, and u ∈ K(X, ℓp) by u = v∗|X . These map-pings have the desired properties. In partiular, if S ∈ span C, then

Φ(S) ◦ u = ((ϕ(S∗))∗ ◦ v∗)|X = (v ◦ ϕ(S∗))∗|X = S∗∗|X = S.Suppose now that p = ∞. Let Z be the re�exive spae, U ∈ K(X,Z)the norm one operator, and ϕ : span C → K(Z, Y ) the linear mapping givenby Theorem 7. Observe that, in fat, U ∈ F(X,Z) beause X∗, being an
L1-spae, has the approximation property.Let ε > 0. Consider any T ∈ F(X,Z). Then T ∗ ∈ F(Z∗, X∗) and, sim-ilarly to the proof of [J, Theorem 2℄, we an hoose a �nite-dimensionalsubspae E of X∗ with ranT ∗ ⊂ E, a positive integer n, and an isomor-phism L from E onto ℓn1 suh that, e.g., ‖L‖ = 1 and 1 ≤ ‖L−1‖ < λ+ ε/2.Denoting by V : Z∗ → E the astrition of T ∗ and by j : E → X∗ the identityembedding, we have V ∗ ∈ F(E∗, Z) and T = V ∗ ◦ j∗|X . Hene, T admits afatorization T = β ◦ α for some operators α ∈ F(X, ℓn∞) and β ∈ F(ℓn∞, Z)with ‖α‖ ≤ λ+ ε/2 and ‖β‖ ≤ ‖T‖. Sine c0 is isometrially isomorphi tothe in�nite diret sum (∑n ℓ

n
∞)∞ in the sense of c0, we have, for the norm

‖ · ‖c0 introdued in [J, Proposition 1℄,
‖T‖c0 = inf{‖β‖ ‖α‖ : T = β ◦ α, α ∈ F(X, c0), β ∈ F(c0, Z)}

≤ (λ+ ε/2)‖T‖.



96 K. Mikkor and E. OjaConsequently, ‖ · ‖c0 is equivalent to the operator norm on F(X,Z) and,sine F(X,Z) is dense in F(X,Z), it follows from [J, Proposition 1℄ that,in partiular, U admits a fatorization U = v ◦ u with u ∈ F(X, c0),
v ∈ F(c0, Z), and ‖U‖ = 1 ≤ ‖v‖ ‖u‖ ≤ (λ + ε)‖U‖ = λ + ε. We maylearly assume that 1 ≤ ‖u‖ ≤ λ + ε and ‖v‖ = 1. Sine, for all S ∈
span C,

S = ϕ(S) ◦ U = ϕ(S) ◦ v ◦ u,the mapping Φ de�ned by Φ(S) = ϕ(S) ◦ v, S ∈ span C, has the desiredproperties.
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