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Approximation by trigonometric polynomials

in weighted Orlicz spaces

by

Daniyal M. Israfilov and Ali Guven (Balikesir)

Abstract. We investigate the approximation properties of the partial sums of the
Fourier series and prove some direct and inverse theorems for approximation by polyno-
mials in weighted Orlicz spaces. In particular we obtain a constructive characterization of
the generalized Lipschitz classes in these spaces.

1. Introduction and main results. A convex and continuous function
M : [0,∞) → [0,∞) for which M(0) = 0, M(x) > 0 for x > 0 and

lim
x→0

M(x)

x
= 0, lim

x→∞

M(x)

x
= ∞

is called a Young function. The complementary Young function N of M is
defined by

N(y) := max{xy −M(x) : x ≥ 0}

for y ≥ 0.

Let T denote the interval [−π, π], C the complex plane, and Lp(T), 1 ≤
p ≤ ∞, the Lebesgue space of measurable complex-valued functions on T.

For a given Young function M let L̃M (T) denote the set of all Lebesgue
measurable functions f : T → C for which\

T

M(|f(x)|) dx <∞.

The linear span of L̃M (T) equipped with the Orlicz norm

(1) ‖f‖LM (T) := sup
{\

T

|f(x)g(x)| dx : g ∈ L̃N (T),
\
T

N(|g(x)|) dx ≤ 1
}
,

where N is the complementary Young function of M, or with the Luxemburg
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norm

(2) ‖f‖∗LM (T) := inf

{
λ > 0 :

\
T

M

(
|f(x)|

λ

)
dx ≤ 1

}

becomes a Banach space. This space is denoted by LM (T) and is called an
Orlicz space [26, p. 69]. The Orlicz and Luxemburg norms satisfy [26, p. 80]
the inequalities

‖f‖∗LM (T) ≤ ‖f‖LM (T) ≤ 2‖f‖∗LM (T), f ∈ LM (T),

and hence they are equivalent. Furthermore, the Orlicz norm can be deter-
mined by means of the Luxemburg norm [26, pp. 79–80]:

(3) ‖f‖LM (T) := sup
{\

T

|f(x)g(x)| dx : ‖g‖∗LN (T) ≤ 1
}

and then the Hölder inequalities

(4)

\
T

|f(x)g(x)| dx ≤ ‖f‖LM (T)‖g‖
∗
LN (T),\

T

|f(x)g(x)| dx ≤ ‖f‖∗LM (T)‖g‖LN (T)

hold for every f ∈ LM (T) and g ∈ LN (T) [26, p. 80].
W. Matuszewska and W. Orlicz [32] have associated a pair of indices

with a given Orlicz space LM (T). A generalization of these, or rather their
reciprocals, has been given in the more general context of rearrangement
invariant spaces in [5]. Let M−1 : [0,∞) → [0,∞) be the inverse of the
Young function M and let

h(t) := lim sup
x→∞

M−1(x)

M−1(tx)
, t > 0.

The numbers αM and βM defined by

αM := lim
t→∞

−
log h(t)

log t
, βM := lim

t→0+
−

log h(t)

log t

are called the lower and upper Boyd indices of the Orlicz space LM (T)
respectively. It is known that

0 ≤ αM ≤ βM ≤ 1

and
αN + βM = 1, αM + βN = 1.

The Orlicz space LM (T) is reflexive if and only if 0 < αM ≤ βM < 1, i.e. if
the Boyd indices are nontrivial.

If 1 ≤ q < 1/βM ≤ 1/αM < p ≤ ∞, then Lp(T) ⊂ LM (T) ⊂ Lq(T),
the inclusions being continuous, and hence L∞(T) ⊂ LM (T) ⊂ L1(T). The
above information concerning the Boyd indices can be found in [3, p. 350].
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We refer to [2], [4]–[6] and [28] for a complete discussion of Boyd indices
properties.

A measurable function ω : T → [0,∞] is called a weight function if the
set ω−1({0,∞}) has Lebesgue measure zero.

Let ω be a weight function. We denote by LM (T, ω) the linear space of
all measurable functions f such that fω ∈ LM (T) and set

(5) ‖f‖LM (T,ω) := ‖fω‖LM (T).

The normed space LM (T, ω) is called a weighted Orlicz space.

From the Hölder inequality it follows that if ω ∈ LM (T) and 1/ω ∈
LN (T), then L∞(T) ⊂ LM (T, ω) ⊂ L1(T).

Let 1 < p < ∞ and 1/p + 1/q = 1. A weight function ω belongs to the
Muckenhoupt class Ap(T) if

(
1

|J |

\
J

ωp(x) dx

)1/p( 1

|J |

\
J

ω−q(x) dx

)1/q

≤ C

with a finite constant C independent of J, where J is any subinterval of T

and |J | denotes the length of J .

Let LM (T, ω) be a weighted Orlicz space with Boyd indices 0 < αM ≤
βM < 1, and let ω ∈ A1/αM

(T)∩A1/βM
(T). For f ∈ LM (T, ω) we define the

shift operator σh by

(σhf)(x) :=
1

2h

h\
−h

f(x+ t) dt, 0 < h < π, x ∈ T,

and the k-modulus of smoothness Ωk
M,ω(·, f) (k = 1, 2, . . . ) by

Ωk
M,ω(δ, f) := sup

0<hi≤δ
1≤i≤k

∥∥∥
k∏

i=1

(I − σhi
)f

∥∥∥
LM (T,ω)

, δ > 0,

where I is the identity operator. This modulus of smoothness is well defined,
because we will prove (Lemma 1) that σh is a bounded linear operator on
LM (T, ω).

We define the shift operator σh and the modulus of smoothness Ωk
M,ω in

this way, because the space LM (T, ω) is not, in general, invariant under the
usual shift f(x) 7→ f(x+ h).

In the case of k = 0 we set Ω0
M,ω(δ, f) := ‖f‖LM (T,ω) and if k = 1 we

write ΩM,ω(δ, f) := Ω1
M,ω(δ, f). The modulus of smoothness Ωk

M,ω(·, f) is a
nondecreasing, nonnegative, continuous function and

(6) Ωk
M,ω(δ, f + g) ≤ Ωk

M,ω(δ, f) +Ωk
M,ω(δ, g)

for f, g ∈ LM (T, ω).
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We denote by En(f)M,ω the best approximation of f ∈ LM (T, ω) by
trigonometric polynomials of degree not exceeding n, i.e.,

En(f)M,ω = inf{‖f − Tn‖LM (T,ω) : Tn ∈ Πn},

whereΠn denotes the class of trigonometric polynomials of degree at most n.
Note that the existence of T ∗

n ∈ Πn such that

En(f)M,ω = ‖f − T ∗
n‖LM (T,ω)

follows, for example, from Theorem 1.1 in [8, p. 59].
In the literature many results on such approximation problems have been

obtained, in particular, direct and inverse theorems for approximation by
trigonometric polynomials in weighted and nonweighted Lebesgue spaces.
The elegant presentation of the corresponding result in the nonweighted
Lebesgue spaces Lp(T), 1 ≤ p ≤ ∞, can be found in [40] and [8]. The best
approximation problem by trigonometric polynomials in weighted spaces
with weights satisfying the so-called Ap(T)-condition was investigated in
[16] and [27]. In particular, using the Lp(T, ω) version of the k-modulus of
smoothness Ωk

M,ω(·, f), k = 1, 2, . . . , some direct and inverse theorems in
weighted Lebesgue spaces were obtained in [16]. Generalizations of those
results to weighted Lebesgue spaces defined on the curves of complex plane
were proved in [19]–[21].

More general doubling weights, approximation by trigonometric polyno-
mials in the periodic case and other related problems were studied in [29],
[30], [31], [7]. Direct and converse results in the case of exponential weights
on the real line were obtained in [14] and [15]. Some interesting results con-
cerning best polynomial approximation in weighted Lebesgue spaces were
also proved in [9] and [10]. Detailed information on weighted polynomial
approximation can be found in the books [11] and [33]. Direct problems in
nonweighted Orlicz spaces were studied in [36], [41] and [39]. To the best of
the author’s knowledge there are no results on approximation by trigono-
metric polynomials in weighted Orlicz spaces. In this work we prove some
direct and inverse theorems of approximation theory in the weighted Orlicz
spaces LM (T, ω). In particular, we obtain a constructive characterization
of the generalized Lipschitz classes defined in these spaces. Note that the
moduli of smoothness used in [36] and [41] are connected with differences of
a function, and are inapplicable in the weighted cases. Therefore, we shall
use the moduli of smoothness Ωk

M,ω(·, f), k = 1, 2, . . . , defined above.
Let W r

M (T, ω) (r = 1, 2, . . . ) be the linear space of functions for which

f (r−1) is absolutely continuous and f (r) ∈ LM (T, ω). It becomes a Banach
space with the norm

(7) ‖f‖W r
M

(T,ω) := ‖f‖LM (T,ω) + ‖f (r)‖LM (T,ω).

Our main results are the following.
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Theorem 1. Let LM (T, ω) be a weighted Orlicz space with Boyd indices

0 < αM ≤ βM < 1, and let ω ∈ A1/αM
(T) ∩ A1/βM

(T). Then for every

f ∈W r
M (T, ω) (r = 0, 1, 2, . . . ) the inequality

(8) En(f)M,ω ≤
c

(n+ 1)r
En(f (r))M,ω

holds with a constant c > 0 independent of n.

Theorem 2. Let LM (T, ω) be a weighted Orlicz space with Boyd indices

0 < αM ≤ βM < 1, and let ω ∈ A1/αM
(T) ∩ A1/βM

(T). Then for every

f ∈ LM (T, ω) the estimate

(9) En(f)M,ω ≤ cΩk
M,ω

(
1

n+ 1
, f

)
, k = 1, 2, . . . ,

holds with a constant c > 0 independent of n.

Let D be the unit disk in the complex plane and H1(D) be the Hardy
space of analytic functions in D. It is known that every function f ∈ H1(D)
admits nontangential boundary limits a.e. on the unit circle T and the limit
function belongs to L1(T) [12, p. 23].

Let LM (T, ω) be a weighted Orlicz space on T and let HM (D, ω) be the
weighted Hardy–Orlicz class defined as

HM (D, ω) := {f ∈ H1(D) : f ∈ LM (T, ω)}.

Then from Theorem 2 we obtain the following result.

Theorem 3. Let HM (D, ω) be a weighted Hardy-Orlicz space with Boyd

indices 0 < αM ≤ βM < 1 and let ω ∈ A1/αM
(T)∩A1/βM

(T). If
∑∞

j=0 aj(f)zj

is the Taylor series of f ∈ HM (D, ω) at the origin, then

(10)
∥∥∥f(z) −

n∑

j=0

aj(f)zj
∥∥∥

LM (T,ω)
≤ cΩk

M,ω

(
1

n+ 1
, f

)
, k = 1, 2, . . . ,

with a constant c > 0 independent of n.

Our inverse results are the following.

Theorem 4. Let LM (T, ω) be a weighted Orlicz space with Boyd indices

0 < αM ≤ βM < 1, and let ω ∈ A1/αM
(T) ∩ A1/βM

(T). Then for f ∈
LM (T, ω) and for every natural number n the estimate

(11) Ωk
M,ω

(
1

n
, f

)
≤

c

n2k

{
E0(f)M,ω +

n∑

m=1

m2k−1Em(f)M,ω

}
,

k = 1, 2, . . . ,

holds with a constant c independent of n.

The following theorem gives a sufficient condition for f to belong to
W 2r

M (T, ω).
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Theorem 5. Let LM (T, ω) and ω be as in Theorem 4. If f ∈ LM (T, ω)
satisfies, for some r = 1, 2, . . . ,

(12)
∞∑

m=1

m2r−1Em(f)M,ω <∞,

then f ∈W 2r
M (T, ω).

From Theorem 4 we also have the following result.

Corollary 1. Under the conditions of Theorem 4, if f ∈ LM (T, ω)
satisfies, for some α > 0,

Em(f)M,ω = O(m−α), m = 1, 2, . . . ,

then for any natural number k and δ > 0,

Ωk
M,ω(δ, f) =





O(δα), k > α/2,

O(δα log(1/δ)), k = α/2,

O(δ2k), k < α/2.

Hence if we define the generalized Lipschitz class Lip∗ α(M,ω) for α > 0
and k := [α/2] + 1 as

Lip∗ α(M,ω) := {f ∈ LM (T, ω) : Ωk
M,ω(δ, f) ≤ cδα, δ > 0},

then from Corollary 1 we obtain the following

Corollary 2. Under the conditions of Theorem 4, if f ∈ LM (T, ω)
satisfies, for some α > 0,

Em(f)M,ω = O(m−α), m = 1, 2, . . . ,

then f ∈ Lip∗ α(M,ω).

Combining this with Theorem 2 we get the following constructive de-
scription of the classes Lip∗ α(M,ω).

Theorem 6. Let LM (T, ω) be a weighted Orlicz space with Boyd indices

0 < αM ≤ βM < 1, and let ω ∈ A1/αM
(T) ∩ A1/βM

(T). Then for α > 0 the

following assertions are equivalent :

(i) f ∈ Lip∗ α(M,ω);
(ii) Em(f)M,ω = O(m−α).

Remark 1. The assumptions

0 < αM ≤ βM < 1 and ω ∈ A1/αM
(T) ∩A1/βM

(T)

are important in our investigations. In particular, they guarantee the ex-
istence and boundedness of the operator σh (see Lemma 1) and also the
well-definedness of the k-modulus of smoothness Ωk

M,ω(·, f) (k = 1, 2, . . . ),
in terms of which we estimate the error of approximation in weighted Orlicz
spaces LM (T, ω).
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We use c, c1, c2, . . . to denote constants (which may, in general, differ in
different relations) depending only on numbers that are not important for
the questions of interest.

2. Auxiliary results. The following interpolation theorem was proved
in [4] (see also [2, p. 153]).

Theorem 7. Let 1 < q < p < ∞. If a linear operator is bounded in the

Lebesgue spaces Lp(T) and Lq(T), then it is bounded in every Orlicz space

LM (T) whose Boyd indices satisfy 1/p < αM ≤ βM < 1/q.

Using this theorem we obtain the following result about the boundedness
of the linear operator σh in weighted Orlicz spaces.

Lemma 1. Let LM (T, ω) have Boyd indices 0 < αM ≤ βM < 1. If ω ∈
A1/αM

(T) ∩A1/βM
(T),then the operator σh is bounded in LM (T, ω).

Proof. Since 0 < αM ≤ βM < 1, by Theorem 2.31 from [3, p. 58] we can
find numbers q and p such that

1 < q < 1/βM ≤ 1/αM < p <∞

and ω belongs to Ap(T) and Aq(T). Then it follows from the continuity of the
maximal operator in weighted Lebesgue spaces [35] (see also [13, p. 110])
that σh is bounded in Lp(T, ω) and Lq(T, ω). In that case the operator
Ah := ωσhω

−1I is bounded in Lp(T) and Lq(T). Hence by Theorem 7, Ah is
bounded in LM (T). This implies the boundedness of σh in LM (T, ω).

Corollary 3. Let LM (T, ω) have Boyd indices 0 < αM ≤ βM < 1. If

ω ∈ A1/αM
(T) ∩A1/βM

(T), then

lim
h→0

‖f − σhf‖LM (T,ω) = 0

for f ∈ LM (T, ω) and hence

lim
δ→0

Ωk
M,ω(δ, f) = 0, k = 1, 2, . . . .

Moreover

Ωk
M,ω(δ, f) ≤ c‖f‖LM (T,ω)

with some constant c independent of f.

Let Sn(·, f) (n = 1, 2, . . . ) be the nth partial sum of the Fourier series of
f ∈ L1(T), i.e.

Sn(x, f) =
a0

2
+

n∑

k=1

(ak cos kx+ bk sin kx).

Then [1, Vol. 1, pp. 95–96]

Sn(x, f) =
1

π

\
T

f(t)Dn(x− t) dt
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with the Dirichlet kernel

Dn(t) :=
1

2
+

n∑

k=1

cos kt

of order n. Consider the sequence {Kn(·, f)} of the arithmetic means of the
partial sums of the Fourier series of f, that is,

Kn(x, f) :=
S0(x, f) + S1(x, f) + · · · + Sn(x, f)

n+ 1
, n = 0, 1, 2, . . . ,

with K0(x, f) = S0(x, f) := a0/2.

It is known [1, Vol. 1, p. 133] that

Kn(x, f) =
1

π

\
T

f(t)Fn(x− t) dt,

where

Fn(t) :=
1

n+ 1

n∑

k=0

Dk(t)

is the Fejér kernel of order n (for more information see [1, Vol. 1, pp. 133–
137]).

Since the linear operator Kn is bounded in Lp(T, ω) and Lq(T, ω) (see
[38], [35], also [13, p. 109]), the proof of the following result is similar to that
of Lemma 1.

Lemma 2. Let LM (T, ω) have Boyd indices 0 < αM ≤ βM < 1. If ω ∈
A1/αM

(T) ∩A1/βM
(T), then the operator Kn is bounded in LM (T, ω), i.e.

(13) ‖Kn(·, f)‖LM (T,ω) ≤ c‖f‖LM (T,ω), f ∈ LM (T, ω),

with a constant c independent of n.

Now we can state and prove the Bernstein inequality for weighted Orlicz
spaces.

Lemma 3. Let LM (T, ω) have Boyd indices 0 < αM ≤ βM < 1. If ω ∈
A1/αM

(T) ∩A1/βM
(T), then for each trigonometric polynomial Tn of degree

n the inequality

(14) ‖T ′
n‖LM (T,ω) ≤ cn‖Tn‖LM (T,ω)

holds with a constant c independent of n.

Proof. We use Zygmund’s method (see [1, Vol. 2, pp. 458–460]). Since

Tn(x) = Sn(x, Tn) =
1

π

\
T

Tn(u)Dn(u− x) du,
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by differentiation we get

T ′
n(x) = −

1

π

\
T

Tn(u)D′
n(u− x) du = −

1

π

\
T

Tn(u+ x)D′
n(u) du

=
1

π

\
T

Tn(u+ x)
( n∑

k=1

k sin ku
)
du.

Noting that \
T

Tn(u+ x)
n−1∑

k=1

k sin (2n− k)u du = 0

we have

T ′
n(x) =

1

π

\
T

Tn(u+ x)
{ n∑

k=1

k sin ku+
n−1∑

k=1

k sin (2n− k)u
}
du

=
1

π

\
T

Tn(u+ x)2n sinnu

{
1

2
+

n−1∑

k=1

n− k

n
cos ku

}
du

= 2n
1

π

\
T

Tn(u+ x) sinnuFn−1(u) du.

Since Fn−1 is nonnegative, this implies

|T ′
n(x)| ≤ 2n

1

π

\
T

|Tn(u+ x)|Fn−1(u) du

= 2n
1

π

\
T

|Tn(u)|Fn−1(u− x) du = 2nKn−1(x, |Tn|).

The last inequality and (13) yield (14).

Remark 2. The Bernstein inequality in Lp(T, ω) was proved in [29]
for more general doubling weights. Generalizing it to more general weights
is not our goal in this work and the above inequality is sufficient for our
considerations.

Taking the boundedness of the linear operators f 7→ Sn(·, f) and f 7→ f̃
in Lp(T, ω) into account [17, 18] and using the method of proof of Lemma 1,
one can show that

(15) ‖Sn(·, f)‖LM (T,ω) ≤ c‖f‖LM (T,ω), ‖f̃‖LM (T,ω) ≤ c‖f‖LM (T,ω),

and as a corollary we obtain

(16) ‖f − Sn(·, f)‖LM (T,ω) ≤ cEn(f)M,ω, En(f̃)M,ω ≤ cEn(f)M,ω,

where f̃ is the conjugate function of f ∈ LM (T, ω).
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Lemma 4. Let LM (T, ω) have Boyd indices 0 < αM ≤ βM < 1. If ω ∈
A1/αM

(T) ∩A1/βM
(T), then the class of trigonometric polynomials is dense

in LM (T, ω).

Proof. Let LM (T) be an Orlicz space with 0 < αM ≤ βM < 1. Then
LM (T) is reflexive. On the other hand, from the method of proof of Theorem
4.5 in [24] and Lemma 4.2 in [22], it can be deduced that the conditions ω ∈
A1/αM

(T) and ω ∈ A1/βM
(T) imply that ω ∈ LM (T) and 1/ω ∈ LN (T). Then

the space LM (T, ω) is also reflexive [25, Corollary 2.8] and by Lemmas 1.2
and 1.3 in [23] the class C(T) of continuous functions is dense in LM (T, ω).

Let f ∈ LM (T, ω) and ε > 0. Since C(T) is dense in LM (T, ω), there is
a continuous function f0 such that

(17) ‖f − f0‖LM (T,ω) < ε.

By the Weierstrass theorem, there exists a trigonometric polynomial T0 such
that

|f0(x) − T0(x)| < ε, x ∈ T.

Using this and formulas (3), (5) and the Hölder inequality we get

‖f0 − T0‖LM (T,ω) = ‖(f0 − T0)ω‖LM (T)

= sup
{\

T

|f0(x) − T0(x)|ω(x)|g(x)| dx : ‖g‖∗LN (T) ≤ 1
}

≤ ε sup
{\

T

ω(x)|g(x)| dx : ‖g‖∗LN (T) ≤ 1
}

≤ ε sup{‖ω‖LM (T)‖g‖
∗
LN (T) : ‖g‖∗LN (T) ≤ 1} ≤ ε‖ω‖LM (T),

which by (17) yields

‖f − T0‖LM (T,ω) ≤ ‖f − f0‖LM (T,ω) + ‖f0 − T0‖LM (T,ω) < (1 + ‖ω‖LM (T))ε,

and the assertion is proved.

Corollary 4. Let LM (T, ω) have Boyd indices 0 < αM ≤ βM < 1. If

ω ∈ A1/αM
(T)∩ A1/βM

(T), then the Fourier series of f ∈ LM (T, ω) con-

verges to f in the norm of LM (T, ω).

Proof. By Lemma 4 we have En(f)M,ω → 0 (n → ∞) and then the
assertion follows from (16).

Lemma 5. If ω ∈ A1/αM
(T) ∩A1/βM

(T) and f ∈W 2
M (T, ω), then

Ωk
M,ω(δ, f) ≤ cδ2Ωk−1

M,ω(δ, f ′′), k = 1, 2, . . . ,

with some constant c independent of δ.

Proof. Consider the function

g(x) :=

k∏

i=2

(I − σhi
)f(x).
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Then g ∈W 2
M (T, ω) and

(I − σh1)g(x) = (I − σh1)
( k∏

i=2

(I − σhi
)f(x)

)
=

k∏

i=1

(I − σhi
)f(x).

Hence

k∏

i=1

(I − σhi
)f(x) = g(x) − σh1(x) = g(x) −

1

2h1

h1\
−h1

g(x+ t) dt

=
1

2h1

h1\
−h1

[g(x) − g(x+ t)] dt

= −
1

4h1

h1\
−h1

[g(x+ t) − 2g(x) + g(x− t)] dt

= −
1

8h1

h1\
0

t\
0

u\
−u

g′′(x+ s) ds du dt.

Now, according to (1), (5) and Fubini’s theorem and moving the supremum
under the integral sign we have

∥∥∥
k∏

i=1

(I − σhi
)f

∥∥∥
LM (T,ω)

=
1

8h1

∥∥∥
h1\
0

t\
0

u\
−u

g′′(· + s) ds du dt
∥∥∥

LM (T,ω)

=
1

8h1
sup
\
T

∣∣∣
h1\
0

t\
0

u\
−u

g′′(x+ s) ds du dt
∣∣∣ω(x)|l(x)| dx

≤
1

8h1
sup
\
T

[h1\
0

t\
0

∣∣∣
u\
−u

g′′(x+ s) ds
∣∣∣ du dt

]
ω(x)|l(x)| dx

=
1

8h1
sup

h1\
0

t\
0

[\
T

∣∣∣
u\
−u

g′′(x+ s) ds
∣∣∣ω(x)|l(x)| dx

]
du dt

≤
1

8h1

h1\
0

t\
0

[
sup
\
T

∣∣∣
u\
−u

g′′(x+ s) ds
∣∣∣ω(x)|l(x)| dx

]
du dt

=
1

8h1

h1\
0

t\
0

∥∥∥
u\
−u

g′′(· + s) ds
∥∥∥

LM (T,ω)
du dt

=
1

8h1

h1\
0

t\
0

2u

∥∥∥∥
1

2u

u\
−u

g′′(· + s) ds

∥∥∥∥
LM (T,ω)

du dt,

where the suprema are taken over all l ∈ L̃N (T) with ‖l‖∗LN (T) ≤ 1. Taking
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into account the boundedness of σu we see that

∥∥∥
k∏

i=1

(I − σhi
)f

∥∥∥
LM (T,ω)

≤
1

8h1

h1\
0

t\
0

2u‖σug
′′‖LM (T,ω) du dt

≤ c
1

8h1

h1\
0

t\
0

2u‖g′′‖LM (T,ω) du dt = ch2
1‖g

′′‖LM (T,ω).

On the other hand, g′′ =
∏k

i=2(I − σhi
)f ′′ by the definitions of g and σhi

.
Then from the last inequality we conclude that

Ωk
M,ω(δ, f) = sup

0<hi≤δ
1≤i≤k

∥∥∥
k∏

i=1

(I − σhi
)f

∥∥∥
LM (T,ω)

≤ sup
0<hi≤δ
1≤i≤k

ch2
1‖g

′′‖LM (T,ω)

= cδ21 sup
0<hi≤δ
2≤i≤k

∥∥∥
k∏

i=2

(I − σhi
)f ′′

∥∥∥
LM (T,ω)

= cδ2Ωk−1
M,ω(δ, f ′′).

Corollary 5. If f ∈W 2k
M (T, ω), then

Ωk
M,ω(δ, f) ≤ cδ2k‖f (2k)‖LM (T,ω)

with some constant c independent of δ.

For f ∈ LM (T, ω) and δ > 0, the K-functional is defined as

K(δ, f ;LM (T, ω),W r
M (T, ω))

:= inf{‖f − ψ‖LM (T,ω) + δ‖ψ(r)‖LM (T,ω) : ψ ∈W r
M (T, ω)}.

Theorem 8. Let LM (T, ω) be a weighted Orlicz space with Boyd indices

0 < αM ≤ βM < 1. If ω ∈ A1/αM
(T) ∩ A1/βM

(T), then for f ∈ LM (T, ω)
and k = 1, 2, . . . the equivalence

(18) K(δ2k, f ;LM (T, ω),W 2k
M (T, ω)) ∼ Ωk

M,ω(δ, f)

holds, where the implied constants are independent of δ.

Proof. Let ψ be an arbitrary function in W 2k
M (T, ω). By (6) and Corol-

laries 3 and 5 we obtain

Ωk
M,ω(δ, f) = Ωk

M,ω(δ, f − ψ + ψ) ≤ Ωk
M,ω(δ, f − ψ) +Ωk

M,ω(δ, ψ)

≤ c1‖f − ψ‖LM (T,ω) + c2δ
2k‖ψ(2k)‖LM (T,ω).

If we take the infimum over all ψ ∈ W 2k
M (T, ω), then by definition of the

K-functional we get

Ωk
M,ω(δ, f) ≤ cK(δ2k, f ;LM (T, ω),W 2k

M (T, ω)).
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For the proof of the reverse estimate consider an operator Lδ on LM (T, ω)
given by

(Lδf)(x) :=
3

δ3

δ\
0

u\
0

t\
−t

f(x+ s) ds dt du, x ∈ T.

Then
d2

dx2
(Lδf) =

c

δ2
(I − σδ)f

and hence

(19)
d2k

dx2k
Lk

δ =
c

δ2k
(I − σδ)

k, k = 1, 2, . . . .

The operator Lδ is bounded in LM (T, ω). Indeed, applying Minkowski’s
inequality and the boundedness of σt in LM (T, ω) we get

‖Lδf‖LM (T,ω) ≤
3

δ3

δ\
0

u\
0

∥∥∥
t\
−t

f(· + s) ds
∥∥∥

LM (T,ω)
dt du

=
3

δ3

δ\
0

u\
0

2t‖σtf‖LM (T,ω) dt du

≤ c
3

δ3
‖f‖LM (T,ω)

δ\
0

u\
0

2t dt du = c‖f‖LM (T,ω).

Define another operator Ak
δ by

Ak
δ := I − (I − Lk

δ )
k.

Then Ak
δf ∈W 2k

M (T, ω) for f ∈ LM (T, ω) and furthermore, by (19),
∥∥∥∥
d2k

dx2k
Ak

δf

∥∥∥∥
LM (T,ω)

≤ c

∥∥∥∥
d2k

dx2k
Lk

δf

∥∥∥∥
LM (T,ω)

=
c

δ2k
‖(I − σδ)

kf‖LM (T,ω).

This inequality and the definition of Ωk
M,ω(δ, f) yield

(20) δ2k

∥∥∥∥
d2k

dx2k
Ak

δf

∥∥∥∥
LM (T,ω)

≤ cΩk
M,ω(δ, f).

Since

I − Lk
δ = (I − Lδ)

k−1∑

j=0

Lj
δ
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and Lδ is bounded in LM (T, ω), we have

‖(I − Lk
δ )g‖LM (T,ω) =

∥∥∥
( k−1∑

j=0

Lj
δ

)
(I − Lδ)g

∥∥∥
LM (T,ω)

≤ c‖(I − Lδ)g‖LM (T,ω)

= c

∥∥∥∥
3

δ3

δ\
0

u\
0

t\
−t

[g − g(· + s)] ds dt du

∥∥∥∥
LM (T,ω)

≤
3c

δ3

δ\
0

u\
0

2t

∥∥∥∥
1

2t

t\
−t

[g − g(· + s)] ds

∥∥∥∥
LM (T,ω)

dt du

=
3c

δ3

δ\
0

u\
0

2t‖(I − σt)g‖LM (T,ω) dt du

≤
3c

δ3
sup

0<t≤δ
‖(I − σt)g‖LM (T,ω)

δ\
0

u\
0

2t dt du

= c sup
0<t≤δ

‖(I − σt)g‖LM (T,ω)

for every g ∈ LM (T, ω). Applying this inequality k times in

‖f −Ak
δf‖LM (T,ω) = ‖(I − Lk

δ )
kf‖LM (T,ω) = ‖(I − Lk

δ )(I − Lk
δ )

k−1f‖LM (T,ω)

we obtain

‖f−Ak
δf‖LM (T,ω) ≤ c1 sup

0<t1≤δ
‖(I − σt1)(I − Lk

δ )
k−1f‖LM (T,ω)

≤c2 sup
0<t1≤δ

sup
0<t2≤δ

‖(I − σt1)(I − σt2)(I − Lk
δ )

k−2f‖LM (T,ω)

≤ · · · ≤ c sup
0<tj≤δ
1≤j≤k

∥∥∥
k∏

j=1

(I − σtj )f
∥∥∥

LM (T,ω)
= cΩk

M,ω(δ, f).

Since Ak
δf ∈W 2k

M (T, ω), from the last inequality, (20) and the definition
of the K-functional, we conclude that

K(δ2k, f ;LM (T, ω),W 2k
M (T, ω))

≤ ‖f −Ak
δf‖LM (T,ω) + δ2k

∥∥∥∥
d2k

dx2k
Ak

δf

∥∥∥∥
LM (T,ω)

≤ cΩk
M,ω(δ, f),

which gives the reverse estimate and completes the proof.

3. Proofs of the theorems

Proof of Theorem 1. Let
∑∞

k=0(ak cos kx+bk sin kx) be the Fourier series
of f and Sn(x, f) be its nth partial sum, i.e.,
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Sn(x, f) =
n∑

k=0

(ak cos kx+ bk sin kx).

It is known that the conjugate function f̃ has the Fourier expansion
∞∑

k=1

(ak sin kx− bk cos kx).

If we set

Ak(x, f) := ak cos kx+ bk sin kx,

then by Corollary 4 we have

f(x) =
∞∑

k=0

Ak(x, f)

in the norm of LM (T, ω). Since for k = 1, 2, . . . ,

Ak(x, f) = ak cos kx+ bk sin kx

= ak cos k

(
x+

rπ

2k
−
rπ

2k

)
+ bk sin k

(
x+

rπ

2k
−
rπ

2k

)

= ak cos

(
kx+

rπ

2
−
rπ

2

)
+ bk sin

(
kx+

rπ

2
−
rπ

2

)

= ak

[
cos

(
kx+

rπ

2

)
cos

rπ

2
+ sin

(
kx+

rπ

2

)
sin

rπ

2

]

+ bk

[
sin

(
kx+

rπ

2

)
cos

rπ

2
− cos

(
kx+

rπ

2

)
sin

rπ

2

]

= cos
rπ

2

[
ak cos k

(
x+

rπ

2k

)
+ bk sin k

(
x+

rπ

2k

)]

+ sin
rπ

2

[
ak sin k

(
x+

rπ

2k

)
− bk cos k

(
x+

rπ

2k

)]

= Ak

(
x+

rπ

2k
, f

)
cos

rπ

2
+Ak

(
x+

rπ

2k
, f̃

)
sin

rπ

2

and

Ak(x, f
(r)) = krAk

(
x+

rπ

2k
, f

)
,

we get
∞∑

k=0

Ak(x, f) = A0(x, f) + cos
rπ

2

∞∑

k=1

Ak

(
x+

rπ

2k
, f

)

+ sin
rπ

2

∞∑

k=1

Ak

(
x+

rπ

2k
, f̃

)
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= A0(x, f) + cos
rπ

2

∞∑

k=1

1

rk
rkAk

(
x+

rπ

2k
, f

)

+ sin
rπ

2

∞∑

k=1

1

rk
rkAk

(
x+

rπ

2k
, f̃

)

= A0(x, f) + cos
rπ

2

∞∑

k=1

1

rk
Ak(x, f

(r)) + sin
rπ

2

∞∑

k=1

1

rk
Ak(x, f̃

(r))

Then

f(x) − Sn(x, f) =
∞∑

k=n+1

Ak(x, f)

= cos
rπ

2

∞∑

k=n+1

1

rk
Ak(x, f

(r)) + sin
rπ

2

∞∑

k=n+1

1

rk
Ak(x, f̃

(r)).

Taking into account that
∞∑

k=n+1

1

kr
Ak(θ, f

(r)) =

∞∑

k=n+1

1

kr
[Sk(θ, f

(r)) − Sk−1(θ, f
(r))]

=
∞∑

k=n+1

1

kr
{[Sk(θ, f

(r)) − f (r)(θ)] − [Sk−1(θ, f
(r)) − f (r)(θ)]}

=

∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
[Sk(θ, f

(r)) − f (r)(θ)]

−
1

(n+ 1)r
[Sn(θ, f (r)) − f (r)(θ)],

and
∞∑

k=n+1

1

kr
Ak(θ, f̃

(r)) =
∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
[Sk(θ, f̃

(r)) − f̃ (r)(θ)]

−
1

(n+ 1)r
[Sn(θ, f̃ (r)) − f̃ (r)(θ)],

by (16) we have

‖f − Sn(·, f)‖LM (T,ω) ≤
∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
‖Sk(·, f

(r)) − f (r)‖LM (T,ω)

+
1

(n+ 1)r
‖Sn(·, f (r)) − f (r)‖

LM (T,ω)

+
∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
‖Sk(·, f̃

(r)) − f̃ (r)‖LM (T,ω)
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+
1

(n+ 1)r
‖Sn(·, f̃ (r)) − f̃ (r)‖LM (T,ω)

≤ c1

{ ∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
Ek(f

(r))M,ω +
1

(n+ 1)r
En(f (r))M,ω

}

+ c2

{ ∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
Ek(f̃

(r))M,ω +
1

(n+ 1)r
En(f̃ (r))M,ω

}
.

Since the sequence {En(f (r))M,ω} is decreasing, using (16), we finally con-
clude that

‖f − Sn(·, f)‖LM (T,ω)

≤ c1En(f (r))M,ω

{ ∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
+

1

(n+ 1)r

}

+ c2En(f̃ (r))M,ω

{ ∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
+

1

(n+ 1)r

}

≤ c3En(f (r))M,ω

{ ∞∑

k=n+1

(
1

kr
−

1

(k + 1)r

)
+

1

(n+ 1)r

}
En(f (r))M,ω

=
2c3

(n+ 1)r
En(f (r))M,ω.

Since En(f)M,ω ≤ ‖f − Sn(·, f)‖LM (T,ω), this gives (8) and completes the
proof of Theorem 1.

Corollary 6. For f ∈W r
M (T, ω) the inequality

En(f)M,ω ≤
c

(n+ 1)r
‖f (r)‖LM (T,ω)

holds with a constant c independent of n.

Proof of Theorem 2. Let ψ ∈ W 2k
M (T, ω). Then by subadditivity of the

best approximation and Corollary 6, we have

En(f)M,ω = En(f − ψ + ψ)M,ω ≤ En(f − ψ)M,ω + En(ψ)M,ω

≤ c

{
‖f − ψ‖LM (T,ω) +

1

(n+ 1)2k
‖ψ(2k)‖LM (T,ω)

}
.

Since this inequality holds for every ψ ∈W 2k
M (T, ω), by the definition of the

K-functional we get

En(f)M,ω ≤ cK

(
1

(n+ 1)2k
, f ;LM (T, ω),W 2k

M (T, ω)

)
.
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According to Theorem 8, this implies

En(f)M,ω ≤ cΩk
M,ω

(
1

n+ 1
, f

)
,

which completes the proof.

Proof of Theorem 3. Let
∑∞

j=−∞ γj(f)eijx be the exponential Fourier
series of the boundary function of f , and Sn(x, f) be its nth partial sum,
i.e.,

Sn(x, f) =
n∑

j=−n

γj(f)eijx.

Then for f ∈ H1(D), by Theorem 3.4 in [12] we have

γj(f) =

{
aj(f), j ≥ 0,

0, j < 0.

Let T ∗
n ∈ Πn be the polynomial of best approximation to f ∈ LM (T, ω).

Then (15) and Theorem 2 for every natural number n yield

∥∥∥f(z) −
n∑

j=0

aj(f)zj
∥∥∥

LM (T,ω)
=

∥∥∥f(eix) −
n∑

j=0

γj(f)eijx
∥∥∥

LM (T,ω)

= ‖f − Sn(·, f)‖LM (T,ω) = ‖f − T ∗
n + T ∗

n − Sn(·, f)‖LM (T,ω)

≤ ‖f − T ∗
n‖LM (T,ω) + ‖Sn(·, T ∗

n − f)‖LM (T,ω)

≤ c‖f − T ∗
n‖LM (T,ω) = cEn(f)M,ω ≤ cΩk

M,ω

(
1

n+ 1
, f

)
.

Proof of Theorem 4. Let f ∈ LM (T, ω) and let Tn ∈ Πn (n = 0, 1, 2, . . . )
be the polynomial of best approximation to f .

Let also n be a natural number and δ := 1/n. By the subadditivity of
Ωk

M,ω(δ, ·),

(21) Ωk
M,ω(δ, f) ≤ Ωk

M,ω(δ, f − T2j+1) +Ωk
M,ω(δ, T2j+1)

for any j = 1, 2, . . . , and by Corollary 3,

(22) Ωk
M,ω(δ, f − T2j+1) ≤ c1‖f − T2j+1‖LM (T,ω) = c1E2j+1(f)M,ω.

Using Corollary 5 and Lemma 3, and noting that the sequence {En(f)M,ω}
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of best approximations is decreasing we get

Ωk
M,ω(δ, T2j+1) ≤ c2δ

2k‖T
(2k)
2j+1‖LM (T,ω)

≤ c2δ
2k

{
‖T

(2k)
1 − T

(2k)
0 ‖LM (T,ω) +

j∑

i=0

‖T
(2k)
2i+1 − T

(2k)
2i ‖LM (T,ω)

}

≤ c3δ
2k

{
‖T1 − T0‖LM (T,ω) +

j∑

i=0

2(i+1)2k‖T2i+1 − T2i‖LM (T,ω)

}

≤ c3δ
2k

{
E1(f)M,ω + E0(f)M,ω +

j∑

i=0

2(i+1)2k(E2i+1(f)M,ω + E2i(f)M,ω)
}

≤ c4δ
2k

{
E0(f)M,ω +

j∑

i=0

2(i+1)2kE2i(f)M,ω

}

= c4δ
2k

{
E0(f)M,ω + 22kE1(f)M,ω +

j∑

i=1

2(i+1)2kE2i(f)M,ω

}
.

Since

(23) 2(i+1)2kE2i(f)M,ω ≤ 24k
2i∑

m=2i−1+1

m2k−1Em(f)M,ω

for i ≥ 1, the last inequality yields

(24) Ωk
M,ω(δ, T2m+1)

≤ c4δ
2k

{
E0(f)M,ω + 22kE1(f)M,ω + 24k

2j∑

m=2

m2r−1Em(f)M,ω

}

≤ c5δ
2k

{
E0(f)M,ω +

2j∑

m=1

m2r−1Em(f)M,ω

}
.

Selecting j such that 2j ≤ n < 2j+1, from (23) we have

E2j+1(f)M,ω =
2(j+1)2kE2j+1(f)M,ω

2(j+1)2k
≤

2(j+1)2kE2j (f)M,ω

n2k

≤
24k

n2k

2j∑

m=2j−1+1

m2k−1Em(f)M,ω.

Now combining (21), (22), (24) and the last relation we obtain the inequality
(11) of Theorem 4.
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Proof of Theorem 5. For the polynomials of best approximation we ob-
tain

‖T2i+1 − T2i‖LM (T,ω) ≤ ‖T2i+1 − f‖LM (T,ω) + ‖f − T2i‖LM (T,ω)(25)

= E2i+1(f)M,ω + E2i(f)M,ω

≤ 2E2i(f)M,ω ≤ 2(i+1)2rE2i(f)M,ω,

and hence using the Bernstein inequality (14) we have

‖T
(2r)
2i+1 − T

(2r)
2i ‖LM (T,ω) ≤ c62

(i+1)2r‖T2i+1 − T2i‖LM (T,ω)(26)

≤ c72
(i+1)2rE2i(f)M,ω.

Now recalling the definition (7) of the norm in W 2r
M (T, ω) and by (25),

(26) and (23) we get
∞∑

i=1

‖T2i+1 − T2i‖W 2r
M

(T,ω)

=

∞∑

i=1

‖T2i+1 − T2i‖LM (T,ω) +

∞∑

i=1

‖T
(2r)
2i+1 − T

(2r)
2i ‖W 2r

M
(T,ω)

≤
∞∑

i=1

2(i+1)2rE2i(f)M,ω + c7

∞∑

i=1

2(i+1)2rE2i(f)M,ω

= c8

∞∑

i=1

2(i+1)2rE2i(f)M,ω ≤ c82
4r

∞∑

i=1

( 2i∑

m=2i−1+1

m2r−1Em(f)M,ω

)

= c9

∞∑

m=2

m2r−1Em(f)M,ω,

which by the condition (12) of Theorem 5 implies that
∞∑

i=1

‖T2i+1 − T2i‖W 2r
M

(T,ω) <∞,

and hence
‖T2i+1 − T2i‖W 2r

M
(T,ω) → 0 as n→ ∞.

This means that {T2i} is a Cauchy sequence in W 2r
M (T, ω). Since T2i → f in

LM (T, ω) and W 2r
M (T, ω) is a Banach space we have f ∈W 2r

M (T, ω).
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