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The basis property in L, of the boundary
value problem rationally dependent
on the eigenparameter

by

N. B. KErmvmov and Y. N. ALiyEV (Baku)

Abstract. We consider a Sturm—Liouville operator with boundary conditions ratio-
nally dependent on the eigenparameter. We study the basis property in Ly, of the system
of eigenfunctions corresponding to this operator. We determine the explicit form of the
biorthogonal system. Using this we establish a theorem on the minimality of the part of
the system of eigenfunctions. For the basisness in Ly we prove that the system of eigen-
functions is quadratically close to trigonometric systems. For the basisness in L, we use
F. Riesz’s theorem.

Consider the spectral problem

(0.1) —y" 4+ q(x)y = Ny, 0<z<l1,
(0.2) y(0)cos B =14'(0)sinB, 0<pB<m,
(0.3) y'(1)/y(1) = h(X),

where A is the spectral parameter, g is a real-valued and continuous function
on the interval [0, 1],

where all the coefficients are real and a > 0, by, >0, ¢1 < --- < ey, N > 0.
If h(\) = oo then (0.3) is interpreted as a Dirichlet condition y(1) = 0. If
N = 0 then there are no ¢;’s and h(\) is affine in A.

In a recent paper [1] existence and asymptotics of eigenvalues and oscil-
lation of eigenfunctions of this problem were studied. It was proved that the
eigenvalues of (0.1)—(0.3) are real, simple and form a sequence A\g < A\ < - - -
accumulating only at oo and with Ay < ¢;. Moreover, it was proved that if
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wy, is the number of zeros in (0,1) of the eigenfunction y,,, associated with
the eigenvalue A,, then w, = n — m,, where m,, is the number of points
¢; < A\p. In particular, wg = 0 and w,, = n — N when A\, > cy.

The basis properties of eigenvectors of the self-adjoint operator on Lo @
CN*L (or on Ly ® CV if a = 0), formed by the eigenfunctions of (0.1)—(0.3)
were examined in [2].

The current article concerns the basis properties in L,(0,1) (1 < p < 00)
of the system of eigenfunctions of the boundary value problem (0.1)—(0.3).

Basis properties of the boundary value problem (0.1)—(0.3) in cases where
h is affine or bilinear have been analyzed in [5], [6], [8].

A complete discussion of the basis properties in L,(0,1) (1 < p < 00) of
the boundary value problem

-y =Xy, O0<z<1,
y(0) =0, (a—N)y'(1) =bAy(1),

where a, b are positive constants, is given in [6].
The basis properties in Ly(0,1) of the boundary value problem

_y”_|_q(g;)y:)\y, <<,
boy(O) = dOy,(O)J
(anh+ b)y(1) = () + di)y (1),

where ¢ is a real-valued continuous function on [0,1] and |bg| + |do| # O,
aydy — bicp > 0, were studied in more detail in [8].

1. Minimality of the system of eigenfunctions of (0.1)—(0.3). The
following lemma will be needed:

LEMMA 1.1. Let po, b1y -5 bn,d1,ds, ..., dn be pairwise different real
numbers. Then

1 (po—di)™ -+ (po—dn)™"
L (g —di)™" o (o —dy)7!
1 (pn —dy)? (un —dn)™!
[T (wi—p) I (dj—di)
_ 0<i<j<N 1<i<j<N
I (ui—dj)
0<i<N
15N
Proof. 1t is known (see e.g. [12, Ch. VII, Prob. 3]) that
(o —do)™"  (po—d)™" -+ (po—dn)~"
(pr—do)™" (1 —d))™" -+ (m—dn)!
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[T (wi—wy) I (dj—di)

 0<i<j<N 0<i<j<N
[T (i —dy)
0<i<N
0<j<N
Consequently,
1 (pwo—di) ! (po —dn)™?
1 (o —dy)t (1 —dy)™?
1 (pn —dy)? (un —dn)~t
(o —do)™" (o —dy)™* (po —dn)~t
i g | do)T (= d)T (n1 —dn)™
dog)w ...........................................
(uy —do)™" (pn —di)™! (un —dn)™t
[T (pi—py) II (dj—di)
_ _ lim gy OSSN 0<i<j<N
do— 00 I (ui—dj)
0<i<N
0<j<N
H (Mz - MJ) H (d] - dz)
_ 0<i<j<N 1<i<j<N
I (u—dy)
0<i<N
1<j<N

This proves the lemma.

THEOREM 1.1.

(a) If a # 0 and if ko, ki1,...,kn are pairwise different nonnegative
integers then the system {yn,} (n =0,1,...;n # ko, k1,...,kn) is minimal
in Ly(0,1).

(b) If a =0 and if k1, ..., kN are pairwise different nonnegative integers
then the system {y,} (n=0,1,...; n# k1,...,kn) is minimal in L,(0,1).

Proof. (a) It suffices to show the existence of a system {u,, } biorthogonal
to {yn} (n=0,1,...; n# ko, k1,...,kn) in L, (0, 1).
Note that
d
%(yn(x)y;n(m) - ym(.%)y;(l’)) = (>‘n - )\m)ym('r)yn(m)
for 0 < x < 1. By integrating this identity from 0 to 1, we obtain

(1.1) (A = M) Y Ym) = (U (@) (2) = g (2)75, ()],

where (-, -) is the Hilbert space inner product on L2 (0, 1).
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From (0.2), we obtain

(1.2) Yn(0)¥7,(0) = ym (0)y,,(0) = 0
foralln,m =0,1,....

Let Ap, Ap, # ¢ for j =1,..., N. Then by (0.3),
(1.3)  ¥n(Dyn (1) = ym(Dyn (1) = (A(An) = h(An))ym (1)yn (1)

N
O =)0+ X e )

k=1

Now suppose that A, = ¢4 forsome s € {1,..., N}. Then by (0.3), y,,(1) = 0.
Hence

(1.4) Yn (1Y (1) = ym (Dyn (1) = =y, (1)ym (1)
for Ay, #cs (m=0,1,...).
From (1.1)—(1.4), it follows that for m # n,

| - (aJFi Z )y (Dym (1)
k=1 (An o ck)()‘m - Ck) n m
(1.5)  (Ynsym) = R

-5 CN,
Yn(Dym (1) if Ay = .
\ )\m — Cg

Let A\, # ¢ forall k =0,1,...and j = 1,...,N. We define elements of
the system {u,} (n =0,1,...;n # ko,k1,...,kn) by

Ap ko, kn (T
(16) n() = Ardzn 3]
where
yn(@)  yn()  pelr geCr o eCL
1 1 1
Uho(2)  yio(1) gl gell ... ()
(1.7) An ko,...kn (2)= v (D gy (D) v, (1) |
0 N Yk, () Yk, (1) /\:11701 /\:11702 )\k’zlﬁ
(1) (1) 1)
ykN(x) ykN(l) )%/:;V_Cl ;/:5_02 )\Z:;N_CN
N b
k
(1.9 B = P+ (0 32 52z o200
k=1 \""
0< H<N (A = )\kj) ' 1< H<N (c] —ei)
1.9 A= 2= sl (1
(1.9) T Ow o) | Yk, (1)
0<i<N OsisN
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Let us verify that (u,, Ym) =0nm (n,m=0,1,...; n,m # ko, k1,...,kn),
where d,, ,, is Kronecker’s symbol. Indeed, from (1.6) and (1.7) we have

(1.10)  (un,Ym)

7L(1) 7L(1) .,L(l)
(y’m ym) yn(l) h h . )\?i_CN
@) (1) (1)
1 (ykoa ym) Yko (1) )Z\Lj:ooicl )Z\Lj:ooic2 ca )\izoch
- 1 (1) ) (1)
Bp,A (ykl ) ym) Yk, (1) )Z\/:ll_cl )1\1:11_62 ce. )iili—czv
1) 1) (1)
Yk Ym)  Yry (1) f’:jv{cl 5:15702 . %

It is now immediate from (1.5) that for m # n the first column of the
determinant in (1.10) is a linear combination of the other columns; hence
(Un, Ym) = 0 for n # m.

Assume now that n = m in (1.10). Adding to the first column the
2nd, 3rd, ..., (N + 2)th columns multiplied respectively by

bryn (1 byyn (1
R
we obtain
B, yn(1) fn"—flc)l ;’:—Elc)z %
B O s S e B
0w O g

where we have used the definition (1.8) for B,,. Thus from Lemma 1.1 and
the definition (1.9) for A we obtain

L (A — 61)_1 (A — CN)_i
() = |1 Dm0 Qe T T =1
1 gy —c1) Moy —en) 71| 0= =N
Now consider the case where some of the numbers ¢; (j =1,...,N) are
eigenvalues of (0.1)—(0.3). In this case we define
'
(1.11) un () = —An’%;ljjv (x),

where A7 ;. (2) is a determinant of order N + 2 which we obtain from
Ap ko....kn () as follows (here we also give the definitions of B], and A’):
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L If Ay, # ¢;j (A # ¢;) for all j = 1,...,N then column ¢ + 2
(respectively, the first column) does not change.

II. If Ak, = ¢s (A, = ¢5) for some ¢ (respectively, n) and s then all
the elements in row t + 2 (respectively, in the first row) vanish, except the
first element and yg, (1)/(Ak, — ¢s) (respectively, yn(1)/(An — ¢s)); the first
element does not change but yy, (1)/(Ag, —cs) (respectively, y,(1)/(An —cs))
is replaced by —y; (1)/bs (respectively, by —y;,(1)/bs).

IIL. If \,, # ¢j for all j =1,...,N then B; = B,,.
IV. If \, = ¢, for some s € {1,..., N}, then B, = ||lyn|* + (¢, (1))2/bs.

V. A’ is the complementary minor of the upper left element of the
determinant A

For example if N =2, a # 0, A\g, = c2, A, Akys Ak, 7 €1, C2 then

yn()  ya(l) Ol gl
o (D )
, yk0<x) ka(l) )\y:oo—cl Ay:OO—C2
An,ko,k‘l,kg(x) = y;€ (1)
Y (z) 0 —=— 0
o (D) 1)
yk2<x) yk2(1) )\y:;—cl Ay:22—02
Yro (1) Yro (1)
ka(l) A:Zofcl )\:00702
A/ _ 0 _y;gés(l) 0
1 1
yo (1) bl el

>\k:o - )‘k‘g ( y;c (1)>
- e (1) - [ =22 Y,y (1)
(o — )y — ey P07, ) e
Let us prove that A" # 0. From the construction, it follows that each

row of A’ is either of the form (0,...,0, -y} (1)/bs,0,...,0) (in this case
A, = Cs) Or

(ykt(1)7ykt(]‘)/()\kt - Cl)? s 7ykt(]‘)/(Akt - CN))

(in this case Ay, # ¢;j for all j = 1,...,N). It can easily be seen from the
form of the determinant A’ and Lemma 1.1 that A’ # 0. The proof now
proceeds along the same lines as above.

This concludes the proof for the case a # 0.

(b) The case N = 0 is a classical Sturm-Liouville problem. So we can
suppose N > 1. In this case we construct a biorthogonal system {u,}
(n =0,1,...;m # k1,...,kn) as in part (a) with obvious modifications.
In particular, we obtain the corresponding determinants A, x, .. xy () and
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A’n,k1 ,,,,, ry (2) of degree N + 1 from A, g, . xy(z) and A’n,kO
deleting the second row and second column.
The proof of Theorem 1.1 is complete.

-----

2. Basisness in L,(0,1) of the system of eigenfunctions of the
boundary value problem (0.1)—(0.3)

THEOREM 2.1.

(a) If a # 0 and if ko, k1, ..., kn are pairwise different nonnegative in-
tegers then the system {y,} (n =0,1,...;n # ko,k1,...,kn) is a basis of
L,(0,1) (1 < p < o0); moreover if p =2 then this basis is unconditional.

(b) If a =0 and if k1, ..., kN are pairwise different nonnegative integers
then the system {yn} (n = 0,1,...;n # k1,...,kn) is a basis of L,(0,1)
(1 < p < o0); moreover if p =2 then this basis is unconditional.

Proof. Tt was proved in [1] that
An = (m(n+v))* + O(1),

where
—-1/2—N ifa#0,8#0,
_N, ifa£0,3=0,
(2.1) v= ifaz0,5
—N, ifa=0,8+#0,

1/2— N, ifa=0,6=0.
This gives, for sufficiently large n,
(2.2) VA, =m(n+v)+0(1/n).

Denote by 91 (z, 1u) and 1s(z, 1) a fundamental system of solutions of
the differential equation u” — q(x)u + p?u = 0, with initial conditions

It is well known (see [9] or [11, Ch. II, §4.5]) that for sufficiently large u,
(2.5) ¥j(x, p) = exp(pw;z)(1+0(1/p) (1 =1,2),
where w; = —wy = 1.
We seek the eigenfunction ¥, corresponding to the eigenvalue A,, in the
form
_ ’(/11(1‘, V )\n) "7[)2(1‘7 V >\n)
(2.6) Yn(z) = Py :
Ulhr(z, vV An))  UlWa(z, v An))
where
(iv2)~* if =0,
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and

(2.8) U(ip(x)) = (0) cos § — 9'(0) sin 3,
for any ¢ € C[0,1]. From (2.1)—(2.8) we easily obtain

V2cos(n —1/2 — N)mz +O(1/n) ifa#0, 8 #0,
) V2sin(n — )7r:1:—|—0(1/n) ifa#0,5=0,
29) yala) = V2cos(n — N)mx + O(1/n) ifa=0,8#0,

V2sin(n +1/2 — N)rz + O(1/n) ifa=0,3=0.
From now on we shall give the details only for the case a # 0, 8 # 0. We
define the elements of the system {p,} (n =0,1,...; n # ko, k1,...,kn) as

follows:

(z) = { V2cos(jn, — 1/2)mx (n=0,1,....k* n# ko, k1,...,kn),
o V2cos(n —1/2 — N)rx (n=Fk* +1,k*+2,...),
where k* = max(ko,...,kn), and {j,} (n =0,1,...,k*;n # ko,..., kn) is
an increasing (k* — N)-term sequence of numbers from {1,...,k* — N}. It is
obvious that this system is identical to the system {v/2cos(n —1/2— N)rz}
(n=N+1,N +2,...), which is a basis of L,(0,1), and in particular, an
orthonormal basis of L3(0,1) (see for example [10]).

Let [|-||, denote the norm in L, (0,1).

Firstly we prove that the system {y,} (n =0,1,...; n # ko,...,kn) is
an unconditional basis of Ly(0,1). For this we compare the system

(210) {yn} (n:O,l,,n#ko,kl,,kN)
with {¢n} (n =0,1,...; n # ko, k1,...,kn). From (2.9) it follows that for
sufficiently large n,

[9n — @nlly < const/n.

Therefore the series
o0

S lya—eall;

n=0; n#ko,....,kN

is convergent. Hence in this case the system (2.10) is quadratically close to
{en} (n = 0,1,...;n # ko,k1,...,kn), which is an orthonormal basis of
L4(0,1) as mentioned above. Since the system (2.10) is minimal in L9(0, 1),
our claim is established for p = 2 (see [4, Sect. 9.9.8 of the Russian transla-
tion]).

For the remaining part of the theorem the following asymptotic formula
will be needed:

(2.11) Un () = yn(z) + O(1/n),

for sufficiently large n.
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It follows from (2.9) that
(2.12) [ynlly = 1+ 0(1/n),
(2.13) yn(1) = O(1/n).
Let A\, #cjforalln =0,1,...and j =1,..., N. For this case the system

{up} (n =0,1,...;n # ko, k1,...,kn) is defined by (1.6)—(1.9). Then by
(1.8), (2.12) and (2.13),

(2.14) B, =1+ 0(1/n).

Expanding the determinant (1.7) along the first row and taking into
account that all elements in other rows are either bounded functions or
fixed real numbers, we deduce from (1.6)—(1.9), (2.13) and (2.14) that the
formula (2.11) is true.

The case in which some of the numbers ¢; (j =1,..., N) are eigenvalues
of the boundary value problem (0.1)—(0.3) can be treated in a similar way.
In this case for the proof of (2.11) we use the corresponding representations
for the functions {u,} (n =0,1,...; n # ko, k1, ..., kn) for sufficiently large
n (see I-III, V from the previous section).

The asymptotic formulas

(2.15) Yn(z) = @n(x) + O(1/n),

(2.16) un () = pn(z) + 0(1/n),

are also valid for sufficiently large n. This follows immediately from (2.9)
and (2.11).

We are now ready to prove our claim for p # 2. Let 1 < p < 2 be fixed.
It was seen above that the system (2.10) is a basis of L3(0,1). Thus this
system is complete in L,(0,1). Hence, for basisness in L, (0, 1) of the system
(2.10) it is sufficient to show the existence of a constant M > 0 such that

) || Y Gwdw| <Mofl, @=12.0)

for all f € L,(0,1) (see [7, Ch. I, §4]).
By (2.15) and (2.16),

T
< H > (fen)en

T
CAT) I (D S VS

n=1;n#ko,....,kN p n=1;n#ko,....,kN p
T T
Y Gwoam|| < > woa/m)e.
n=1;n#ko,....kNn p n=1;n#ko,....,kN p

We shall now prove that all the summands on the right hand side of (2.18)
are bounded from above by const -|| f|[ ..
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Since {¢,} (n =0,1,...;n # ko, k1,...,kn) is a basis of L,(0,1), we
have

< const || f||s

(2.19) H ZT: (f,en)en ,

n=1; n#ko,....kn

for all f € L,(0,1) (see [7, Ch. I, §4]). Applying Holder’s and Minkowski’s
inequalities, and (2.16), we obtain

T T
1
(2.20) H S (f,un)O(l/n)H Scomst- > [(fiun)l
n=1;n#ko,....,kN p n=1;n#ko,...,kNn
T 1/q T 1 1/p
comt( Y gwr) (Y 2
n=1;n#ko,....kn n=1;n#ko,....kn n
T 1/q
<const-[( X I(fenl?)

n=1;n#ko,....kN

(> wwoame).

where 1/p+1/q = 1.

Note that {p,} (n = 0,1,...;n # ko,k1,...,kn) is an orthonormal
uniformly bounded function system. Thus by F. Riesz’s theorem (see [13,
Ch. XII, Theorem 2.8]),

T

(221) (X Genr) " < constel .

n=1;n#ko,....,kN

Using the well known fact (see e.g. [3, Sect. 2.2.4]) that ||f||, is a non-
decreasing function of p, we have

T 1/q
2 (X loam)

T 1 1/q
< const -|| f]|1 - <Z n_> < const - || fl -

Similarly, for the third summand of (2.18), using Parseval’s equality we
have

(223) | i (;00/m)en|
s n#k
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(Y woump)”

n=1;n#ko,....kn

T o\/2
< const || f1]1 - <Z $> < const || f1|-
n=1

Finally, (2.17) follows from (2.18)—(2.23). Hence the system (2.10) is a
basis of L,(0,1) (1 <p < 2).

Let 2 < p < 0. It is obvious that the system {u,} (n =0,1,...;n #
ko,k1,...,kn) is a basis of L,(0,1). Therefore this system is complete in
L,(0,1), where 1/p+1/q = 1. Note that 1 < ¢ < 2.

Using the same kind of argument, one can prove that {u,} (n =0,1,...;
n # ko, k1,...,kn) is a basis of Ly(0,1). It follows that (2.10) is a basis of
L,(0,1) (2 <p < 00).

The proofs for the cases a #0, 6 =0;a =0, 6#0;a =0, =0 are
similar if we note the fact that each of the systems

{V2sin(n — N)zrz} m=N+1,N+2,...),
{V2cos(n — N)rx} (n=N,N+1,...),
{V2sin(n +1/2 = N)nz} (n=N,N+1,...),

is a basis of L,(0,1) (1 < p < 00), and in particular, an orthonormal basis
of Ly(0,1) (see e.g. [10]).
The proof of Theorem 2.1 is complete.
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