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Uniform fa
torization for 
ompa
t sets ofweakly 
ompa
t operatorsby
Kristel Mikkor and Eve Oja (Tartu)Abstra
t. We prove uniform fa
torization results that des
ribe the fa
torization of
ompa
t sets of 
ompa
t and weakly 
ompa
t operators via Hölder 
ontinuous homeo-morphisms having Lips
hitz 
ontinuous inverses. This yields, in parti
ular, quantitativestrengthenings of results of Graves and Ruess on the fa
torization through ℓp-spa
es andof Aron, Lindström, Ruess, and Ryan on the fa
torization through universal spa
es ofFigiel and Johnson. Our method is based on the isometri
 version of the Davis�Figiel�Johnson�Peª
zy«ski fa
torization 
onstru
tion due to Lima, Nygaard, and Oja.1. Introdu
tion. LetX and Y be Bana
h spa
es. We denote by L(X,Y )the Bana
h spa
e of all 
ontinuous linear operators from X to Y , and by

F(X,Y ), F(X,Y ), K(X,Y ), and W(X,Y ) its subspa
es of �nite rank, ap-proximable, 
ompa
t, and weakly 
ompa
t operators. If A is F , F , K, W ,or L, then Aw∗(X∗, Y ) denotes the subspa
e of A(X∗, Y ) 
onsisting of thoseoperators whi
h are weak∗-weak 
ontinuous.In 1987, Graves and Ruess (see [GR2, Theorem 2.1℄) proved the followingfa
torization result for 
ompa
t operators between spe
ial spa
es.Theorem 1 (Graves and Ruess). Let X be an L1-spa
e (respe
tively ,an L∞-spa
e) and let Y be a Bana
h spa
e. Let C be a relatively 
ompa
tsubset of K(X,Y ). Then there exist an operator u ∈ K(X, ℓ1) (respe
tively ,
u ∈ K(X, c0)) and a relatively 
ompa
t subset {AS : S ∈ C} of K(ℓ1, Y )
(respe
tively , of K(c0, Y )) su
h that S = AS ◦ u for all S ∈ C.The uniform fa
torization of 
ompa
t operators in a general setting wasstudied by Aron, Lindström, Ruess, and Ryan. In 1999, the following resultwas obtained (see [ALRR, Theorem 1℄) where ZFJ denotes a universal fa
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86 K. Mikkor and E. Ojaization spa
e of Figiel [F℄ and Johnson [J℄ (for instan
e, ZFJ = (
∑

W⊂Cp
W )pwhere W runs through the 
losed subspa
es of Cp for any �xed p).Theorem 2 (Aron et al.). Let X and Y be Bana
h spa
es and let Cbe a relatively 
ompa
t subset of Kw∗(X∗, Y ). Then there exist operators

u ∈ Kw∗(X∗, ZFJ) and v ∈ K(ZFJ, Y ), and a relatively 
ompa
t subset {AS :
S ∈ C} of K(ZFJ, ZFJ) su
h that S = v ◦AS ◦ u for all S ∈ C.Sin
e, in the setting of Theorem 1, every single 
ompa
t operator fa
tors
ompa
tly through ℓ1 (see [R, Corollary 7℄) or, respe
tively, through c0 (see[T, p. 252℄ or [Da, Proposition 5.12℄), Theorem 2 easily implies Theorem 1(see [ALRR, Corollary 4℄).Theorems 1 and 2, together with their proofs in [GR2℄ and [ALRR℄, donot give mu
h information about mapping properties of the 
orresponden
e
S 7→ AS , S ∈ C. For instan
e, one does not even have any estimate for
diam{AS : S ∈ C}.A purpose of this arti
le is to get quantitative strengthenings of Theo-rems 1 and 2 (see Theorems 14 and 10). A
tually, we apply a general uni�edapproa
h, di�erent from [GR2℄ and [ALRR℄, and, in our opinion, mu
h eas-ier, to obtain uniform fa
torization results for 
ompa
t subsets of 
ompa
toperators as well as of weakly 
ompa
t operators. The idea (see Lemmas 4and 5) 
onsists in 
onstru
ting a mapping S 7→ AS from a 
ompa
t subset
C of weakly 
ompa
t operators that preserves 
ompa
t operators, as well as�nite rank operators. This mapping is Hölder 
ontinuous, being also bije
tiveand having a 1-Lips
hitz 
ontinuous inverse, and diam{AS : S ∈ C} = diam Cwhenever 0 ∈ C.Our 
onstru
tion will be based on the isometri
 version of the famousDavis�Figiel�Johnson�Peª
zy«ski fa
torization lemma [DFJP℄ due to Lima,Nygaard, and Oja [LNO℄. For 
omparison, let us remark that the te
hni
alproof in [GR2℄ relies on Ruess's 
hara
terization [Ru℄ of relatively 
ompa
tsets in Kw∗(X∗, Y ), and uses Saphar's tensor produ
ts ma
hinery [S℄. Thepaper [ALRR℄ presents two di�erent methods of proof: one being essentiallybased on Grothendie
k's 
hara
terization [G℄ of relatively 
ompa
t sets inthe proje
tive tensor produ
t of Bana
h spa
es, the other�on the Bana
h�Dieudonné theorem.Our notation is rather standard. A Bana
h spa
e X will always be re-garded as a subspa
e of its bidual X∗∗ under the 
anoni
al embedding. The
losed unit ball of X is denoted by BX . The 
losure of a set A ⊂ X is de-noted by A. The linear span of A is denoted by spanA and the 
losed 
onvexhull by convA. Let us re
all that T ∈ L(X∗, Y ) is weak∗-weak 
ontinuousif and only if ranT ∗ ⊂ X. Re
all also that Lw∗(X∗, Y ) = Ww∗(X∗, Y ) (if
T ∈ L(X∗, Y ) is weak∗-weak 
ontinuous, then T (BX∗) is weakly 
ompa
tbe
ause BX∗ is 
ompa
t in the weak∗ topology).



Uniform fa
torization for 
ompa
t sets 87For the de�nition and basi
 properties of Lp,λ-spa
es and Lp-spa
es, 1 ≤
p ≤ ∞, 1 ≤ λ <∞, the reader is referred to [LP℄ and [LR℄, or [JL, pp. 57�60℄.For the universal spa
es Cp, 1 ≤ p ≤ ∞, see [J℄ or, e.g., [Si, pp. 422�426℄. Weuse the symbol ℓ∞ for the Bana
h spa
e of null sequen
es, usually denotedby c0.2. Main fa
torization lemmas for 
ompa
t subsets of weakly
ompa
t operators. Our main Lemmas 4 and 5 below rely on Lemma 3whi
h is an isometri
 version of the famous Davis�Figiel�Johnson�Peª
zy«skifa
torization lemma [DFJP℄ due to Lima, Nygaard, and Oja [LNO℄. Let usre
all the relevant 
onstru
tion.De�ne f : (1,∞) → (0,∞) by

f(a) =

( ∞∑

n=1

an

(an + 1)2

)1/2

.The fun
tion f is 
ontinuous, stri
tly de
reasing, lima→1+ f(a) = ∞, and
lima→∞ f(a) = 0. Hen
e, there exists a unique a ∈ (1,∞) su
h that f(a) = 1.Let us �x this a.Let Y be a Bana
h spa
e and let K be a 
losed absolutely 
onvex subsetof BY . For ea
h n ∈ N, put Bn = an/2K + a−n/2BY . The gauge of Bn givesan equivalent norm ‖ · ‖n on Y . Set

‖y‖K =
( ∞∑

n=1

‖y‖2
n

)1/2
,de�ne YK = {y ∈ Y : ‖y‖K <∞}, and let JK : YK → Y denote the identityembedding.Lemma 3 (see [DFJP℄ and [LNO℄). With notation as above, the followingholds:(i) YK = (YK , ‖ · ‖K) is a Bana
h spa
e and ‖JK‖ ≤ 1.(ii) K ⊂ BYK

⊂ BY .(iii) If y ∈ K, then ‖y‖2
K ≤ (1/4 + 1/ln a)‖y‖.(iv) The Y-norm and YK-norm topologies 
oin
ide on K.(v) J∗∗

K is inje
tive.(vi) JK is 
ompa
t if and only if K is 
ompa
t ; in this 
ase YK is sep-arable.(vii) YK is re�exive if and only if K is weakly 
ompa
t.Remark. By [LNO℄ a �good� estimate of a is exp(4/9). This is an esti-mate from below. Hen
e
1/4 + 1/ln a < 5/2.



88 K. Mikkor and E. OjaLemma 4. Let X and Y be Bana
h spa
es. Let C be a 
ompa
t subsetof Lw∗(X∗, Y ). Then there exist a weakly 
ompa
t absolutely 
onvex subset
K of BY , whi
h is 
ompa
t whenever C is 
ontained in Kw∗(X∗, Y ), and alinear mapping Φ : span C → Lw∗(X∗, YK) su
h that S = JK ◦ Φ(S) for all
S ∈ span C and ‖JK‖ = 1. Moreover , if S ∈ span C, then(i) S has �nite rank if and only if Φ(S) has �nite rank ,(ii) S is 
ompa
t if and only if Φ(S) is 
ompa
t.The mapping Φ restri
ted to C ∪ {0} is a homeomorphism satisfying

‖S − T‖ ≤ ‖Φ(S) − Φ(T )‖

≤ min{d, d1/2(1/4 + 1/ln a)1/2‖S − T‖1/2}, S, T ∈ C ∪ {0},where
d = diam C ∪ {0}.In parti
ular , if −S ∈ C for some S ∈ C, then

‖Φ(S)‖ ≤ min{d/2, (d/2)1/2(1/4 + 1/ln a)1/2‖S‖1/2}.Proof. Let
K = conv{d−1(S − T )x∗ : S, T ∈ C ∪ {0}, x∗ ∈ BX∗}.Then K is 
ontained in BY , K is 
losed and absolutely 
onvex, hen
e weakly
losed.To prove that K is weakly 
ompa
t, �x an arbitrary ε > 0. We shall �nda weakly 
ompa
t subset Kε of Y su
h that K ⊂ Kε + εBY . Then the weak
ompa
tness of K will be immediate from Grothendie
k's lemma (see, e.g.,[D, p. 227℄). Let {U1, . . . , Un} be an ε-net in the 
ompa
t subset

{d−1(S − T ) : S, T ∈ C ∪ {0}}of Lw∗(X∗, Y ). Denoting by Kε the 
losed 
onvex hull of the weakly 
ompa
tset U1(BX∗) ∪ · · · ∪ Un(BX∗), whi
h is weakly 
ompa
t by a 
lassi
al resultof Krein and �mulian, it is straightforward to verify that K ⊂ Kε + εBY asdesired.If C is 
ontained in Kw∗(X∗, Y ), then Kε is 
ompa
t (by a theorem ofMazur), implying that also K is 
ompa
t.Let the Bana
h spa
e YK and the identity embedding JK : YK → Y with
‖JK‖ ≤ 1 be as in Lemma 3. Sin
e K ⊂ BYK

,

‖JK‖ = sup
z∈BYK

‖z‖ ≥ sup
z∈K

‖z‖ ≥ d−1 sup
S,T∈C∪{0}

‖S − T‖ = 1.

Hen
e ‖JK‖ = 1.



Uniform fa
torization for 
ompa
t sets 89Let S ∈ span C. Then
ranS ⊂ span{Sx∗ : S ∈ C, x∗ ∈ X∗}

⊂ span{(S − T )x∗ : S, T ∈ C ∪ {0}, x∗ ∈ BX∗}

⊂ spanK ⊂ spanBYK
= YK .This permits us to de�ne Φ(S) : X∗ → YK by

Φ(S)x∗ = Sx∗, x∗ ∈ X∗.Sin
e Φ(S) is algebrai
ally the same operator as S, we see that Φ(S) is linear,and S = JK ◦ Φ(S).Let S, T ∈ C ∪ {0}. Then d−1(S − T )x∗ ∈ K ⊂ BYK
for all x∗ ∈ BX∗ .Hen
e

(1) ‖Φ(S − T )‖ = sup
x∗∈BX∗

‖(S − T )x∗‖K ≤ d, S, T ∈ C ∪ {0}.This implies, in parti
ular, that ‖Φ(S)‖ < ∞ for all S ∈ span C. Every
Φ(S), S ∈ span C, is also weak∗-weak 
ontinuous be
ause, J∗

K(Y ∗) beingnorm dense in Y ∗
K (sin
e J∗∗

K is inje
tive by Lemma 3), we have
(Φ(S))∗(Y ∗

K) = (Φ(S))∗(J∗
K(Y ∗)) ⊂ ((Φ(S))∗ ◦ J∗

K)(Y ∗)

= S∗(Y ∗) ⊂ X = X.Consequently, Φ is a linear mapping from span C to Lw∗(X∗, YK).Sin
e S ∈ span C and Φ(S) are algebrai
ally the same operators, 
learly(i) holds. Condition (ii) holds by Lemma 3(iv) (and by the linearity of Φ)be
ause d−1S(BX∗) ⊂ K for all S ∈ C.Finally, let S, T ∈ C ∪ {0}. Then, by (1),
‖S − T‖ ≤ ‖JK‖ ‖Φ(S − T )‖ = ‖Φ(S) − Φ(T )‖ ≤ d.Sin
e d−1(S − T )x∗ ∈ K for all x∗ ∈ BX∗ , using Lemma 3(iii), we also have

‖Φ(S) − Φ(T )‖ = sup
x∗∈BX∗

‖(S − T )x∗‖K

≤ d1/2(1/4 + 1/ln a)1/2 sup
x∗∈BX∗

‖(S − T )x∗‖1/2

= d1/2(1/4 + 1/ln a)1/2‖S − T‖1/2.If, in parti
ular, S,−S ∈ C, then the desired estimate for the norm of
Φ(S) = (Φ(S) − Φ(−S))/2 immediately follows from the above.Lemma 5. Let X and Y be Bana
h spa
es. Let C be a 
ompa
t subsetof Lw∗(X∗, Y ). Then there exist a re�exive Bana
h spa
e Z, a norm oneoperator J ∈ Lw∗(X∗, Z), and a linear mapping Φ : span C → L(Z, Y )satisfying 
onditions (i) and (ii) of Lemma 4 su
h that S = Φ(S) ◦ J forall S ∈ span C. Moreover , Z = X∗

K and J = J∗
K for some weakly 
ompa
tabsolutely 
onvex subset K of BX , and if C is 
ontained in Kw∗(X∗, Y ), then
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Z is separable and J ∈ Kw∗(X∗, Z). The mapping Φ restri
ted to C ∪ {0} isa homeomorphism satisfying the 
on
lusions of Lemma 4.Proof. Applying Lemma 4 to the 
ompa
t subset C∗ = {S∗ : S ∈ C}of Lw∗(Y ∗, X), we 
an �nd a weakly 
ompa
t absolutely 
onvex subset Kof BX , whi
h is 
ompa
t whenever C is 
ontained in Kw∗(X∗, Y ) (sin
e S∗is 
ompa
t if and only if S is). We 
an also �nd a linear mapping

Ψ : span C∗ → Lw∗(Y ∗, XK)satisfying the 
on
lusions of Lemma 4 su
h that S∗ = JK ◦ Ψ(S∗) for all
S ∈ span C, and we know that ‖JK‖ = 1.Let Z = X∗

K and J = J∗
K . Then Z is re�exive by Lemma 3(vii), ‖J‖ = 1,and J ∈ Lw∗(X∗, Z) sin
e ran J∗∗

K ⊂ X be
ause Z is re�exive. The re�exivespa
e Z is separable and the operator J is 
ompa
t whenever C is 
ontainedin Kw∗(X∗, Y ) (see Lemma 3(vi)).De�ne Φ : span C → L(Z, Y ) by
Φ(S) = (Ψ(S∗))∗, S ∈ span C.The properties of Ψ 
learly imply that Φ is a linear mapping satisfying 
on-ditions (i) and (ii) of Lemma 4. If S ∈ span C, then S∗∗ = S (be
ause

S∗ ∈ Lw∗(Y ∗, X)) and therefore S = (JK ◦ Ψ(S∗))∗ = Φ(S) ◦ J . Sin
e
‖S−T‖ = ‖S∗−T ∗‖ and ‖Φ(S)−Φ(T )‖ = ‖Ψ(S∗)−Ψ(T ∗)‖ for S, T ∈ span C,the mapping Φ restri
ted to C ∪ {0} obviously satis�es the 
on
lusions ofLemma 4.Remark. Observe that diamΦ(C ∪ {0}) = diam C ∪ {0} in Lemmas 4and 5.3. Quantitative versions of the uniform fa
torization for 
om-pa
t sets of operators. For Bana
h spa
es X and Y , let us 
onsider thefollowing in�nite dire
t sum in the sense of ℓ2:

Z(X,Y ) =
( ∑

K

X∗
K

)

2
⊕2

( ∑

L

YL

)

2where K and L run through the weakly 
ompa
t absolutely 
onvex subsetsof BX and BY , respe
tively. The spa
e Z(X,Y ) is re�exive (see Lemma 3(vii)).In Theorems 6�8 below, Z(X,Y ) will serve as a universal fa
torization spa
efor all 
ompa
t sets of the spa
e Lw∗(X∗, Y ).Theorem 6. Let X and Y be Bana
h spa
es. For every 
ompa
t subset
C of Lw∗(X∗, Y ), there exist a linear mapping Φ : span C → Lw∗(X∗, Z(X,Y ))whi
h preserves �nite rank and 
ompa
t operators and a norm one operator
v ∈ L(Z(X,Y ), Y ) su
h that S = v ◦ Φ(S) for all S ∈ span C. The mapping
Φ restri
ted to C ∪ {0} is a homeomorphism satisfying the 
on
lusions ofLemma 4. Moreover , if C is 
ontained in Kw∗(X∗, Y ), then v ∈ K(Z(X,Y ), Y ).



Uniform fa
torization for 
ompa
t sets 91Proof. Let L and ϕ be, respe
tively, the weakly 
ompa
t absolutely 
on-vex subset of BY and the linear mapping from span C to Lw∗(X∗, YL) givenby Lemma 4. Let IL : YL → Z(X,Y ) denote the natural norm one embeddingand PL : Z(X,Y ) → YL the natural norm one proje
tion. It is straightforwardto verify that the mappings Φ, de�ned by Φ(S) = IL ◦ ϕ(S), S ∈ span C,and v = JL ◦ PL have the desired properties (use Lemma 3(v) and the fa
tthat 1 = ‖JL‖ = ‖v ◦ IL‖ ≤ ‖v‖; for the �moreover� part, use Lemma3(vi)).Theorem 7. Let X and Y be Bana
h spa
es. For every 
ompa
t sub-set C of Lw∗(X∗, Y ), there exist a norm one operator u ∈ Lw∗(X∗, Z(X,Y ))and a linear mapping Φ : span C → L(Z(X,Y ), Y ) whi
h preserves �niterank and 
ompa
t operators su
h that S = Φ(S) ◦ u for all S ∈ span C.The mapping Φ restri
ted to C ∪ {0} is a homeomorphism satisfying the
on
lusions of Lemma 4. Moreover , if C is 
ontained in Kw∗(X∗, Y ), then
u ∈ Kw∗(X∗, Z(X,Y )).Proof. The proof relies on Lemma 5 and it is similar to that of Theo-rem 6.Theorem 8. Let X and Y be Bana
h spa
es. For every 
ompa
t subset
C of Lw∗(X∗, Y ), there exist norm one operators u ∈ Lw∗(X∗, Z(X,Y )) and
v ∈ L(Z(X,Y ), Y ), and a linear mapping Φ : span C → L(Z(X,Y ), Z(X,Y ))whi
h preserves �nite rank and 
ompa
t operators su
h that S = v ◦Φ(S) ◦ufor all S ∈ span C. The mapping Φ restri
ted to C ∪{0} is a homeomorphismsatisfying

‖S − T‖ ≤ ‖Φ(S) − Φ(T )‖

≤ min{d, d3/4(1/4 + 1/ln a)3/4‖S − T‖1/4}, S, T ∈ C ∪ {0},where d = diam C ∪ {0}. In parti
ular , if −S ∈ C for some S ∈ C, then
‖Φ(S)‖ ≤ min{d/2, (d/2)3/4(1/4 + 1/ln a)3/4‖S‖1/4}.Moreover , if C is 
ontained in Kw∗(X∗, Y ), then u ∈ Kw∗(X∗, Z(X,Y )) and

v ∈ K(Z(X,Y ), Y ).Proof. Let K ⊂ BX , J = J∗
K ∈ Lw∗(X∗, X∗

K), and ϕ : span C →
L(X∗

K , Y ) be, respe
tively, the weakly 
ompa
t absolutely 
onvex subset,the norm one operator, and the linear mapping given by Lemma 5.Sin
e ϕ(C) is a 
ompa
t subset of L(X∗
K , Y ) = Lw∗(X∗

K , Y ) (re
all that
X∗

K is re�exive), we 
an apply Lemma 4. Let L ⊂ BY and ψ : spanϕ(C) →
Lw∗(X∗

K , YL) be, respe
tively, the weakly 
ompa
t subset and the linearmapping given by Lemma 4.Let IK : X∗
K → Z(X,Y ) and IL : YL → Z(X,Y ) denote the natural normone embeddings, and let PK : Z(X,Y ) → X∗

K and PL : Z(X,Y ) → YL denote



92 K. Mikkor and E. Ojathe natural norm one proje
tions. It is straightforward to verify (observingthat diamϕ(C ∪ {0}) = d) that the mappings u = IK ◦ J , Φ de�ned by
Φ(S) = IL ◦ ψ(ϕ(S)) ◦ PK for S ∈ span C, and v = JL ◦ PL have the desiredproperties. In parti
ular, for all S ∈ span C,

S = ϕ(S) ◦ J = JL ◦ ψ(ϕ(S)) ◦ J = JL ◦ PL ◦ IL ◦ ψ(ϕ(S)) ◦ PK ◦ IK ◦ J

= v ◦ Φ(S) ◦ u.The �moreover� part uses the fa
t that J ∈ Kw∗(X∗, X∗
K) whenever C ⊂

Kw∗(X∗, Y ) (see Lemma 5) and that, in this 
ase, ϕ(C) is a 
ompa
t subsetof Kw∗(X∗
K , Y ), implying (by Lemmas 4 and 3(vi)) the 
ompa
tness of theoperator JL.Remark. Observe that diamΦ(C ∪ {0}) = diam C ∪ {0} in Theorems6�8.Remark. Theorem 8 represents a quantitative strengthening of the fol-lowing result by Aron et al. (see [ALRR, Proposition 2℄): for Bana
h spa
es

X and Y , there exists a re�exive Bana
h spa
e Z = Z(X,Y ) su
h that , forevery relatively 
ompa
t subset C of Lw∗(X∗, Y ), there exist operators u ∈
Lw∗(X∗, Z) and v ∈ L(Z, Y ), and a relatively 
ompa
t subset {AS : S ∈ C}of L(Z,Z) su
h that S = v ◦ AS ◦ u for all S ∈ C. Note that our de�nitionof Z(X,Y ) is mu
h simpler than that of Z(X,Y ), but similar.Sin
e W(X,Y ) and Lw∗(X∗∗, Y ) = Ww∗(X∗∗, Y ), and also K(X,Y ) and
Kw∗(X∗∗, Y ) are 
anoni
ally isometri
ally isomorphi
 under the mapping
S 7→ S∗∗, Theorems 6�8 yield immediate appli
ations to fa
toring 
ompa
tsubsets of W(X,Y ) and K(X,Y ). We only state the 
orresponding appli
a-tion of Theorem 8, the others being similar.Corollary 9. Let X and Y be Bana
h spa
es, and let Z = Z(X∗,Y ).For every 
ompa
t subset C of W(X,Y ), there exist norm one operators
u ∈ W(X,Z) and v ∈ W(Z, Y ), and a linear mapping Φ : span C → W(Z,Z)whi
h preserves �nite rank and 
ompa
t operators su
h that S = v ◦Φ(S) ◦ufor all S ∈ span C. The mapping Φ restri
ted to C ∪ {0} is a homeomor-phism satisfying the 
on
lusions of Theorem 8. Moreover , if C is 
ontainedin K(X,Y ), then u ∈ K(X,Z) and v ∈ K(Z, Y ).4. Quantitative versions of the uniform fa
torization for 
om-pa
t sets of 
ompa
t operators. Theorem 8, 
ombined with the wellknown fa
torization methods by Johnson [J℄ and Figiel [F℄, yield the follow-ing quantitative strengthening of Theorem 2 of Aron et al. (see the Intro-du
tion).Theorem 10. Let X and Y be Bana
h spa
es and let C be a 
ompa
tsubset of Kw∗(X∗, Y ). Then, for every ε > 0, there exist operators u ∈
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Kw∗(X∗, ZFJ) and v ∈ K(ZFJ, Y ) with 1 ≤ ‖u‖, ‖v‖ ≤ 1 + ε, and a linearmapping Φ : span C → K(ZFJ, ZFJ) su
h that S = v ◦ Φ(S) ◦ u for all S ∈
span C. The mapping Φ restri
ted to C ∪ {0} is a homeomorphism satisfyingthe 
on
lusions of Theorem 8.Proof. Let A ∈ Kw∗(X∗, Z(X,Y )), B ∈ K(Z(X,Y ), Y ), and ϕ : span C →
K(Z(X,Y ), Z(X,Y )) be the norm one operators and the linear mapping givenby Theorem 8. It follows from the proofs of [J, Theorem 1℄ and [F, Proposi-tion 3.1℄ that there exist V ∈ K(Z(X,Y ), ZFJ) and v ∈ K(ZFJ, Y ) su
h that
‖V ‖ = 1, 1 ≤ ‖v‖ ≤ 1+ ε, and B = v ◦V . Similarly to [J, Proposition 1℄, we
an show that the subspa
e of Fw∗(X∗, Z) (where Z is any Bana
h spa
e)
onsisting of operators T whi
h admit a fa
torization T = β ◦ α for someoperators α ∈ Fw∗(X∗, Cp) and β ∈ F(Cp, Z), is a Bana
h spa
e under thenorm

‖T‖Cp
= inf{‖β‖ ‖α‖ : T = β ◦ α, α ∈ Fw∗(X∗, Cp), β ∈ F(Cp, Z)}.This enables us to obtain, arguing similarly to the proofs of [J, Theorem 1℄and [F, Proposition 3.1℄, for A ∈ Kw∗(X∗, Z(X,Y )) with ‖A‖ = 1, two op-erators u ∈ Kw∗(X∗, ZFJ) and U ∈ K(ZFJ, Z(X,Y )) su
h that 1 ≤ ‖u‖ ≤

1 + ε, ‖U‖ = 1, and A = U ◦ u. Sin
e, for all S ∈ span C,

S = B ◦ ϕ(S) ◦ A = v ◦ V ◦ ϕ(S) ◦ U ◦ u,the mapping Φ de�ned by Φ(S) = V ◦ϕ(S) ◦U, S ∈ span C, has the desiredproperties.In the same vein like the spa
e Z(X,Y ) was �repla
ed� by ZFJ in Theorem8 to obtain Theorem 10, one 
an �repla
e� Z(X,Y ) by ZFJ also in Theorems 6and 7 (or, equivalently, one may base on Lemmas 4 and 5 instead of Theorems6 and 7). We shall not state the 
orresponding results.Instead, we would like to point out an important 
ase when Z(X,Y ) maybe �repla
ed� by any Cp, 1 ≤ p ≤ ∞. Here we only present the result thatrelies on Theorem 6. Similar results based on Theorems 7 and 8 
an then beeasily stated and proved.Theorem 11. Let X and Y be Bana
h spa
es su
h that Y has theapproximation property and let 1 ≤ p ≤ ∞. Let C be a 
ompa
t subsetof Kw∗(X∗, Y ). Then, for every ε > 0, there exist a linear mapping Φ :
span C → Kw∗(X∗, Cp) and an operator v ∈ K(Cp, Y ) with 1 ≤ ‖v‖ ≤ 1 + εsu
h that S = v ◦ Φ(S) for all S ∈ span C. The mapping Φ restri
ted to
C ∪ {0} is a homeomorphism satisfying the 
on
lusions of Lemma 4.Proof. Let ϕ : span C → Kw∗(X∗, Z(X,Y )) and B ∈ K(Z(X,Y ), Y ) bethe linear mapping and the norm one operator given by Theorem 6. Sin
e
Y has the approximation property, it is well known that K(Z(X,Y ), Y ) =

F(Z(X,Y ), Y ). Therefore, from the proof of [J, Theorem 1℄, it follows that
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B admits a fa
torization B = v ◦ V with V ∈ K(Z(X,Y ), Cp), ‖V ‖ = 1,and v ∈ K(Cp, Y ), 1 ≤ ‖v‖ ≤ 1 + ε. The mapping Φ de�ned by Φ(S) =
V ◦ ϕ(S), S ∈ span C, has the needed properties.If we use, in the above proof, the fa
torization argument [J, Theorem 2℄by Johnson instead of [J, Theorem 1℄, then we get the following quantitativestrengthening of the symmetri
 version of Theorem 1 of Graves and Ruessfor all Lp-spa
es, 1 ≤ p ≤ ∞. Re
all that ℓ∞ denotes the spa
e c0.Theorem 12. Let X be a Bana
h spa
e and let Y be an Lp,λ-spa
e
(1 ≤ p ≤ ∞, 1 ≤ λ < ∞). If C is a 
ompa
t subset of Kw∗(X∗, Y ), then,for every ε > 0, there exist a linear mapping Φ : span C → Kw∗(X∗, ℓp) andan operator v ∈ K(ℓp, Y ) with 1 ≤ ‖v‖ ≤ λ + ε su
h that S = v ◦ Φ(S) forall S ∈ span C, and the mapping Φ restri
ted to C ∪{0} is a homeomorphismsatisfying the 
on
lusions of Lemma 4.Re
all that K(X,Y ) = Kw∗(X∗∗, Y ). Therefore Theorems 10 and 11together with their analogs and Theorem 12 immediately yield seven 
orre-sponding fa
torization results for 
ompa
t subsets of K(X,Y ).Let us now point out an appli
ation of Theorems 11 and 12 to represent-ing 
ompa
t subsets of the inje
tive tensor produ
t X ⊗̌Y of Bana
h spa
es
X and Y .Corollary 13. Let 1 ≤ p ≤ ∞ and let X and Y be Bana
h spa
essu
h that X has the approximation property (respe
tively , is an Lp,λ-spa
e).Let C be a 
ompa
t subset of X ⊗̌ Y . Then, for every ε > 0, there exist alinear mapping Φ from span C to Cp ⊗̌ Y (respe
tively , to ℓp ⊗̌ Y ) and anoperator A ∈ K(Cp, X) with 1 ≤ ‖A‖ ≤ 1 + ε (respe
tively , A ∈ K(ℓp, X)with 1 ≤ ‖A‖ ≤ λ + ε) su
h that u = (A ⊗ Id)(Φu) for all u ∈ span C.The mapping Φ restri
ted to C ∪ {0} is a homeomorphism satisfying the
on
lusions of Lemma 4.Proof. Re
all that X ⊗̌ Y = Kw∗(Y ∗, X) whenever X or Y has the ap-proximation property (see [G, Ch. I, p. 165℄). Re
all also that Lp-spa
es, Cp,and ℓp have the approximation property, and apply Theorems 11 and 12. Toverify the equality u = (A⊗Id)(Φu), rely on the (easy) fa
t that if v ∈ Cp⊗̌Y(respe
tively, v ∈ lp ⊗̌ Y ) is 
anoni
ally identi�ed with v̂ ∈ Kw∗(Y ∗, Cp) (re-spe
tively, v̂ ∈ Kw∗(Y ∗, ℓp)), then (A⊗Id)v ∈ X ⊗̌Y is 
anoni
ally identi�edwith the operator A ◦ v̂ ∈ Kw∗(Y ∗, X).Let us 
onsider the parti
ular 
ase of Corollary 13 when Y = C(K),the Bana
h spa
e of 
ontinuous fun
tions on a 
ompa
t Hausdor� spa
e K.Then X ⊗̌Y = C(K;X), the Bana
h spa
e of 
ontinuous X-valued fun
tionson K. And Corollary 13 yields the representation of C ⊂ C(K;X) throughthe subset Φ(C) of C(K;Cp) (respe
tively, of C(K; ℓp)) so that f = A◦ (Φf)
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torization for 
ompa
t sets 95for all f ∈ span C. Corollary 13 may also be applied to identi�
ations of
X ⊗̌Y as spa
es of X-valued measures (e.g., when Y = L1(µ) or Y = ba(B),
B being a Boolean algebra; see [DU, pp. 223�224℄ and [GR1℄).We 
on
lude with a quantitative strengthening of Theorem 1 of Gravesand Ruess (see the Introdu
tion) for all Lp-spa
es, 1 ≤ p ≤ ∞, whi
h is asymmetri
 version of Theorem 12. Let us re
all that X is an Lp-spa
e if andonly if X∗ is an Lq-spa
e where 1/q + 1/p = 1 with q = ∞ if p = 1 and
q = 1 if p = ∞.Theorem 14. Let 1 ≤ p ≤ ∞ and 1 ≤ λ < ∞. Let X be an Lp-spa
e su
h that X∗ is an Lq,λ-spa
e (where 1/q + 1/p = 1 with q = ∞if p = 1 and q = 1 if p = ∞) and let Y be a Bana
h spa
e. If C isa 
ompa
t subset of K(X,Y ), then, for every ε > 0, there exist a lin-ear mapping Φ : span C → K(ℓp, Y ) and an operator u ∈ K(X, ℓp) with
1 ≤ ‖u‖ ≤ λ + ε su
h that S = Φ(S) ◦ u for all S ∈ span C, and the map-ping Φ restri
ted to C ∪ {0} is a homeomorphism satisfying the 
on
lusionsof Lemma 4.Proof. Suppose �rst that 1 ≤ p < ∞. Observe that C∗ = {S∗ : S ∈ C}is a 
ompa
t subset of Kw∗(Y ∗, X∗) (re
all that ranS∗∗ ⊂ Y whenever
S ∈ K(X,Y )) and apply Theorem 12. Let ε > 0 and let ϕ : span C∗ →
Kw∗(Y ∗, ℓq) and v ∈ K(ℓq, X

∗) be given by Theorem 12. Then ℓ∗q = ℓpand (ϕ(S∗))∗ ∈ K(ℓp, Y ) if S ∈ span C. De�ne Φ : span C → K(ℓp, Y ) by
Φ(S) = (ϕ(S∗))∗, S ∈ span C, and u ∈ K(X, ℓp) by u = v∗|X . These map-pings have the desired properties. In parti
ular, if S ∈ span C, then

Φ(S) ◦ u = ((ϕ(S∗))∗ ◦ v∗)|X = (v ◦ ϕ(S∗))∗|X = S∗∗|X = S.Suppose now that p = ∞. Let Z be the re�exive spa
e, U ∈ K(X,Z)the norm one operator, and ϕ : span C → K(Z, Y ) the linear mapping givenby Theorem 7. Observe that, in fa
t, U ∈ F(X,Z) be
ause X∗, being an
L1-spa
e, has the approximation property.Let ε > 0. Consider any T ∈ F(X,Z). Then T ∗ ∈ F(Z∗, X∗) and, sim-ilarly to the proof of [J, Theorem 2℄, we 
an 
hoose a �nite-dimensionalsubspa
e E of X∗ with ranT ∗ ⊂ E, a positive integer n, and an isomor-phism L from E onto ℓn1 su
h that, e.g., ‖L‖ = 1 and 1 ≤ ‖L−1‖ < λ+ ε/2.Denoting by V : Z∗ → E the astri
tion of T ∗ and by j : E → X∗ the identityembedding, we have V ∗ ∈ F(E∗, Z) and T = V ∗ ◦ j∗|X . Hen
e, T admits afa
torization T = β ◦ α for some operators α ∈ F(X, ℓn∞) and β ∈ F(ℓn∞, Z)with ‖α‖ ≤ λ+ ε/2 and ‖β‖ ≤ ‖T‖. Sin
e c0 is isometri
ally isomorphi
 tothe in�nite dire
t sum (∑n ℓ

n
∞)∞ in the sense of c0, we have, for the norm

‖ · ‖c0 introdu
ed in [J, Proposition 1℄,
‖T‖c0 = inf{‖β‖ ‖α‖ : T = β ◦ α, α ∈ F(X, c0), β ∈ F(c0, Z)}

≤ (λ+ ε/2)‖T‖.
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e F(X,Z) is dense in F(X,Z), it follows from [J, Proposition 1℄ that,in parti
ular, U admits a fa
torization U = v ◦ u with u ∈ F(X, c0),
v ∈ F(c0, Z), and ‖U‖ = 1 ≤ ‖v‖ ‖u‖ ≤ (λ + ε)‖U‖ = λ + ε. We may
learly assume that 1 ≤ ‖u‖ ≤ λ + ε and ‖v‖ = 1. Sin
e, for all S ∈
span C,

S = ϕ(S) ◦ U = ϕ(S) ◦ v ◦ u,the mapping Φ de�ned by Φ(S) = ϕ(S) ◦ v, S ∈ span C, has the desiredproperties.
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