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From geometry to invertibility preserversby
Hans Havlicek (Wien) and Peter Šemrl (Ljubljana)Abstra
t. We 
hara
terize bije
tions on matrix spa
es (operator algebras) preservingfull rank (invertibility) of di�eren
es of matrix (operator) pairs in both dire
tions.1. Introdu
tion. Mar
us and Purves [19℄ proved that every unital in-vertibility preserving linear map on a matrix algebra is either an inner auto-morphism or an inner anti-automorphism. One of the equivalent formulationsof the Gleason�Kahane��elazko theorem [6, 16, 25℄ states that every unitallinear fun
tional on a 
omplex unital Bana
h algebra A sending every in-vertible element to a nonzero s
alar is multipli
ative. Equivalently, if a linearfun
tional f : A → C maps every element a ∈ A into its spe
trum σ(a), then

f is multipli
ative. These two results motivated Kaplansky to formulate thequestion under whi
h 
onditions an invertibility preserving linear unital mapbetween two algebras must be a Jordan homomorphism [17℄. A lot of workhas been done on this problem (see the surveys [1, 3, 22℄). We will mentionhere only the results that are relevant to our paper.Let X be a 
omplex Bana
h spa
e and B(X) the algebra of all boundedlinear operators on X. In 1986 Jafarian and Sourour [15℄ proved that everysurje
tive unital linear map φ : B(X) → B(X) preserving invertibility inboth dire
tions, i.e., having the property that A is invertible if and only if
φ(A) is invertible, is either of the form φ(A) = TAT−1, A ∈ B(X), for someinvertible T ∈ B(X), or of the form φ(A) = TA′T−1, A ∈ B(X), for someinvertible bounded linear operator T : X ′ → X. Here, A′ denotes the adjointof A and X ′ the dual of X. Under the additional assumption of inje
tivitythe assumption of preserving invertibility in both dire
tions 
an be relaxedto preserving invertibility in one dire
tion only [23℄. The proof of the resultof Jafarian and Sourour was simpli�ed in [21℄. It is rather easy to see that2000 Mathemati
s Subje
t Classi�
ation: 47B49, 15A04.Key words and phrases: adja
en
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100 H. Havli
ek and P. �emrla linear map φ : B(X) → B(X) is unital and preserves invertibility in bothdire
tions if and only if φ preserves the spe
trum, that is, σ(φ(A)) = σ(A)for every A ∈ B(X).An interesting extension of the Gleason�Kahane��elazko theorem wasobtained by Kowalski and Sªodkowski [18℄. They proved that every fun
tional
f on a 
omplex Bana
h algebra A (they did not assume the linearity of f)satisfying f(a)− f(b) ∈ σ(a− b), a, b ∈ A, is linear and multipli
ative up tothe 
onstant f(0). Thus, they repla
ed the two 
onditions in the Gleason�Kahane��elazko theorem, linearity and the 
ondition f(a) ∈ σ(a), a ∈ A,by a single weaker assumption and got essentially the same 
on
lusion.In view of this result it is natural to ask if we 
an do the same withthe above mentioned results on invertibility preserving maps on matrix andoperator algebras. Can we repla
e linearity and invertibility preserving by asingle weaker 
ondition similar to the one in the Kowalski�Sªodkowski theo-rem? More pre
isely, 
an we 
hara
terize bije
tive maps on matrix algebrasand operator algebras satisfying the 
ondition that φ(a) − φ(b) is invertibleif and only if a− b is?The result of Kowalski and Sªodkowski depends heavily on deep resultsfrom analysis. We will answer the above question using results from geome-try. We should �rst mention that there is an essential di�eren
e between the�nite and in�nite-dimensional 
ases. In the �nite-dimensional 
ase our 
on-dition will imply, up to a translation, the semilinearity of the maps under
onsideration, while in the in�nite-dimensional 
ase the elementary auto-mati
 
ontinuity methods will imply the linearity or 
onjugate-linearity upto a translation. Moreover, in the �nite-dimensional 
ase it makes sense toextend our result from matrix algebras of square matri
es to spa
es of re
tan-gular matri
es. Then, of 
ourse, the 
ondition of invertibility will be repla
edby the 
ondition of being of full rank.Our strategy when 
onsidering bije
tive maps φ on matrix spa
es (op-erator algebras) satisfying the 
ondition that φ(A) − φ(B) is of full rank(invertible) if and only if A − B is of full rank (invertible) will be to prove�rst that su
h maps preserve adja
en
y in both dire
tions. Re
all that twomatri
es or operators A and B are adja
ent if A−B is of rank one. Then wewill apply the so 
alled fundamental theorem of geometry of matri
es (or itsanalogue for operators) to 
omplete the proof. This 
onne
ts our results withthe geometry of Grassmann spa
es. Let us brie�y des
ribe this 
onne
tion.LetMm,n,m,n ≥ 2, be the linear spa
e of allm×nmatri
es over a �eld F.If σ is an automorphism of the �eld F and A = [aij] ∈Mm,n then we denoteby Aσ the matrix obtained from A by applying σ entrywise, Aσ = [σ(aij)].The fundamental theorem of geometry of matri
es states that every bije
tivemap φ : Mm,n → Mm,n preserving adja
en
y in both dire
tions is of the



From geometry to invertibility preservers 101form A 7→ TAσS + R, where T is an invertible m × m matrix, S is aninvertible n × n matrix, R is an m × n matrix, and σ is an automorphismof the underlying �eld. If m = n, then we have the additional possibilitythat φ(A) = TAt
σS + R where T, S,R and σ are as above, and At denotesthe transpose of A. This theorem and its analogues for hermitian matri
es,symmetri
 matri
es, and skew-symmetri
 matri
es were proved by Hua [7℄�[14℄ under some mild te
hni
al assumptions that were later proved to besuper�uous (see [24℄).Let m,n be integers ≥ 2. We will 
onsider the Grassmann spa
e whose�points� are ve
tor subspa
es of F

m+n of dimension m. Chow [4℄ studiedbije
tive maps on the Grassmann spa
e preserving adja
ent pairs of points inboth dire
tions. Re
all that m-dimensional subspa
es U and V are adja
entif dim(U +V ) = m+1. Now, to ea
h m-dimensional subspa
e U of F
m+n we
an asso
iate an m× (m+ n) matrix whose rows are 
oordinates of ve
torsthat form a basis of U . Ea
h m × (m + n) matrix will be written in blo
kform [X Y ], where X is an m × n matrix and Y is an m ×m matrix. Twomatri
es [X Y ] and [X ′ Y ′] are asso
iated to the same subspa
e U (theirrows represent two bases of U) if and only if [X Y ] = P [X ′ Y ′] for someinvertible m × m matrix P . If this is the 
ase, then Y is invertible if andonly if Y ′ is invertible. So, we have asso
iated to ea
h point in a Grassmannspa
e a (not uniquely determined) matrix [X Y ]. If Y is singular, we say thatthe 
orresponding point in the Grassmann spa
e is at in�nity. Otherwise, weobserve that this point 
an also be represented by the matrix [Y −1X I]. Thematrix Y −1X is uniquely determined by the point in the Grassmann spa
e.So, if U and V are two m-dimensional subspa
es that are �nite points in theGrassmann spa
e, then they 
an be represented by two uniquely determined

m × n matri
es T and S, and it is easy to see that the subspa
es U and
V are adja
ent if and only if the matri
es T and S are adja
ent. Using this
onne
tion it is possible to dedu
e the result of Chow on bije
tive mapson a Grassmann spa
e preserving adja
en
y in both dire
tions from thefundamental theorem of geometry of matri
es (see [24℄).If we 
onsider the spe
ial 
ase when m = n and repla
e, in the funda-mental theorem of geometry of matri
es, the 
ondition of preserving adja-
ent pairs of matri
es by our assumption of preserving the pairs A,B with
rank(A − B) = n, then this 
orresponds to the study of bije
tive maps onthe Grassmann spa
e of all ve
tor subspa
es of F

2n of dimension n that pre-serve the 
omplementarity of subspa
es. Su
h maps were studied by Blun
kand the �rst author [2℄. We suspe
t that this result 
an be dedu
ed fromour result and the other way around, but we also believe that it is easier toprove ea
h of them separately. Namely, to prove any of these two impli
ationsseems to be di�
ult be
ause of the points at in�nity.



102 H. Havli
ek and P. �emrlNow we state our main results. In the �nite-dimensional 
ase we will
onsider bije
tive maps on m×n matri
es preserving pairs of matri
es whosedi�eren
e has a full rank. Of 
ourse, if we have su
h a map φ then the map
ψ : Mn,m → Mn,m de�ned by ψ(A) = (φ(At))t has the same properties.Thus, when studying su
h maps there is no loss of generality in assumingthat m ≥ n. We will do this throughout the paper. A matrix A ∈ Mm,n issaid to be of full rank if rankA = n. Let A,B ∈ Mm,n. We write A △ B if
A−B is of full rank.Theorem 1.1. Let F be a �eld with at least three elements and m,n inte-gers with m ≥ n ≥ 2. Assume that φ : Mm,n →Mm,n is a bije
tive map su
hthat for every pair A,B ∈Mm,n we have A △B if and only if φ(A) △ φ(B).Then there exist an invertible m ×m matrix T , an invertible n × n matrix
S, an m× n matrix R, and an automorphism σ : F → F su
h that

φ(A) = TAσS +Rfor every A ∈Mm,n. If m = n, then we have the additional possibility that
φ(A) = TAt

σS +R, A ∈Mn,n,where T, S,R∈Mn,n with T and S invertible, and σ is an automorphism of F.Theorem 1.2. Let H be an in�nite-dimensional 
omplex Hilbert spa
eand B(H) the algebra of all bounded linear operators on H. Assume that
φ : B(H) → B(H) is a bije
tive map su
h that for every pair A,B ∈ B(H)the operator A−B is invertible if and only if φ(A)−φ(B) is invertible. Thenthere exist R ∈ B(H) and invertible T, S ∈ B(H) su
h that φ has one of thefollowing forms:

φ(A) = TAS +R,

φ(A) = TAtS +R,

φ(A) = TA∗S +R,

φ(A) = T (At)∗S +R,for every A ∈ B(H). Here, At and A∗ denote the transpose with respe
t toan arbitrary but �xed orthonormal basis, and the usual adjoint of A in theHilbert spa
e sense, respe
tively.The 
onverses of both theorems obviously hold true. In the se
ond se
tionwe will prove the �nite-dimensional 
ase and in the third one the in�nite-dimensional 
ase. These two se
tions 
an be read independently.2. The �nite-dimensional 
ase. In this se
tion we will 
onsider ma-tri
es over a �eld F with at least three elements. At a 
ertain point in theproof of our �rst main theorem we will identify m× n matri
es with linearoperators from F
n into F

m. For su
h operators we have the following simplelemma.



From geometry to invertibility preservers 103Lemma 2.1. Let T, S : F
n → F

m be nonzero linear operators and as-sume that T has at least two-dimensional image. Then we 
an �nd linearlyindependent ve
tors x, y ∈ F
n su
h that Tx and Sy are linearly independent.Proof. Take any y ∈ F

n su
h that Sy 6= 0. The set of all ve
tors z ∈ F
nwith Tz and Sy linearly dependent is a proper subspa
e of F

n, sin
e theimage of T is not 
ontained in the span of Sy. There exist at least twolinearly independent ve
tors of F
n whi
h are not in this subspa
e. One ofthem is linearly independent of y and gives the required ve
tor x.We have two relations on Mm,n: adja
en
y and △. The following result
onne
ting them is the key step in our proof. We believe it is of some inde-pendent interest.Proposition 2.2. Let A,B ∈Mm,n with A 6= B. Then the following areequivalent :1. A and B are adja
ent.2. There exists R ∈Mm,n, R 6= A,B, su
h that for every X ∈Mm,n therelation X △R yields X △A or X △B.Proof. Note that neither of the above 
onditions is a�e
ted if we repla
e

A and B by PAQ − C and PBQ − C, respe
tively, where P and Q areinvertible matri
es of the appropriate size and C is any m× n matrix. Thusif the rank distan
e between A and B equals r then we may assume with noloss of generality that A = 0 and
B =

(

I 0
0 0

)

where I is the r× r identity matrix and the zeros stand for zero matri
es ofappropriate size.Assume �rst that A and B are adja
ent. So, without loss of generality, wehave A = 0 and B = E11. Set R = λE11, where λ is a s
alar di�erent from
0 and 1, and E11 denotes the matrix with the (1, 1)-entry equal to 1 and allother entries zero. Now let X △R. That means that X −R is of full rank, orequivalently, X−R has at least one invertible n×n submatrix. We 
onsidertwo possibilities. First assume that one of these submatri
es does not 
ontainthe �rst row. In this 
aseX is of full rank and thus X△A. Otherwise any su
hsubmatrix 
ontains the �rst row and we 
hoose one of them. We will provethat at least one of the 
orresponding n× n submatri
es of X −A = X and
X −B is invertible. So we restri
t our attention to these n×n submatri
es.In other words we deal only with the square 
ase m = n. Hen
e X − λE11is an invertible square matrix. If the �rst row of E11, i.e. (1, 0, . . . , 0), is inthe subspa
e spanned by rows 2, 3, . . . , n of X then X − λE11 − µE11 isinvertible for all µ ∈ F, otherwise this holds for all but one µ ∈ F. Therefore
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X − λE11 − µE11 is invertible for µ = −λ or µ = −λ + 1. Equivalently, atleast one of X = X −A or X − E11 = X −B is invertible, as desired. This
ompletes the proof of the �rst impli
ation.To prove the other dire
tion we identify m×n matri
es with linear oper-ators from F

n into F
m. We assume that A = 0 and B : F

n → F
m is a linearoperator whose image is at least two-dimensional. Let R : F

n → F
m be anylinear operator, R 6= 0, B. We have to �nd a linear operator X : F
n → F

msu
h that X −R is inje
tive while X and X −B are not.The �rst possibility we will treat is that B − R or R has rank at leasttwo. Then, by Lemma 2.1, we 
an �nd linearly independent x, y ∈ F
n su
hthat Bx − Rx and Ry are linearly independent. We �rst de�ne X on thelinear span of x and y. We set Xx = Bx and Xy = 0. No matter how weextend X to the whole spa
e these two equalities guarantee that X −B and

X will not be inje
tive. Now, (X−R)x = Bx−Rx and (X−R)y = −Ry arelinearly independent. It is now obvious that we 
an extend X to the whole
F

n so that the resulting X −R is inje
tive.It remains to 
onsider the 
ase when both B −R and R are of rank one.By our assumption, B is of rank two. Hen
e B = R+ (B −R) implies thatthe ranges of B − R and R meet in 0 only. So, if we 
hoose any x, y ∈ F
nsu
h that (B −R)x 6= 0 and Ry 6= 0 then (B −R)x and Ry will be linearlyindependent. Sin
e F has at least three elements, we 
an 
hoose these x and

y to be linearly independent. Now we 
an pro
eed as above.It is now easy to prove Theorem 1.1. Namely, if φ : Mm,n → Mm,n isa bije
tive map preserving △ in both dire
tions, then by Proposition 2.2 itpreserves adja
en
y in both dire
tions. Thus, the result follows dire
tly fromthe fundamental theorem of geometry of matri
es.Observe that in [2℄ there is no need to assume that F has at least threeelements, due to the presen
e of points at in�nity.3. The in�nite-dimensional 
ase. Let H be an in�nite-dimensional
omplex Hilbert spa
e and x, y ∈ H. The inner produ
t of x and y willbe denoted by y∗x. If x and y are nonzero ve
tors then xy∗ stands for therank one bounded linear operator de�ned by (xy∗)z = (y∗z)x, z ∈ H. Notethat every bounded rank one operator 
an be written in this form. Twooperators A,B ∈ B(H) are said to be adja
ent if A − B is an operator ofrank one. We write A △B if A−B is invertible. We start with an analogueof Proposition 2.2.Proposition 3.1. Let A,B ∈ B(H) with A 6= B. Then the followingstatements are equivalent :1. A and B are adja
ent.



From geometry to invertibility preservers 1052. There exists R ∈ B(H), R 6= A,B, su
h that for every X ∈ B(H) therelation X △R yields X △A or X △B.Proof. Note that neither of the above 
onditions is a�e
ted if we repla
e
A and B by A−C and B −C, respe
tively, where C is any bounded linearoperator on H. Thus we may assume with no loss of generality that A = 0.Assume �rst that A = 0 and B are adja
ent, that is, B is of rank one.Set R = 2B. Suppose that X − 2B is invertible. Then

X − 2B − λB = (X − 2B)(I − λ(X − 2B)−1B)is invertible if and only if I−λS is invertible, where S = (X−2B)−1B is anoperator of rank one. Every operator of rank one has at most one nonzero
omplex number in its spe
trum. Hen
e, X−2B−(−2B) = X is invertible or
X−2B−(−B)=X−B is invertible. This 
ompletes the proof of one dire
tion.Assume now that A = 0 and B is an operator whose image is at leasttwo-dimensional. We have to prove that for every R ∈ B(H), R 6= 0, B,there exists X ∈ B(H) su
h that X −R is invertible and X is singular and
X −B is singular. So, let R ∈ B(H) \ {0, B}.In the next step we will prove that there exist x, z ∈ H su
h that x and
z are linearly independent and Bz−Rz and Rx are linearly independent. Itis enough to show that we 
an �nd x, z ∈ H su
h that Bz −Rz and Rx arelinearly independent. For if x and z are linearly dependent, we 
an 
hoose
u ∈ H linearly independent of x. Then z+λu and x are linearly independentfor all nonzero λ, and for all λ's small enough the ve
tors B(z + λu) −
R(z+λu) = Bz−Rz+λ(Bu−Ru) and Rx are linearly independent as well.So, let us show that su
h x and z exist. Assume on the 
ontrary that
Bz−Rz and Rx are linearly dependent for every x and z. Then B −R and
R are rank one operators with the same one-dimensional image. It followsthat B = 0 or B is of rank one, a 
ontradi
tion.Now, we de�ne W to be the orthogonal 
omplement of the linear spanof x and z, where x and z are as in the previous paragraph, and Z to be theorthogonal 
omplement of Rx and Bz − Rz. Then there exists a boundedinvertible linear operator U : W → Z. De�ne X ∈ B(H) by

Xx = 0, Xz = Bz, Xu = Uu+Ru, u ∈W.Be
ause of the �rst two equalities the operators X and X −B are singular.Sin
e (X −R)x = −Rx, (X −R)z = Bz−Rz, and (X −R)u = Uu, u ∈W ,the operator X −R is invertible, as desired.We 
ontinue with some te
hni
al lemmas.Lemma 3.2. Let B,C ∈ B(H). Assume that for every invertible A ∈
B(H) the operator A − B is invertible if and only if A − C is invertible.Then B = C.



106 H. Havli
ek and P. �emrlProof. Let λ be any 
omplex number satisfying |λ| > ‖B‖, ‖C‖, and
x, y ∈ H any ve
tors su
h that y∗x = 0. Then λ(I + xy∗) is invertiblebe
ause (I + xy∗)(I − xy∗) = I. Hen
e, λI + λxy∗ − B is invertible if andonly if λI + λxy∗ − C is. On the other hand,

λI + λxy∗ −B = (I + xy∗)(λI −B + xy∗B)

= (I + xy∗)(I + xy∗B(λI −B)−1)(λI −B)is invertible if and only if I+xy∗B(λI−B)−1 is. Thus, I+xy∗B(λI−B)−1 isinvertible if and only if I+xy∗C(λI−C)−1 is, or equivalently, for every s
alar
λ with |λ| > ‖B‖, ‖C‖, and every pair of ve
tors x, y ∈ H with y∗x = 0 wehave

y∗B(λI −B)−1x = −1 ⇔ y∗C(λI − C)−1x = −1.Fix λ. Then y∗Tx = 0 for every pair of orthogonal ve
tors x and y, where
T = B(λI −B)−1 −C(λI −C)−1. It follows that T = µI for some s
alar µ.Thus, for every λ with |λ| > ‖B‖, ‖C‖ we have

B(λI −B)−1 − C(λI − C)−1 = g(λ)Ifor some g(λ) ∈ C. Obviously, g(λ) is holomorphi
 outside the disk 
enteredat 0 with radius max{‖B‖, ‖C‖}. Expanding the above analyti
 fun
tions inseries and 
omparing the 
oe�
ients we get
B = C + µIfor some 
omplex number µ. Our assumption implies that σ(B) \ {0} =

σ(C) \ {0}. Here σ(B) denotes the spe
trum of B. It follows that µ = 0, asdesired.Lemma 3.3. Let A,B ∈ B(H) be invertible operators. Assume that forevery rank one operator xy∗ ∈ B(H) the operator A − xy∗ is invertible ifand only if B − xy∗ is invertible. Then A = B.Proof. Our assumptions imply that for every pair of ve
tors x, y theoperator I − xy∗A−1 is invertible if and only if I − xy∗B−1 is, or equiv-alently, y∗A−1x = 1 if and only if y∗B−1x = 1. By linearity we have
y∗A−1x = y∗B−1x for any x, y ∈ H, and therefore, A−1 = B−1. It followsthat A = B.Re
all that an additive map T : H → H is 
alled semilinear if there isan automorphism σ : C → C su
h that T (λx) = σ(λ)Tx for every λ ∈ Cand every x ∈ H. Now we are ready to prove Theorem 1.2.Let φ : B(H) → B(H) be a bije
tive map su
h that for every pair
A,B ∈ B(H) the operator A−B is invertible if and only if φ(A)− φ(B) is.



From geometry to invertibility preservers 107After repla
ing φ by A 7→ φ(A) − φ(0) we may assume that φ(0) = 0. Then
φ(I) is invertible. Repla
ing φ by A 7→ φ(I)−1φ(A) we may further assumethat φ(I) = I.A

ording to Proposition 3.1, φ preserves adja
en
y in both dire
tions.Every rank one operator is adja
ent to zero, every rank two operator isadja
ent to some rank one operator, et
. Consequently, φ maps the sub-spa
e F (H) ⊂ B(H) of all �nite rank operators onto itself. So, we 
anapply Theorem 1.5 from [20℄ to 
on
lude that there exist bije
tive semilin-ear maps T, S : H → H (with the same asso
iated automorphism) su
hthat either φ(xy∗) = (Tx)(Sy)∗, x, y ∈ H, or φ(xy∗) = (Sy)(Tx)∗, x, y ∈
H. The se
ond 
ase 
an be redu
ed to the �rst one if we repla
e φ by
A 7→ φ(A)∗, A ∈ B(H). So, we may assume that the �rst possibility holdstrue.Using φ(I) = I and our assumptions we 
on
lude that I−xy∗ is invertibleif and only if I − (Tx)(Sy)∗ is, for any x, y ∈ H. Thus, y∗x = 1 if and onlyif (Sy)∗(Tx) = 1, and by semilinearity,

(Sy)∗(Tx) = 0 ⇔ y∗x = 0, x, y ∈ H.Thus, the semilinear maps T and S and their inverses 
arry 
losed hy-perplanes (every 
losed hyperplane is the orthogonal 
omplement of somenonzero ve
tor) onto 
losed hyperplanes. Hen
e, by [5, Lemmas 2 and 3℄,
S and T are both linear bounded or both 
onjugate-linear bounded. Thus,we have φ(xy∗) = T (xy∗)R, where T and R = S∗ are bounded, invert-ible, and either both linear, or both 
onjugate-linear. Assume they are both
onjugate-linear. Choosing an orthonormal basis we de�ne K : H → H tobe the 
onjugate-linear bije
tion whi
h maps ea
h ve
tor x into a ve
torwhose 
oordinates are obtained from the 
oordinates of x by 
omplex 
on-jugation. Of 
ourse, K2 = I, the produ
t of two 
onjugate-linear maps islinear, and K(xy∗)K = ((xy∗)∗)t, where the transpose is taken with therespe
t to the 
hosen basis. Repla
ing φ by A 7→ (φ(A)t)∗, A ∈ B(H), weredu
e the 
onjugate-linear 
ase to the linear one.So, we may assume that φ(xy∗) = T (xy∗)R, where T and R = S∗ arebounded invertible linear operators. From (Sy)∗(Tx) = 1 ⇔ y∗x = 1 andlinearity we get (Sy)∗(Tx) = y∗x, x, y ∈ H, whi
h further implies that Tis the inverse of R. Composing φ with a similarity transformation we mayfurther assume that φ(xy∗) = xy∗, x, y ∈ H.Let A ∈ B(H) be invertible. Applying Lemma 3.3 with B = φ(A) we seethat φ(A) = A.Finally, let B ∈ B(H) be any operator and set C = φ(B). Using Lemma3.2 we 
on
lude that φ(B) = B. This 
ompletes the proof.
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