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From geometry to invertibility preservers
by

HaNs HAVLICEK (Wien) and PETER SEMRL (Ljubljana)

Abstract. We characterize bijections on matrix spaces (operator algebras) preserving
full rank (invertibility) of differences of matrix (operator) pairs in both directions.

1. Introduction. Marcus and Purves [19] proved that every unital in-
vertibility preserving linear map on a matrix algebra is either an inner auto-
morphism or an inner anti-automorphism. One of the equivalent formulations
of the Gleason-Kahane-Zelazko theorem [6, 16, 25] states that every unital
linear functional on a complex unital Banach algebra A sending every in-
vertible element to a nonzero scalar is multiplicative. Equivalently, if a linear
functional f : A — C maps every element a € A into its spectrum o(a), then
f is multiplicative. These two results motivated Kaplansky to formulate the
question under which conditions an invertibility preserving linear unital map
between two algebras must be a Jordan homomorphism [17]. A lot of work
has been done on this problem (see the surveys [1, 3, 22]). We will mention
here only the results that are relevant to our paper.

Let X be a complex Banach space and B(X) the algebra of all bounded
linear operators on X. In 1986 Jafarian and Sourour [15] proved that every
surjective unital linear map ¢ : B(X) — B(X) preserving invertibility in
both directions, i.e., having the property that A is invertible if and only if
#(A) is invertible, is either of the form ¢(A) = TAT~!, A € B(X), for some
invertible T' € B(X), or of the form ¢(A) = TA'T-1, A € B(X), for some
invertible bounded linear operator T : X’ — X. Here, A’ denotes the adjoint
of A and X’ the dual of X. Under the additional assumption of injectivity
the assumption of preserving invertibility in both directions can be relaxed
to preserving invertibility in one direction only [23]. The proof of the result
of Jafarian and Sourour was simplified in [21]. It is rather easy to see that
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a linear map ¢ : B(X) — B(X) is unital and preserves invertibility in both
directions if and only if ¢ preserves the spectrum, that is, o(¢(A)) = o(A)
for every A € B(X).

An interesting extension of the Gleason-Kahane-Zelazko theorem was
obtained by Kowalski and Stodkowski [18]. They proved that every functional
f on a complex Banach algebra A (they did not assume the linearity of f)
satisfying f(a) — f(b) € o(a —b), a,b € A, is linear and multiplicative up to
the constant f(0). Thus, they replaced the two conditions in the Gleason—
KahaneZelazko theorem, linearity and the condition f(a) € o(a), a € A,
by a single weaker assumption and got essentially the same conclusion.

In view of this result it is natural to ask if we can do the same with
the above mentioned results on invertibility preserving maps on matrix and
operator algebras. Can we replace linearity and invertibility preserving by a
single weaker condition similar to the one in the Kowalski-Stodkowski theo-
rem? More precisely, can we characterize bijective maps on matrix algebras
and operator algebras satisfying the condition that ¢(a) — ¢(b) is invertible
if and only if a — b is?

The result of Kowalski and Stodkowski depends heavily on deep results
from analysis. We will answer the above question using results from geome-
try. We should first mention that there is an essential difference between the
finite and infinite-dimensional cases. In the finite-dimensional case our con-
dition will imply, up to a translation, the semilinearity of the maps under
consideration, while in the infinite-dimensional case the elementary auto-
matic continuity methods will imply the linearity or conjugate-linearity up
to a translation. Moreover, in the finite-dimensional case it makes sense to
extend our result from matrix algebras of square matrices to spaces of rectan-
gular matrices. Then, of course, the condition of invertibility will be replaced
by the condition of being of full rank.

Our strategy when considering bijective maps ¢ on matrix spaces (op-
erator algebras) satisfying the condition that ¢(A) — ¢(B) is of full rank
(invertible) if and only if A — B is of full rank (invertible) will be to prove
first that such maps preserve adjacency in both directions. Recall that two
matrices or operators A and B are adjacent if A— B is of rank one. Then we
will apply the so called fundamental theorem of geometry of matrices (or its
analogue for operators) to complete the proof. This connects our results with
the geometry of Grassmann spaces. Let us briefly describe this connection.

Let My, n, m,n > 2, be the linear space of all m xn matrices over a field F.
If o is an automorphism of the field F and A = [a;;] € M, then we denote
by A, the matrix obtained from A by applying o entrywise, A, = [o(asj)].
The fundamental theorem of geometry of matrices states that every bijective
map ¢ : M,,, — My, , preserving adjacency in both directions is of the
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form A — TA,S + R, where T is an invertible m X m matrix, S is an
invertible n x n matrix, R is an m X n matrix, and ¢ is an automorphism
of the underlying field. If m = n, then we have the additional possibility
that ¢(A) = TALS + R where T, S, R and o are as above, and A’ denotes
the transpose of A. This theorem and its analogues for hermitian matrices,
symmetric matrices, and skew-symmetric matrices were proved by Hua [7]-
[14] under some mild technical assumptions that were later proved to be
superfluous (see [24]).

Let m,n be integers > 2. We will consider the Grassmann space whose
“points” are vector subspaces of F™" of dimension m. Chow [4] studied
bijective maps on the Grassmann space preserving adjacent pairs of points in
both directions. Recall that m-dimensional subspaces U and V are adjacent
if dim(U 4+ V) = m+ 1. Now, to each m-dimensional subspace U of F"**" we
can associate an m X (m + n) matrix whose rows are coordinates of vectors
that form a basis of U. Each m x (m + n) matrix will be written in block
form [X Y], where X is an m x n matrix and Y is an m x m matrix. Two
matrices [X Y] and [X’ Y] are associated to the same subspace U (their
rows represent two bases of U) if and only if [X Y] = P[X’ Y’] for some
invertible m x m matrix P. If this is the case, then Y is invertible if and
only if Y is invertible. So, we have associated to each point in a Grassmann
space a (not uniquely determined) matrix [X Y]. If Y is singular, we say that
the corresponding point in the Grassmann space is at infinity. Otherwise, we
observe that this point can also be represented by the matrix [Y "' X I]. The
matrix Y1 X is uniquely determined by the point in the Grassmann space.
So, if U and V' are two m-dimensional subspaces that are finite points in the
Grassmann space, then they can be represented by two uniquely determined
m X n matrices T and S, and it is easy to see that the subspaces U and
V' are adjacent if and only if the matrices T" and S are adjacent. Using this
connection it is possible to deduce the result of Chow on bijective maps
on a Grassmann space preserving adjacency in both directions from the
fundamental theorem of geometry of matrices (see [24]).

If we consider the special case when m = n and replace, in the funda-
mental theorem of geometry of matrices, the condition of preserving adja-
cent pairs of matrices by our assumption of preserving the pairs A, B with
rank(A — B) = n, then this corresponds to the study of bijective maps on
the Grassmann space of all vector subspaces of F2" of dimension n that pre-
serve the complementarity of subspaces. Such maps were studied by Blunck
and the first author [2]. We suspect that this result can be deduced from
our result and the other way around, but we also believe that it is easier to
prove each of them separately. Namely, to prove any of these two implications
seems to be difficult because of the points at infinity.
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Now we state our main results. In the finite-dimensional case we will
consider bijective maps on m X n matrices preserving pairs of matrices whose
difference has a full rank. Of course, if we have such a map ¢ then the map
Y i My — My, defined by ¢(A) = (¢(A'))" has the same properties.
Thus, when studying such maps there is no loss of generality in assuming
that m > n. We will do this throughout the paper. A matrix A € M,,, is
said to be of full rank if rank A = n. Let A, B € M,, ,. We write A A B if
A — B is of full rank.

THEOREM 1.1. Let IF be a field with at least three elements and m,n inte-
gers with m > n > 2. Assume that ¢ : My, , — My, p is a bijective map such
that for every pair A, B € My, ,, we have A A B if and only if p(A) & ¢(B).
Then there exist an invertible m X m matrix T', an invertible n X n matrix
S, an m x n matriz R, and an automorphism o : F — F such that

»(A)=TA,S+R
for every A € My, . If m = n, then we have the additional possibility that
p(A) =TALS+R, A€ M,,,
whereT, S, R€ M, ,, withT and S invertible, and o is an automorphism of IF.

THEOREM 1.2. Let H be an infinite-dimensional complexr Hilbert space
and B(H) the algebra of all bounded linear operators on H. Assume that
¢ : B(H) — B(H) is a bijective map such that for every pair A, B € B(H)
the operator A— B is invertible if and only if p(A) — ¢(B) is invertible. Then
there exist R € B(H) and invertible T, S € B(H) such that ¢ has one of the

following forms: ¢(A) = TAS + R,

#(A) =TA'S + R,
p(A) =TA*S + R,
¢(A) =T(A")"S + R,

for every A € B(H). Here, A' and A* denote the transpose with respect to
an arbitrary but fixed orthonormal basis, and the usual adjoint of A in the
Hilbert space sense, respectively.

The converses of both theorems obviously hold true. In the second section
we will prove the finite-dimensional case and in the third one the infinite-
dimensional case. These two sections can be read independently.

2. The finite-dimensional case. In this section we will consider ma-
trices over a field F with at least three elements. At a certain point in the
proof of our first main theorem we will identify m x n matrices with linear
operators from F" into . For such operators we have the following simple
lemma.
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LEMMA 2.1. Let T,S : F* — F™ be nonzero linear operators and as-
sume that T has at least two-dimensional image. Then we can find linearly
independent vectors x,y € F™ such that Tx and Sy are linearly independent.

Proof. Take any y € F™ such that Sy # 0. The set of all vectors z € F"
with Tz and Sy linearly dependent is a proper subspace of F", since the
image of T is not contained in the span of Sy. There exist at least two
linearly independent vectors of F” which are not in this subspace. One of
them is linearly independent of y and gives the required vector z. »

We have two relations on M, ,: adjacency and A. The following result
connecting them is the key step in our proof. We believe it is of some inde-
pendent interest.

PROPOSITION 2.2. Let A, B € M,, ,, with A # B. Then the following are
equivalent:

1. A and B are adjacent.
2. There exists R € M, ,,, R # A, B, such that for every X € My, ,, the
relation X A R yields X A A or X A B.

Proof. Note that neither of the above conditions is affected if we replace
A and B by PAQ — C and PBQ — C, respectively, where P and @ are
invertible matrices of the appropriate size and C is any m x n matrix. Thus
if the rank distance between A and B equals r then we may assume with no
loss of generality that A = 0 and

I 0
o-(a0)
where [ is the r x r identity matrix and the zeros stand for zero matrices of
appropriate size.

Assume first that A and B are adjacent. So, without loss of generality, we
have A =0 and B = E71. Set R = AFEq1, where A is a scalar different from
0 and 1, and E7; denotes the matrix with the (1, 1)-entry equal to 1 and all
other entries zero. Now let X A R. That means that X — R is of full rank, or
equivalently, X — R has at least one invertible n x n submatrix. We consider
two possibilities. First assume that one of these submatrices does not contain
the first row. In this case X is of full rank and thus X A A. Otherwise any such
submatrix contains the first row and we choose one of them. We will prove
that at least one of the corresponding n x n submatrices of X — A = X and
X — B is invertible. So we restrict our attention to these n x n submatrices.
In other words we deal only with the square case m = n. Hence X — AFEq;
is an invertible square matrix. If the first row of Fii, i.e. (1,0,...,0), is in
the subspace spanned by rows 2,3,...,n of X then X — AE1; — uFq; is
invertible for all u € F, otherwise this holds for all but one u € F. Therefore
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X — AEq1 — pEqg is invertible for 4 = —X or p = —\ + 1. Equivalently, at
least one of X = X — A or X — F11 = X — B is invertible, as desired. This
completes the proof of the first implication.

To prove the other direction we identify m x n matrices with linear oper-
ators from F” into F”*. We assume that A =0 and B : F* — F'™ is a linear
operator whose image is at least two-dimensional. Let R : F* — F™ be any
linear operator, R # 0, B. We have to find a linear operator X : F" — F™
such that X — R is injective while X and X — B are not.

The first possibility we will treat is that B — R or R has rank at least
two. Then, by Lemma 2.1, we can find linearly independent z,y € F™ such
that Bx — Rx and Ry are linearly independent. We first define X on the
linear span of x and y. We set Xx = Bz and Xy = 0. No matter how we
extend X to the whole space these two equalities guarantee that X — B and
X will not be injective. Now, (X — R)z = Bx — Rz and (X — R)y = — Ry are
linearly independent. It is now obvious that we can extend X to the whole
F™ so that the resulting X — R is injective.

It remains to consider the case when both B — R and R are of rank one.
By our assumption, B is of rank two. Hence B = R + (B — R) implies that
the ranges of B — R and R meet in 0 only. So, if we choose any z,y € F"
such that (B — R)x # 0 and Ry # 0 then (B — R)x and Ry will be linearly
independent. Since F has at least three elements, we can choose these x and
y to be linearly independent. Now we can proceed as above. =

It is now easy to prove Theorem 1.1. Namely, if ¢ : M,,, — My, is
a bijective map preserving A in both directions, then by Proposition 2.2 it
preserves adjacency in both directions. Thus, the result follows directly from
the fundamental theorem of geometry of matrices.

Observe that in [2] there is no need to assume that F has at least three
elements, due to the presence of points at infinity.

3. The infinite-dimensional case. Let H be an infinite-dimensional
complex Hilbert space and z,y € H. The inner product of x and y will
be denoted by y*z. If x and y are nonzero vectors then xy* stands for the
rank one bounded linear operator defined by (xy*)z = (y*z)z, z € H. Note
that every bounded rank one operator can be written in this form. Two
operators A, B € B(H) are said to be adjacent if A — B is an operator of
rank one. We write A A B if A — B is invertible. We start with an analogue
of Proposition 2.2.

PROPOSITION 3.1. Let A,B € B(H) with A # B. Then the following
statements are equivalent:

1. A and B are adjacent.
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2. There exists R € B(H), R # A, B, such that for every X € B(H) the
relation X A R yields X A A or X A B.

Proof. Note that neither of the above conditions is affected if we replace
A and B by A—C and B — C, respectively, where C' is any bounded linear
operator on H. Thus we may assume with no loss of generality that A = 0.

Assume first that A = 0 and B are adjacent, that is, B is of rank one.
Set R = 2B. Suppose that X — 2B is invertible. Then

X —-2B—)AB=(X-2B)(I- XX -2B)"'B)
is invertible if and only if I — \S is invertible, where S = (X —2B) !B is an
operator of rank one. Every operator of rank one has at most one nonzero
complex number in its spectrum. Hence, X —2B—(—2B) = X is invertible or
X—2B—(—B)=X—DB is invertible. This completes the proof of one direction.

Assume now that A = 0 and B is an operator whose image is at least
two-dimensional. We have to prove that for every R € B(H), R # 0, B,
there exists X € B(H) such that X — R is invertible and X is singular and
X — B is singular. So, let R € B(H) \ {0, B}.

In the next step we will prove that there exist x,z € H such that = and
z are linearly independent and Bz — Rz and Rz are linearly independent. It
is enough to show that we can find x, 2z € H such that Bz — Rz and Rx are
linearly independent. For if x and z are linearly dependent, we can choose
u € H linearly independent of z. Then z+ Au and z are linearly independent
for all nonzero A, and for all A’s small enough the vectors B(z + Au) —
R(z+Au) = Bz— Rz+ A(Bu— Ru) and Rx are linearly independent as well.

So, let us show that such x and z exist. Assume on the contrary that
Bz — Rz and Rx are linearly dependent for every x and z. Then B — R and
R are rank one operators with the same one-dimensional image. It follows
that B = 0 or B is of rank one, a contradiction.

Now, we define W to be the orthogonal complement of the linear span
of x and z, where z and z are as in the previous paragraph, and Z to be the
orthogonal complement of Rx and Bz — Rz. Then there exists a bounded
invertible linear operator U : W — Z. Define X € B(H) by

Xx=0, Xz=Bz, Xu=Uu+Ru, ueW
Because of the first two equalities the operators X and X — B are singular.
Since (X —R)xr = —Rz, (X —R)z = Bz—Rz,and (X —R)u =Uu,uec W,
the operator X — R is invertible, as desired. m

We continue with some technical lemmas.

LEMMA 3.2. Let B,C € B(H). Assume that for every invertible A €
B(H) the operator A — B is invertible if and only if A — C is invertible.
Then B = C.



106 H. Havlicek and P. Semrl

Proof. Let A be any complex number satisfying |A| > [|B]|,||C]||, and
x,y € H any vectors such that y*x = 0. Then A(I + zy*) is invertible
because (I + zy*)(I — xy*) = I. Hence, A\I + \xy* — B is invertible if and
only if A\l + Azy* — C is. On the other hand,

M+ Xy — B = (I+ay") (M — B+2y*B)
= (I +zy*)(I +2zy*B(M\ — B)")(\I — B)

is invertible if and only if I +zy*B(A —B)~! is. Thus, I +xy*B(A —B) ! is
invertible if and only if I +xy*C(M —C)~! is, or equivalently, for every scalar
A with [A] > || B|, ||C]|, and every pair of vectors =,y € H with y*z = 0 we
have

yv*BOM - B) 'z =-1 & y*COA - C) 'z = —1.

Fix A. Then y*Tx = 0 for every pair of orthogonal vectors x and ¥, where
T =B\ — B)~! - C(M — C)~ L. 1t follows that T = ul for some scalar p.
Thus, for every A with [A\| > || B]|, ||C|| we have

B —B) ™' —C(\[—-C) = g(\)I

for some g(\) € C. Obviously, g(X) is holomorphic outside the disk centered
at 0 with radius max{|| B/, ||C||}. Expanding the above analytic functions in
series and comparing the coefficients we get

B=C+ul

for some complex number p. Our assumption implies that o(B) \ {0} =
o(C)\ {0}. Here o(B) denotes the spectrum of B. It follows that u = 0, as
desired. m

LEMMA 3.3. Let A, B € B(H) be invertible operators. Assume that for
every rank one operator xy* € B(H) the operator A — xy* is invertible if
and only if B — xy* is invertible. Then A = B.

Proof. Our assumptions imply that for every pair of vectors x,y the
operator I — zy*A~! is invertible if and only if I — 2y*B~! is, or equiv-
alently, y*A~'z = 1 if and only if y*B~'2 = 1. By linearity we have
y* A~ e = y*B~ 'z for any x,y € H, and therefore, A=' = B~!. It follows
that A=B. u

Recall that an additive map T': H — H is called semilinear if there is
an automorphism ¢ : C — C such that T'(Azx) = o(\)Tz for every A € C
and every x € H. Now we are ready to prove Theorem 1.2.

Let ¢ : B(H) — B(H) be a bijective map such that for every pair
A, B € B(H) the operator A — B is invertible if and only if ¢(A) — ¢(B) is.
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After replacing ¢ by A — ¢(A) — ¢(0) we may assume that ¢(0) = 0. Then
#(I) is invertible. Replacing ¢ by A — ¢(I)~1¢(A) we may further assume
that ¢(I) = I.

According to Proposition 3.1, ¢ preserves adjacency in both directions.
Every rank one operator is adjacent to zero, every rank two operator is
adjacent to some rank one operator, etc. Consequently, ¢ maps the sub-
space F(H) C B(H) of all finite rank operators onto itself. So, we can
apply Theorem 1.5 from [20] to conclude that there exist bijective semilin-
ear maps 1,5 : H — H (with the same associated automorphism) such
that either ¢(zy*) = (Tx)(Sy)*, =,y € H, or ¢(xy*) = (Sy)(Tz)*, z,y €
H. The second case can be reduced to the first one if we replace ¢ by
A~ ¢(A)*, A € B(H). So, we may assume that the first possibility holds
true.

Using ¢(I) = I and our assumptions we conclude that I —zy* is invertible
if and only if I — (Tx)(Sy)* is, for any x,y € H. Thus, y*x = 1 if and only
if (Sy)*(Tz) = 1, and by semilinearity,

(Sy)*(Tz)=0 & y*'2=0, =z,y€H.

Thus, the semilinear maps 7' and S and their inverses carry closed hy-
perplanes (every closed hyperplane is the orthogonal complement of some
nonzero vector) onto closed hyperplanes. Hence, by [5, Lemmas 2 and 3],
S and T are both linear bounded or both conjugate-linear bounded. Thus,
we have ¢(zy*) = T(zy*)R, where T and R = S* are bounded, invert-
ible, and either both linear, or both conjugate-linear. Assume they are both
conjugate-linear. Choosing an orthonormal basis we define K : H — H to
be the conjugate-linear bijection which maps each vector = into a vector
whose coordinates are obtained from the coordinates of x by complex con-
jugation. Of course, K2 = I, the product of two conjugate-linear maps is
linear, and K(zy*)K = ((zy*)*)!, where the transpose is taken with the
respect to the chosen basis. Replacing ¢ by A — (¢(A)Y)*, A € B(H), we
reduce the conjugate-linear case to the linear one.

So, we may assume that ¢(zy*) = T(xy*)R, where T' and R = S* are
bounded invertible linear operators. From (Sy)*(Tz) =1 < y*z =1 and
linearity we get (Sy)*(Tx) = y*z, x,y € H, which further implies that T’
is the inverse of R. Composing ¢ with a similarity transformation we may
further assume that ¢(xy*) = zy*, z,y € H.

Let A € B(H) be invertible. Applying Lemma 3.3 with B = ¢(A) we see
that ¢(A) = A.

Finally, let B € B(H) be any operator and set C' = ¢(B). Using Lemma
3.2 we conclude that ¢(B) = B. This completes the proof. =
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