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Linear maps preserving elements annihilated

by the polynomial XY − Y X
†

by

Jianlian Cui (Beijing) and Jinchuan Hou (Taiyuan and Linfen)

Abstract. Let H and K be complex complete indefinite inner product spaces, and
B(H, K) (B(H) if K = H) the set of all bounded linear operators from H into K. For
every T ∈ B(H, K), denote by T † the indefinite conjugate of T . Suppose that Φ : B(H) →
B(K) is a bijective linear map. We prove that Φ satisfies Φ(A)Φ(B) = Φ(B)Φ(A)† for all
A, B ∈ B(H) with AB = BA† if and only if there exist a nonzero real number c and
a generalized indefinite unitary operator U ∈ B(H, K) such that Φ(A) = cUAU† for all
A ∈ B(H).

1. Introduction and main results. Roughly speaking, linear pre-
server problems concern characterizing linear maps between operator al-
gebras that leave certain properties of elements invariant. Over the past
decades a lot of work has been done on linear preserver problems on matrix
algebras. Recently, interest in similar questions on operator algebras over
infinite-dimensional spaces has also been growing.

Here, we would like to mention a kind of linear preserver problems con-
cerning zeros of polynomials in several elements. Particularly, the most ex-
tensive study was done for commutativity preserving linear maps, that is,
linear maps preserving zeros of the polynomial p(X, Y ) = XY − Y X (see
[3], [5]–[7] and the reference therein). As to some other polynomials, for
example, for p(X, Y ) = XY , the reader is referred to [12]–[13], [22] and
[26], for p(X, Y ) = XY + Y X, to [19], [34], and for any polynomial p(X)
in one element, to papers [2], [18], [20] and [30], and so on. Linear maps
preserving zeros of ∗-polynomials have also been studied by many authors.
For instance, the studies of linear maps preserving normal elements ([8] and
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[23]), preserving unitary elements ([28] and [29]) and preserving the orthog-
onality of operators ([1] and [27]) belong to this type of topics. Indeed, these
maps preserve the zeros of the *-polynomial p(X, X∗) = X∗X−XX∗, of the
commutative *-polynomial p(X, X∗) = X∗X − I, and of the *-polynomial
p(X, Y ∗) = XY ∗, respectively. It seems that the problem of characterizing
linear maps preserving zeros of ∗-polynomials in several variables is much
more difficult.

As a kind of new product in a ∗-ring, the operation XY − Y X∗ was
discussed in [6]. This product XY −Y X∗ is found to play a more and more
important role in some research topics. For example, it is closely related
to Jordan ∗-derivations. Let A be a ∗-ring and X ∈ A be fixed. Define an
additive map δ : A → A by δ(A) = AX−XA∗ for all A ∈ A. Then it is easily
checked that δ(A2) = Aδ(A) + δ(A)A∗ for all A ∈ A, that is, δ is a Jordan
∗-derivation. For more results concerning Jordan ∗-derivations, the reader is
referred to [9]. Recently, M. A. Chebotar et al. [10] have characterized the
bijective linear maps preserving the zeros of the ∗-polynomial p(X, X∗, Y ) =
XY − Y X∗ on Mn(F), where F is a field with an involution ∗ and n ≥ 20.
They proved that any such map φ is of the form φ(x) = λuxu−1 for all
x ∈ Mn(F), where λ is a nonzero symmetric scalar and u is a normal matrix
such that uu∗ is a nonzero scalar.

As indefinite inner product spaces are useful both for the discussion of
physical problems and for some mathematical questions (see the introduc-
tion in [4]), motivated by the work of Molnár [26], some preserver problems
were studied and solved for operator algebras on such spaces (see, for ex-
ample, [14]–[15], [24], [26] and the references therein). In particular, it is
an interesting question to characterize linear maps preserving zeros of the
∗-polynomial p(X, X∗, Y ) = XY − Y X∗ in indefinite inner product space
setting.

Denote by F the real field R or the complex field C. Recall that an
indefinite inner product space means a linear space H over F equipped with
a nondegenerate sesquilinear Hermite functional [·, ·]. Let (H, [·, ·]) be such
a space. If there are subspaces H+ and H− such that

(1.1) H = H+ ⊕ H−,

and both (H+, [·, ·]) and (H−,−[·, ·]) are Hilbert spacs, then H is called a
complete indefinite inner product space. The decomposition (1.1) is called a
regular decomposition of H (see [33]). In the following we always assume that
the indefinite inner product spaces considered are complete. If H = H+⊕H−
is a regular decomposition, then any x, y ∈ H can be uniquely represented
as x = x+ + x− and y = y+ + y−, where x±, y± ∈ H±. Define an inner
product on H by

〈x, y〉 = [x+, y+] − [x−, y−].
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Then it is obvious that (H, 〈·, ·〉) is a Hilbert space. We call 〈·, ·〉 the inner

product induced by the regular decomposition H = H+ ⊕ H−.
A linear operator T from an indefinite inner product space H into an

indefinite inner product space K is said to be bounded if T is bounded
with respect to the inner products of H and K induced by some regular
decompositions. The boundedness of T does not depend on the choice of the
regular decompositions. We denote by B(H, K) (B(H) if K = H) the set
of all bounded linear operators from H into K. For any T ∈ B(H, K), the
indefinite conjugate of T with respect to the indefinite inner product [·, ·]
is an operator T † ∈ B(K, H) defined by the equation [Tx, y] = [x, T †y] for
all x ∈ H and y ∈ K (similarly, for a bounded conjugate-linear operator
T : H → K, its indefinite conjugate operator T † : K → H is defined by
[Tx, y] = [T †y, x] for all x ∈ H and y ∈ K). For a linear operator T , if both
T †T and TT † are the identity (resp. a nonzero real scalar multiple of the
identity), we say that T is an indefinite unitary operator (resp. a generalized

indefinite unitary operator); in the case that T is conjugate linear, we say
that T is an indefinite anti-unitary operator (resp. a generalized indefinite

anti-unitary operator).
Now we are in a position to state the main result of this paper.

Theorem 1. Let H and K be complex complete indefinite inner product

spaces. Let Φ : B(H) → B(K) be a bijective linear map. Then Φ satisfies the

condition that Φ(A)Φ(B) = Φ(B)Φ(A)† for all A, B ∈ B(H) with AB = BA†

if and only if there exist a nonzero real number c and a generalized indefinite

unitary operator U ∈ B(H, K) such that Φ(A) = cUAU † for all A ∈ B(H).

Assume that H is a Hilbert space with the inner product 〈·, ·〉 and J ∈
B(H) is an invertible self-adjoint operator (i.e., J∗ = J). Then (H, [·, ·]J) is
a complete indefinite inner product space with the indefinite inner product
[·, ·]J = 〈J(·), ·〉 induced by J . It is clear that, with respect to [·, ·]J , the
indefinite conjugate T † of an operator T ∈ B(H) is of the form T † = J−1T ∗J ,
where T ∗ stands for the usual conjugate of T relative to the inner product
〈·, ·〉. If K is another Hilbert space and L ∈ B(K) is an invertible self-adjoint
operator, then, with respect to the indefinite inner products [·, ·]J and [·, ·]L,
we have S† = J−1S∗L for every S ∈ B(H, K). Thus, in terms of definite
inner products, Theorem 1 may be restated as follows.

Theorem 1′. Let H and K be complex Hilbert spaces. Let J ∈ B(H)
and L ∈ B(K) be given invertible self-adjoint operators. Suppose that Φ :
B(H) → B(K) is a linear bijective map. Then Φ(A)Φ(B) = Φ(B)L−1Φ(A)∗L
for all A, B ∈ B(H) with AB = BJ−1A∗J if and only if there exist a

nonzero real number c and an invertible operator U ∈ B(H, K) satisfying

J−1U∗LU = aI on H, UJ−1U∗L = aI on K for some nonzero real number

a, such that Φ(A) = cUAU−1 for all A ∈ B(H).
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In particular, when both J and L are the identity, we have

Corollary 2. Let H and K be complex Hilbert spaces. Suppose that

Φ : B(H) → B(K) is a linear bijective map. Then Φ(A)Φ(B) = Φ(B)Φ(A)∗

for all A, B ∈ B(H) with AB = BA∗ if and only if there exist a nonzero

scalar c ∈ R and a unitary operator U ∈ B(H, K) such that Φ(A) = cUAU∗

for all A ∈ B(H).

We should mention here that, by a different approach, Theorem 1′ was
obtained in [11] under the additional assumptions that dimH ≥ 3, K = H
and Φ is weakly continuous.

2. Proof of the main result. The proof of Theorem 1 is based on the
following result which was proved in [5].

Lemma 2.1. Let A and B be centrally closed prime algebras over a field

F of characteristic different from 2 and 3. Let Φ : A → B be a bijective linear

map satisfying Φ(A2)Φ(A) = Φ(A)Φ(A2) for all A ∈ A. If neither A nor B
satisfies S4, the standard polynomial identity of degree 4, then

Φ(A) = cφ(A) + q(A)

for all A ∈ A, where c ∈ F is nonzero, φ is an isomorphism or an anti-

isomorphism of A onto B, and q is a linear map from A into the center

of B.

We also need the following simple lemmas.

Lemma 2.2. Let H be a complex complete indefinite inner product space

with dimH ≥ 3. For any rank-one operator B ∈ B(H), there exists a nonzero

rank-one operator A ∈ B(H) such that AB = BA† = 0, BA = A†B = 0 and

A − A† is of rank one.

Proof. Let H = H− ⊕ H+ be a regular decomposition of H and P± the
corresponding projections from H onto H±, and let J = P+ − P−. Then
〈·, ·〉 = [J(·), ·] is an inner product on H induced by the regular decomposi-
tion. Write B = u⊗v with ‖u‖ = 1. A rank-one operator A = x⊗y satisfies
AB = BA† if and only if

〈u, y〉x ⊗ v = 〈J−1y, v〉u ⊗ Jx.

Since dimH ≥ 3, there must be dimJ−1([u]⊥) ≥ 2. Here [u] denotes the
linear span of u and [u]⊥ = H ⊖ [u], that is, the orthogonal complement
of [u] in H with respect to the inner product 〈·, ·〉. Thus there exists a
nonzero y ∈ [u]⊥ such that J−1y ⊥ v. Let x = αJ−1y, where α is any
complex number with α 6= α. Then it is easily seen that AB = BA† = 0,
BA = A†B = 0 and A − A† = (1 − α/α)A is of rank one.
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Lemma 2.3. Let H be a complex complete indefinite inner product space

and T ∈ B(H). If 0 ∈ σp(T ) (the point spectrum of T ), then there exists a

rank-one operator B such that TB = BT †.

Proof. Since 0 ∈ σp(T ), there exists a nonzero x ∈ H so that Tx = 0.
Let J be as in the proof of Lemma 2.2 and B = x ⊗ Jx. Then B is as
claimed.

Now we are ready to prove our result.

Proof of Theorem 1. We need only check the “only if” part.
Assume that Φ(A)Φ(B) = Φ(B)Φ(A)† whenever AB = BA†. It follows

from I ·A = A · I† for all A ∈ B(H) that Φ(I)Φ(A) = Φ(A)Φ(I)†. Since Φ is
surjective, we have

Φ(I)B = BΦ(I)† for all B ∈ B(H),

and therefore Φ(I) = Φ(I)†. Thus the above equality entails that Φ(I) be-
longs to the center of B(H) which is CI and hence Φ(I) = aI for some a ∈ R.
It follows from the injectivity of Φ that a 6= 0. For any †-Hermitian operator
S ∈ B(H) (that is, S† = S), we have Φ(S)Φ(I) = Φ(I)Φ(S)†, and hence
Φ(S) = Φ(S)†. This implies obviously that Φ(A†) = Φ(A)† for all A ∈ B(H).
Also, for all †-Hermitian operators S ∈ B(H), we have

(2.1) Φ(S2)Φ(S) = Φ(S)Φ(S2).

Let S, T ∈ B(H) be arbitrary †-Hermitian. Replacing S in (2.1) by S + T ,
and letting [S, T ] denote the commutator ST − TS, we get

([Φ(ST + TS), Φ(S)] + [Φ(S2), Φ(T )])

+ ([Φ(T 2), Φ(S)] + [Φ(ST + TS), Φ(T )]) = 0.

Replacing T with −T in the above equality, one obtains

−([Φ(ST + TS), Φ(S)] + [Φ(S2), Φ(T )])

+ ([Φ(T 2), Φ(S)] + [Φ(ST + TS), Φ(T )]) = 0.

Comparing the above two equalities, we see that for all †-Hermitian opera-
tors T, S ∈ B(H), we have

(2.2) [Φ(ST + TS), Φ(S)] + [Φ(S2), Φ(T )] = 0

and

(2.3) [Φ(T 2), Φ(S)] + [Φ(ST + TS), Φ(T )] = 0.

For any A ∈ B(H), let S = (A + A†)/2 and T = (A − A†)/2i; then S and
T are †-Hermitian and A = S + iT . A straightforward computation shows
that

[Φ(A2), Φ(A)] = −([Φ(ST + TS), Φ(T )] + [Φ(T 2), Φ(S)])

+ i([Φ(S2), Φ(T )] + [Φ(ST + TS), Φ(S)]),
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which, together with (2.2) and (2.3), ensures that [Φ(A2), Φ(A)] = 0. Thus,
in summary, we have showed that

(2.4) Φ(A2)Φ(A) = Φ(A)Φ(A2),

Φ(A†) = Φ(A)† for all A ∈ B(H), and Φ(I) = aI for some nonzero a ∈ R.

Since the case dim H = 1 is trivial, in the following we will assume that
dimH ≥ 2 and complete the proof by considering the cases dimH ≥ 3 and
dimH = 2 separately.

Case 1: dimH ≥ 3. It is well known that B(H) is a prime algebra,
that is, for A, B ∈ B(H), AB(H)B = 0 implies A = 0 or B = 0. Moreover,
B(H) is centrally closed over the field of complex numbers [25]. By standard
PI theory [21], a prime ring R satisfies S4 if and only if R is commutative
or R embeds in M2(F) for some field F. If dimH ≥ 3, then dimK ≥ 3,
so both algebras B(H) and B(K) satisfy the assumptions in Lemma 2.1.
Thus, it follows from (2.4) that Φ satisfies all assumptions of Lemma 2.1.
Also note that every isomorphism and anti-isomorphism between B(H) and
B(K) is spatial. Hence there exist a nonzero complex number c and a linear
functional f on B(H) such that either

(i) Φ has the form

(2.5) Φ(A) = cV AV −1 + f(A)I for every A ∈ B(H),

where V ∈ B(H, K) is an invertible operator; or
(ii) Φ has the form

(2.6) Φ(A) = cV A†V −1 + f(A)I for every A ∈ B(H),

where V : H → K is a bounded bijective conjugate linear operator.

Since Φ(A†) = Φ(A)† for all A ∈ B(H), for any rank-one operator F ∈ B(H),
it follows from (2.5) that

(f(F †) − f(F ))I = c(V −1)†F †V † − cV F †V −1

is an operator of rank at most two. With dimH ≥ 3 in mind, this would
imply that f(F †) = f(F ) for all rank-one operators F ∈ B(H). It is clear
that the same is true for f in (2.6).

Assume that Φ has the form (i), that is, (2.5) holds for all A. We claim
that c ∈ R, V is a generalized indefinite unitary in B(H, K), and f(A) = 0
for every A ∈ B(H).

Let J be as in the proof of Lemma 2.2 and L be an invertible self-adjoint
operator determined by some regular decomposition of K. For convenience,
we shall denote the corresponding inner products on H and K by the same
symbol 〈·, ·〉. Note that x ⊗ Jx is †-Hermitian for every x ∈ H. It follows
that Φ(x ⊗ Jx) = Φ(x ⊗ Jx)† and f(x ⊗ Jx) = f(x ⊗ Jx) for every x ∈ H.
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Hence
cV x ⊗ (V ∗)−1Jx = cL−1(V ∗)−1Jx ⊗ LV x

for every x ∈ H, which implies that LV x is linearly dependent of (V ∗)−1Jx.
This entails that LV = λ(V ∗)−1J , or equivalently, V †V = λI, for some
nonzero λ ∈ R (see [33]). Now it is clear that c ∈ R and V is a generalized
indefinite unitary operator. So, if we can show that f = 0, then Φ has the
form stated in Theorem 1.

To prove f = 0, let Ψ(·) = c−1V −1Φ(·)V and g = c−1f . Then Ψ(A) =
A + g(A)I for all A ∈ B(H) and Ψ(A)Ψ(B) = Ψ(B)Ψ(A)† whenever AB =
BA†. We claim that g(F ) = 0 for every F ∈ F(H), the set of all finite rank
operators in B(H). For any A, B ∈ B(H) with AB = BA†, we have

(A + g(A)I)(B + g(B)I) = (B + g(B)I)(A† + g(A)I).

Hence

(2.7) (g(A) − g(A))B + g(B)(A − A†) = (g(A) − g(A))g(B)I

for all A, B ∈ B(H) satisfying AB = BA†.
Assume that there exists a rank-one operator B such that g(B) 6= 0.

Then, by (2.7),

(2.8) A − A† = g(B)−1(g(A) − g(A))(g(B)I + B)

for all A ∈ B(H) with AB = BA†. By Lemma 2.2, for the rank-one oper-
ator B, there exists a rank-one operator A with AB = BA† and A − A†

being rank one such that (2.8) holds. But this is impossible since the rank
of g(B)−1(g(A) − g(A))(g(B)I + B) is always greater than one, a contra-
diction. So we have proved that g(B) = 0 for all rank-one operators B, and
consequently, g(F ) = 0 for every F ∈ F(H). Hence

Ψ(F ) = F for all F ∈ F(H).

Next we prove that g is the zero functional on B(H). For any A ∈ B(H),
let x ∈ H be a unit vector and ξ ∈ C be such that ξ 6= ξ. Let F =
(A + ξI)x⊗ x. Then 0 ∈ σp(A + ξI − F ) and, by Lemma 2.3, there exists a
rank-one operator B such that

(A + ξI − F )B = B(A + ξI − F )†.

Write g(I) = d with d a real number. Note that g(B) = 0 and g(F ) = 0.
Replacing A by A+ ξI −F in (2.7), we obtain, for the rank-one operator B,

(g(A) + dξ − g(A) − dξ)B = 0

for all ξ ∈ C with ξ 6= ξ. This implies that d = 0 and g(A) = g(A) for all
A ∈ B(H). Now it is clear that g = 0 since a real-valued linear functional
on a complex vector space is the zero functional.

To complete the proof of Case 1, we have to show that Φ can never take
the form (ii). On the contrary, assume that (2.6) holds for all A. Similar
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to the discussion of the case where Φ has the form (i), it is easy to check
that c ∈ R and V †V = λI for some nonzero λ ∈ R. Replacing Φ by Ψ(·) =
c−1V −1Φ(·)V , we find that Ψ is conjugate linear and preserves the zeros of
the polynomial p(A, A†, B) = AB − BA†. So without loss of generality we
might as well assume that Φ maps B(H) onto itself and has the form

Φ(A) = A† + f(A)I for all A ∈ B(H),

where f is a conjugate linear functional.

If A, B ∈ B(H) satisfy AB = BA†, then Φ(A)Φ(B) = Φ(B)Φ(A)†. Thus

(2.9) (BA − A†B)† + f(B)(A† − A) = (f(A) − f(A))(f(B)I + B†)

for all A, B ∈ B(H) satisfying AB = BA†. It follows from Lemma 2.2 that
for any rank-one operator B, there exists a rank-one operator A so that
AB = BA† = 0, BA = A†B = 0 and A† −A is of rank one. So (2.9) implies
that

f(B)(A† − A) = (f(A) − f(A))(f(B)I + B†).

If there exists a rank-one operator B such that f(B) 6= 0, then the left
side of the above equality is a rank-one operator, while the operator on the
right side is always of rank greater than one, a contradiction. Hence we get
f(F ) = 0 for all F ∈ F(H), and consequently

Φ(F ) = F † for all F ∈ F(H).

However, it is easily seen that there exist A, B ∈ F(H) such that AB = BA†

but A†B† 6= B†A (for instance, let A = x ⊗ y and B = x ⊗ x with y ∈
[x, J−1x]⊥) contrary to the assumption Φ(A)Φ(B) = Φ(B)Φ(A)†. Therefore,
Φ cannot take the form (ii), completing the proof of Case 1.

Case 2: dimH = 2. In this case we must also have dimK = 2. Fix
a regular decomposition H = H− ⊕ H+ and denote by P± the projections
from H onto H±. Let J = P+−P−. Then J2 = I on H and 〈·, ·〉 = [J(·), ·] is
an inner product on H induced by the regular decomposition. In the same
way, assume that L is an invertible self-adjoint operator in B(K) determined
by some regular decomposition of K; then L2 = I on K. We also use the
symbol 〈·, ·〉 to denote the inner product [L(·), ·] on K.

For any A ∈ B(H), define ∆(A, A†) = {B ∈ B(H) | AB = BA†}. It
is easily seen that ∆(A, A†) is a linear subspace of B(H). We prove the
following assertion.

Assertion. dim∆(A, A†) = 1 if and only if σ(A) = {a1, a2} with a1

real and a2 nonreal ; dim∆(A, A†) = 2 if and only if σ(A) ⊂ R and A 6∈ CI
or a1 = a2 6∈ R; dim∆(A, A†) = 4 if and only if A ∈ RI; dim∆(A, A†) = 3
does not occur. Here σ(A) denotes the spectrum of an operator A.



Maps preserving zeros of polynomials 191

Note that AB = BA† if and only if ABJ = BJA∗. So, to prove our
assertion we need only deal with the case that J = I. It is clear that there
exists B 6= 0 such that AB = BA∗ if and only if there exists a complex
number a such that {a, a} ⊆ σ(A). The set C of all such A is the union of
four disjoint subsets:

C1 = RI,

C2 = {A | σ(A) = {a1, a2}, a1 ∈ R, a2 6∈ R},
C3 = {A | σ(A) = {a, a}, a 6∈ R},
C4 = {A | σ(A) ⊂ R, A 6∈ RI}.

So,

(2.10) ∆(A, A∗) 6= {0} ⇔ A ∈ C1 ∪ C2 ∪ C3 ∪ C4.

Obviously, dim∆(A, A∗) = 4 if and only if A ∈ RI. For A ∈ C2 ∪ C3, let
σ(A) = {a1, a2} with a2 nonreal. Pick unit vectors x1, x2 ∈ H such that
x1 ∈ ker(a1I − A) and 〈x1, x2〉 = 0. An elementary 2 × 2 matrix argument
shows that dim∆(A, A∗) = 1 if and only if A ∈ C2, and in this case, there
exists a rank-one projection P such that ∆(A, A∗) = CP . In fact, if A ∈ C2,
then a1 is real and ∆(A, A∗) = C(x1 ⊗ x1). If A ∈ C3, then a2 = a1 and

∆(A, A∗)

=

{

b1x1 ⊗ x2 +

(〈x1, Ax2〉b1 − 〈Ax2, x1〉b2

a1 − a1
x1 + b2x2

)

⊗ x1

∣

∣

∣

∣

b1, b2 ∈ C

}

.

Hence, for A ∈ C3, we have dim∆(A, A∗) = 2. It is also easy to check that,
for the case of σ(A) ⊂ R and A 6∈ CI, we have dim∆(A, A∗) = 2, and hence
dim∆(A, A∗) 6= 3 for each A, finishing the proof of the Assertion.

Now assume that Φ : B(H) → B(K) is a bijective linear map such that
AB = BA† ⇒ Φ(A)Φ(B) = Φ(B)Φ(A)†. Then Φ(A†) = Φ(A)† for all A and
Φ(I) ∈ RI. Without loss of generality, assume that Φ(I) = I. Note that

(2.11) Φ(∆(A, A†)) ⊆ ∆(Φ(A), Φ(A)†)

for all A ∈ B(H). Thus, for every A, we have

(2.12) dim(∆(A, A†)) ≤ dim(∆(Φ(A), Φ(A)†)).

Since Φ(RI) = RI, using the above assertion, we obtain

(2.13) dim∆(A, A†) = 2 ⇒ dim∆(Φ(A), Φ(A)†) = 2.

Choose an orthonormal basis {e1, e2} of H so that J is diagonal. Set
Eij = ei ⊗ ej and Φ(Eij) = Tij , i, j = 1, 2. It is clear that T11 + T22 = I and
{Tij | i, j = 1, 2} is a basis of B(K). It is easily seen that

∆(E12, E
†
12) = {B = b11E11 + b12E12 + b12E

†
12 | b11, b12 ∈ C},
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so, by (2.11), we obtain

b11T11 + b12T12 + b12T
†
12 = Φ(B) ∈ ∆(T12, T

†
12).

Thus,

b11T12T11 + b12T
2
12 + b12T12T

†
12 = b11T11T

†
12 + b12T12T

†
12 + b12(T

†
12)

2

for all complex numbers b11, b12. It follows that

(2.14)

{

T12T11 = T11T
†
12,

T 2
12 = (T †

12)
2.

We complete the proof of Case 2 by considering four subcases.

Subcase 1: Both J and L are linearly independent of the identity. We
choose an orthonormal basis {e1, e2} of H such that J =

(1 0
0 −1

)

with re-

spect to this basis. By the Assertion and (2.13), we get dim∆(T11, T
†
11) =

dim∆(E11, E
†
11) = 2, and therefore, either T11 ∈ C3 or T11 ∈ C4. Assume

that the former occurs. Then there is a complex number t1 6∈ R such that
σ(T11) = {t1, t1}. Take an orthonormal basis {u1, u2} of K so that T11 has
the matrix representation

T11 =

(

t1 t12

0 t1

)

.

For any α 6∈ R, we have

T11 + αT22 =

(

t1 + (1 − t1)α t12(1 − α)

0 t1 + (1 − t1)α

)

.

Thus there exists a scalar α so that T11 + αT22 6∈ C = C1 ∪ C2 ∪ C3 ∪ C4, and
hence, by the Assertion and the inequality (2.12), one sees that

1 = dim∆(E11+αE22, (E11+αE22)
†) ≤ dim∆(T11+αT22, (T11+αT22)

†) = 0,

a contradiction. So we must have T11 ∈ C4, and

T11 =

(

t1 t12

0 t2

)

with respect to the basis {u1, u2} of K, where t1, t2 ∈ R and t12 6= 0 if
t2 = t1. Notice further that if (t1, t2) 6= (1, 0) or (0, 1), then there exists
some α ∈ C with α 6= α so that either T = T11 + αT22 or T = αT11 + T22

is not in the class C, i.e., ∆(T, T †) = {0}. However, this contradicts the
fact that dim∆(T, T †) ≥ dim ∆(A, A†) = 1, where A = E11 + αE22 or
A = αE11 + E22 respectively. Hence (t1, t2) = (1, 0) or (0, 1). Without loss
of generality, we assume that t1 = 1 and t2 = 0. Observe also that, with
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respect to this basis,

L =

(

l
√

1 − l2 eiθ

√
1 − l2 e−iθ −l

)

with l ∈ R and |l| ≤ 1. Since T †
11 = T11, there must be l2+l

√
1 − l2 eiθt12 = 1.

Hence l 6= 0 and

(2.15) T11 =

(

1
√

1−l2

l
eiθ

0 0

)

, T22 =

(

0 −
√

1−l2

l
eiθ

0 1

)

.

Also, fixing the bases {e1, e2} of H and {u1, u2} of K, we can view Φ as a
linear map from M2(C) onto itself.

Write

T12 =

(

s11 s12

s21 s22

)

.

Then

−T21 = T †
12 = LT ∗

12L =

(

r11 r12

r21 r22

)

,

where

r11 = l2s11 + l
√

1 − l2 eiθs12 + l
√

1 − l2 e−iθs21 + (1 − l2)s22,

r21 = l
√

1 − l2 e−iθs11 − l2s12 + (1 − l2)e−2iθs21 − l
√

1 − l2 e−iθs22,

r12 = l
√

1 − l2 eiθs11 + (1 − l2)e2iθs12 − l2s21 − l
√

1 − l2 eiθs22,

r22 = (1 − l2)s11 − l
√

1 − l2 eiθs12 − l
√

1 − l2 e−iθs21 + l2s22.

Substituting (2.15) and the above representation of T †
12 into the equation

T12T11 = T11T
†
12 in (2.14), we get s21 = 0 and s11 ∈ R. Since dim ∆(T12, T

†
12)

= 2, we see that also s22 ∈ R. Assume that either s11 6= 0 or s22 6= 0. Let
A = tE11 + αE22 + βE12, where t ∈ R and α, β ∈ C with α 6= α. Then
σ(Φ(A)) = {t + βs11, α + βs22}. It is clear that one can choose suitable
scalars t, α, β so that Φ(A) 6∈ C. Thus we get a contradiction that 1 =
dim∆(A, A†) ≤ dim∆(Φ(A), Φ(A)†) = 0. So there must be s11 = s22 = 0,
and consequently,

T12 =

(

0 s12

0 0

)

and

(2.16) −T21 = T †
12 =

(

l
√

1 − l2 eiθs12 (1 − l2) e2iθs12

−l2s12 −l
√

1 − l2eiθs12

)

.
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For any α, β ∈ C with α 6= α, since A = αE11 +αE22 +βE12 ∈ C3, it follows
that dim∆(A, A†) = 2 and

∆(A, A†) =

{

B =
βb12 + βb21

α − α
E11 + b12E12 + b21E21

∣

∣

∣

∣

b12, b21 ∈ C

}

.

By (2.11), Φ(∆(A, A†)) ⊆ ∆(Φ(A), Φ(A)†), so

(αT11 + αT22 + βT12)

(

βb12 + βb21

α − α
T11 + b12T12 + b21T21

)

=

(

βb12 + βb21

α − α
T11 + b12T12 + b21T21

)

(αT11 + αT22 + βT12)
†

or, equivalently,

(

α
√

1−l2

l
eiθ(α − α) + βs12

0 α

)(

w11 w12

w21 w22

)

=

(

w11 w12

w21 w22

)

·
(

α + l
√

1 − l2 eiθs12β −
√

1−l2

l
eiθ(α − α) + (1 − l2)e2iθs12β

−l2s12β α − l
√

1 − l2 eiθs12β

)

,

for all α, β, b12, b21 ∈ C with α 6= α, where

w11 =
βb12 + βb21

α − α
− l

√

1 − l2 eiθs12b21,

w12 =

√
1 − l2

l
eiθ βb12 + βb21

α − α
+ s12b12 − (1 − l2)e2iθs12b21,

w21 = l2s12b21,

w22 = l
√

1 − l2 eiθs12b21.

Thus, we obtain

(2.17) l2|s12|2 = 1.

Note that

T21 = −
(

l
√

1 − l2 eiθs12 (1 − l2)e2iθs12

−l2s12 −l
√

1 − l2 eiθs12

)

= −l2s12

(

√
1−l2

l
eiθ 1−l2

l2
e2iθ

−1 −
√

1−l2

l
eiθ

)
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is of rank one and T 2
21 = 0. For any c ∈ C, let

Ec =

(

c c2

−1 −c

)

.

Then Ec is a rank-one nilpotent matrix, and it can be easily checked by
(2.17) that

Φ(Ec) = l2s12E
( c

l2s12

+

√
1−l2

l
eiθ)

,

which is also rank-one nilpotent. Conversely, for any c ∈ C, we have

Φ((l2s12)
−1E(l2s12c−l

√
1−l2eiθs12)

) = Ec.

Note also that L is a maximal additive subgroup of rank-one nilpotent ma-
trices in M2(C) if and only if L has one of the following forms:

(i) L = CE12;
(ii) L = CE21 = CE0;
(iii) there is a nonzero number c ∈ C such that L = CEc.

Therefore the map Φ : M2(C) → M2(C) preserves rank-one nilpotent matri-
ces in both directions. By [17, Theorem 2.4], there exist a nonzero scalar c,
an invertible matrix V ∈ M2(C) and a linear map ϕ : CI → M2(C) such
that

Φ(A) = cV AV −1 + ϕ(tr(A)I)

for all A ∈ M2(C), where tr(A) denotes the trace of a matrix A. Since
Φ(I) = I, we see that ϕ(I) ∈ CI. So, there is a linear functional f on M2(C)
such that

Φ(A) = cV AV −1 + f(A)I

for all A ∈ M2(C).

We claim that f(A†) = f(A) for all A. Since Φ(A†) = Φ(A)† for all A,
we see that

c(V −1)†A†V † − cV A†V −1 = (f(A†) − f(A))I

for every A. Let S = V †V , a = c/c and h(A) = c−1(f(A) − f(A†)). Then it
follows that

aS−1AS = h(A)I + A for all A ∈ M2(C).

Considering the spectrum one observes that σ(A) = {0} implies h(A) = 0.
Regarding h as a linear functional on M2(C), the above fact shows that the
three-dimensional linear subspace sl2(C) spanned by nilpotent matrices is
contained in the kernel of h. Assume that h 6= 0; then h(A) 6= 0 whenever
tr(A) 6= 0. For any operator A0 such that σ(A0) = {0, 1}, we have {0, a} =
{h(A0), h(A0) + 1}. As h(A0) 6= 0, one sees that a = h(A0) = −1. Hence
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h(A) = − tr(A) and

S−1AS + A = tr(A)I for all A.

In particular, AS = −SA for all A with tr(A) = 0, but this would imply
that S = 0, a contradiction. Hence, h = 0 and f(A†) = f(A) for every A.

Now it is obvious that c is real and V † = αV −1 for some real number α.
We claim further that f = 0. Considering Ψ(·) = c−1V −1Φ(·)V , we may
assume that Φ has the form Φ(A) = A + g(A)I for all A, where g = c−1f .
To show g = 0, let g(Eij) = αij and Φ(I) = dI. Then αii is real for i = 1, 2,
α22 = d − 1 − α11, and α21 = −α12. Since g is linear, we need only show
that α11 = α12 = 0 and d = 1. For any α, β, b12, b21 ∈ C with α 6= α, let

A = αE11 + αE22 + βE12, B =
βb12 + βb21

α − α
E11 + b12E12 + b21E21.

Then AB = BA†. Hence (g(A) − g(A))B + g(B)(A − A†) = (g(A) −
g(A))g(B)I. It follows that

(2.18) (g(A) − g(A))b12 + g(B)β = 0

for all α, β, b12, b21 ∈ C. Notice that

g(B) =
βb12 + βb21

α − α
α11 + b12α12 − b21α12.

Let b12 = 0; from (2.18) one gets

g(B)β =

(

β2

α − α
α11 − βα12

)

b21 = 0

for all α, β, b21 ∈ C. Thus we must have α11 = α12 = 0. So g(B) = 0 and
by (2.18) again we get (g(A) − g(A))b12 = 0 for all α, b21 ∈ C with α 6= α.
Since g(A)− g(A) = (d− 1)(α−α), it follows that (1− d)(α−α)b12 = 0 for
all scalars α, b21 ∈ C with α 6= α, and consequently, d = 1. Therefore, g = 0
and Φ has the form stated in Theorem 1 as desired, completing the proof of
Subcase 1.

Remark. To show that the map Φ has the structure stated in Theo-
rem 1 in this subcase, we mention another approach by using a result in the
geometry of 2 × 2 matrices [32]. We give a sketch of proof as follows. By
(2.17), we can get det A = 0 ⇔ detΦ(A) = 0. Thus Φ preserves rank-one
matrices in both directions. Note that Φ(I) = I and Φ(A†) = Φ(A)† for every
A. Hence, by a result in the geometry of 2×2 matrices [32], either there exist
a real scalar c and a generalized indefinite unitary operator U : H → K such
that Φ(A) = cUAU † for all A; or there exist a real scalar c and a generalized
indefinite anti-unitary operator U : H → K such that Φ(A) = cUA†U † for
all A. The last form cannot occur because there are operators A, B such that
AB = BA† but A†B† 6= B†A (to see this, for example, take A = e1 ⊗ e2,
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B = e1 ⊗ e1, where e1 and e2 are unit vectors such that Je1 = e1 and
Je2 = −e2 with J as in the proof of Subcase 1). Therefore, Φ has the form
stated in Theorem 1.

Subcase 2: Both J and L are linearly dependent of the identity. In this
case, the assumption becomes AB = BA∗ ⇒ Φ(A)Φ(B) = Φ(B)Φ(A)∗ and
we may assume that J = I and L = I. It is easily checked that there exist a
real number c and a unitary operator U : H → K such that Φ(A) = cUAU∗

for all A, and Φ has the form stated in Theorem 1.

Subcase 3: J 6∈ RI and L ∈ RI. We shall show that this subcase does
not occur, that is, the assumption AB = BA† ⇒ Φ(A)Φ(B) = Φ(B)Φ(A)∗

for all A cannot be satisfied for any bijective linear map Φ. Without loss
of generality we may assume that J =

(

1 0
0 −1

)

. Taking the same symbols as

in the proof of Subcase 1, it is easily checked that T11 = Φ(E11) =
(1 0

0 0

)

and T22 = Φ(E22) = I − T11. By (2.14), we have T12T11 = T11T
∗
12 and

T 2
12 = (T ∗

12)
2. It follows from a similar argument to the proof of Subcase 1

that T12 =
(

0 s12

0 0

)

and T21 = T ∗
12. Moreover,

B =
βb12 + βb21

α − α
E11 + b12E12 + b21E21 ∈ ∆(A, A†)

with A = αE11 + αE22 + βE12 implies that

βb12 + βb21

α − α
T11 + b12T12 + b21T21 ∈ ∆(Φ(A), Φ(A)∗)

for all α, β, b12, b21 ∈ C with α 6= α. However, this will lead to a contradiction
|s12|2 = −1.

Subcase 4: J ∈ RI and L 6∈ RI. This cannot occur either. To see
this, without loss of generality, we assume that J = I. Taking the same
symbols as in Subcase 1, we see that (2.15) is still true. A similar argument

to Subcase 1 shows that T12 =
(

0 s12

0 0

)

and T †
12 has the form (2.16). Now, for

any α, β ∈ C with α 6= α and β 6= 0, let A = αE11 +αE22 +βE12. Since, for
all b12, b21 ∈ C with b12 6= 0, we have

βb12 − βb21

α − α
E11 + b12E12 + b21E21 ∈ ∆(A, A∗),

it follows that

βb12 − βb21

α − α
T11 + b12T12 + b21T21 ∈ ∆(Φ(A), Φ(A)†).

However, by taking b21 = 0, this would lead to l2|s12|2 = −1, a contradiction.

Thus, in the case dim H = 2, we have also proved that the map Φ has
the form stated in Theorem 1. Now the proof of Theorem 1 is complete.
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