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A remark on separate holomorphy

by

Marek Jarnicki (Kraków) and Peter Pflug (Oldenburg)

Abstract. Let X be a Riemann domain over Ck×Cl. If X is a domain of holomorphy
with respect to a family F ⊂ O(X), then there exists a pluripolar set P ⊂ Ck such that
every slice Xa of X with a /∈ P is a region of holomorphy with respect to the family
{f |Xa

: f ∈ F}.

1. Introduction: Riemann regions of holomorphy. Let (X, p) be
a Riemann region over Cn, i.e. X is an n-dimensional complex manifold
and p : X → Cn is a locally biholomorphic mapping (see [Jar-Pfl 2000] for
details). If X is connected, then (X, p) is said to be a Riemann domain.
We say that two Riemann regions (X, p) and (Y, q) over Cn are isomorphic

(written (X, p)≃ (Y, q)) if there exists a biholomorphic mapping ϕ :X →Y
such that q ◦ ϕ = p. Throughout, isomorphic Riemann regions will be iden-
tified.

We say that an open set U ⊂ X is univalent (schlicht) if p|U is injective.
Note that X is univalent iff (X, p) ≃ (Ω, idΩ), where Ω is an open set in Cn.

Let f ∈ O(X). For any α ∈ Zn
+ (Z+ stands for the set of non-negative

integers) and x0 ∈ X, let Dαf(x0) denote the α-partial derivative of f at x0,

Dαf(x0) := Dα(f ◦ (p|U )−1)(p(x0)),

where U is an open univalent neighborhood of x0 and Dα on the right hand
side means the standard α-partial derivative operator in Cn. Let Tx0

f denote
the Taylor series of f at x0, i.e. the formal power series

∑

α∈Zn
+

1

α!
Dαf(x0)(z − p(x0))

α, z ∈ Cn.

For x0 ∈ X and 0 < r ≤ ∞ let PX(x0, r) denote an open univalent
neighborhood of x0 such that p(PX(x0, r)) = P(p(x0), r) = the polydisc
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with center at p(x0) and radius r. Let dX(x0) denote the maximal r such
that PX(x0, r) exists. Put PX(x0) := PX(x0, dX(x0)).

For f ∈ O(X) and x0 ∈ X, let d(Tx0
f) denote the radius of convergence

of Tx0
f , i.e.

d(Tx0
f) := sup{r > 0 : the series Tx0

f is convergent in P(p(x0), r)}.

Obviously, d(Tx0
f) ≥ dX(x0) and f(x) = Tx0

f(p(x)), x ∈ PX(x0). Notice
that

1

d(Tx0
f)

= lim sup
ν→∞

(
max

α∈Zn
+

: |α|=ν

1

α!
|Dαf(x0)|

)1/ν

.

From now on we assume that all Riemann regions considered are count-
able at infinity.

Let ∅ 6= F ⊂ O(X). We say that (X, p) is an F-region of existence if

dX(x) = inf{d(Txf) : f ∈ F}, x ∈ X.

We say that an F -region of existence (X, p) is an F-region of holomorphy

if F weakly separates points in X, i.e. for any x′, x′′ ∈ X with x′ 6= x′′ and
p(x′) = p(x′′), there exists an f ∈ F such that Tx′f 6= Tx′′f (as formal power
series).

Remark 1.1 (Properties of regions of holomorphy). (a) Let (X, p) be
an F -region of holomorphy and let U ⊂ X be a univalent domain for which
there exists a domain V ⊃ p(U) such that for every f ∈ F there exists a
function Ff ∈ O(V ) such that Ff = f ◦ (p|U )−1 on p(U). Then there exists
a univalent domain W ⊃ U with p(W ) = V .

Indeed, we only need to observe that we may always assume that (X, p) is
realized as an open subset of the sheaf of F -germs of holomorphic functions
(cf. [Jar-Pfl 2000, proof of Theorem 1.8.4]) and, consequently, we may put

W := {[(D, (Ff )f∈F )] z
∼

: z ∈ V }

(cf. [Jar-Pfl 2000, Example 1.6.6]).

(b) ([Jar-Pfl 2000, Proposition 1.8.10]) Let A ⊂ X be a dense subset
such that A = p−1(p(A)). Then the following conditions are equivalent:

(i) (X, p) is an F -region of holomorphy;
(ii) dX(x) = inf{d(Txf) : f ∈ F}, x ∈ A, and for any x′, x′′ ∈ A

with x′ 6= x′′ and p(x′) = p(x′′), there exists an f ∈ F such that
Tx′f 6= Tx′′f .

(c) If (X, p) is an F -region of holomorphy, then there exists a finite or
countable subfamily F0 ⊂ F such that (X, p) is an F0-region of holomorphy.

Indeed, we may assume that X is connected. The case where (X, p) ≃
(Cn, idCn) is trivial. Thus assume that dX(x) < ∞, x ∈ X. Let A ⊂ X be
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a countable dense subset such that A = p−1(p(A)). By (b), for any x ∈ A
and r > dX(x) there exists an fx,r ∈ F such that d(Txfx,r) < r, and for
x′, x′′ ∈ A with x′ 6= x′′ and p(x′) = p(x′′), there exists an fx′,x′′ ∈ F such
that Tx′fx′,x′′ 6= Tx′′fx′,x′′ . Now, we may take

F0 := {fx,r : x ∈ A, Q ∋ r > dX(x)}

∪ {fx′,x′′ : x′, x′′ ∈ A, x′ 6= x′′, p(x′) = p(x′′)}.

2. Main results: separate holomorphy. Let (X, p) be a Riemann
domain over Cn = Ck × Cl,

p = (u, v) : X → Ck × Cl.

Put D := p(X), Dk := u(X), Dl := v(X). For a ∈ Dk define Xa := u−1(a),
pa := v|Xa . Similarly, for b ∈ Dl, put Xb := v−1(b), pb := u|Xb .

Remark 2.1. For every a ∈ Dk, (Xa, pa) is a Riemann region over Cl,
countable at infinity.

Let ∅ 6= F ⊂ O(X). For a ∈ Dk define fa := f |Xa , Fa := {fa : f ∈ F} ⊂
O(Xa), and analogously, f b := f |Xb , F b := {f b : f ∈ F} ⊂ O(Xb), b ∈ Dl.

The main result of the paper is the following

Theorem 2.2.

(a) Let ∅ 6= F ⊂ O(X) and assume that (X, p) is an F-domain of

holomorphy. Then there exists a pluripolar set Sk ⊂ Dk such that

for every a ∈ Dk \ Sk, (Xa, pa) is an Fa-region of holomorphy.

(b) Assume that (X, p) ≃ (D, idD), where D ⊂ Ck × Cl is a fat domain

(i.e. D = intD) and there exist sets Sk ⊂ Dk, Sl ⊂ Dl such that :

• intSk = ∅, intSl = ∅,
• for any a ∈ Dk \ Sk, Da is an Fa-region of holomorphy ,
• for any b ∈ Dl \ Sl, Db is an F b-region of holomorphy.

Then D is an F-domain of holomorphy.

Proof. (a) By Remark 1.1(c), we may assume that F is finite or count-
able.

Step 1. There exists a pluripolar set P ⊂ Dk such that for any a ∈
Dk \ P, (Xa, pa) is an Fa-region of existence.

Define Rf,b(x) := d(Txfu(x)), f ∈ F , b ∈ Dl, x ∈ Xb. Recall that

1

Rf,b(x)
= lim sup

ν→∞

(
max

β∈Zl
+

: |β|=ν

1

β!
|D(0,β)f(x)|

)1/ν

, x ∈ Xb.
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Obviously, Rf,b(x) ≥ dX(x), x ∈ Xb. By the Cauchy inequalities, we get

1

β!
|D(0,β)f(x)| ≤

supPX(x0,r) |f |

r|β|
,

0 < r < dX(x0), x ∈ PX(x0, r/2), β ∈ Zl
+.

Consequently, the function −log (Rf,b)∗ (where ∗ denotes the lower semicon-
tinuous regularization on Xb) is plurisubharmonic on Xb. Put

Pf,b := u({x ∈ Xb : (Rf,b)∗(x) < Rf,b(x)}) ⊂ Dk.

It is known that Pf,b is pluripolar (cf. [Jar-Pfl 2000, Theorem 2.1.41(b)]).
Put

Rb := inf
f∈F

Rf,b, R̂b := inf
f∈F

(Rf,b)∗.

Observe that −log (R̂b)∗ is plurisubharmonic on Xb. Put

Pb := u({x ∈ Xb : (R̂b)∗(x) < R̂b(x)}) ⊂ Dk.

The set Pb is also pluripolar (cf. [Jar-Pfl 2000, Theorem 2.1.41(a)]). Now let
B ⊂ Dl be a dense countable set. Define

P :=
( ⋃

f∈F , b∈B

Pf,b

)
∪

( ⋃

b∈B

Pb

)
⊂ Dk.

Then P is pluripolar.

Take an a ∈ Dk\P and suppose that Xa is not an Fa-region of existence.
Then there exist a point x0 ∈ Xa and a number r > dXa(x0) such that
b := v(x0) ∈ B and Rb(x0) > r. Since a /∈ P , we have

(R̂b)∗(x0) = R̂b(x0) = inf
f∈F

(Rf,b)∗ = inf
f∈F

Rf,b = Rb(x0) > r.

In particular, there exists 0 < ε < dX(x0) such that (R̂b)∗(x) > r for
x ∈ PXb(x0). Since

Rb(x) = inf
f∈F

Rf,b(x) ≥ inf
f∈F

(Rf,b)∗(x) = R̂b(x) ≥ (R̂b)∗(x),

we conclude that Rb(x) > r for x ∈ PXb(x0). Put U := PX(x0, ε). Hence, by
the classical Hartogs lemma, for every f ∈ F , the function f◦(p|U )−1 extends
holomorphically to V := P(a, ε) × P(b, r). Since (X, p) is an F -domain of
holomorphy, by Remark 1.1(a), there exists a univalent domain W ⊂ X,
U ⊂ W , such that p(W ) = V . In particular, dXa(x0) ≥ r, a contradiction.

Step 2. There exists a pluripolar set P ⊂ Dk such that for any a ∈
Dk \ P the family Fa weakly separates points in Xa.

Take a ∈ Dk, x′, x′′ ∈ Xa with x′ 6= x′′ and pa(x
′) = pa(x

′′) =: b. Since F
weakly separates points in X, there exists an f ∈ F such that Tx′f 6= Tx′′f .
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Put r := min{d(Tx′f), d(Tx′′f)} and let

Pa,x′,x′′ :=
⋂

w∈P(b,r)

{z ∈ P(a, r) : Tx′f(z, w) = Tx′′f(z, w)}.

Then Pa,x′,x′′  P(a, r) is an analytic subset. For any z ∈ P(a, r) \ Pa,x′,x′′

we have Tx′f(z, ·) 6≡ Tx′′f(z, ·) on P(b, r).

Take a countable dense set A ⊂ Dk. For any a ∈ A let Ba ⊂ Xa be a
countable dense subset such that p−1

a (pa(Ba)) = Ba. Then

P :=
⋃

a∈A, x′,x′′∈Ba

x′ 6=x′′, pa(x′)=pa(x′′)

Pa,x′,x′′

is a pluripolar set.

Fix a0 ∈ Dk \P , x′
0, x

′′
0 ∈ Xa0

with x′
0 6= x′′

0 and pa0
(x′

0) = pa0
(x′′

0) =: b0.
Put r := min{dX(x′

0), dX(x′′
0)}. Let a ∈ A ∩ P(a0, r/2) and x′, x′′ ∈ Ba be

such that x′ ∈ PX(x′
0, r/2), x′′ ∈ PX(x′′

0, r/2) and pa(x
′) = pa(x

′′). Since
a0 /∈ P , we conclude that Tx′f(a0, ·) 6≡ Tx′′f(a0, ·) on P(b0, r/2). Conse-
quently, Tx′

0
f(a0, ·) 6≡ Tx′′

0
f(a0, ·) on P(b0, r/2), which implies that Tx′

0
fa0

6= Tx′′

0
fa0

.

(b) Suppose there exist x0 = (a0, b0) ∈ G and r > dD(x0) =: r0 such that
d(Tx0

f) ≥ r for f ∈ F . Then d(Tb0fa) ≥ r for any f ∈ F and a ∈ P(a0, r0).
Consequently, (P(a0, r0) \ Sk) × P(b0, r) ⊂ D. Since intSk = ∅ and D is fat,
we conclude that P(a0, r0) × P(b0, r) ⊂ D. Now, we see that d(Ta0

f b) ≥ r
for any f ∈ F and b ∈ P(b0, r). Consequently, P(a0, r)× (P(b0, r) \ Sl) ⊂ D.
Hence P(a0, r) × P(b0, r) ⊂ D, a contradiction.

Remark 2.3. The following natural question arises from the discussion
above: is it possible to sharpen Theorem 2.2(a) so that the exceptional
set there is even a countable union of locally analytic sets? The following
example will show that the answer is, in general, negative.

Let C1 ⊂ D (the unit disc) be a compact polar set which is uncountable
(take, for example, an appropriate Cantor set). Define C := C1 ∪C2, where
C2 := D ∩Q2. Then C is polar and a countable union of compact sets.

Using Example 2 from [Ter 1972], we find a function f : D×D→ C with
the following properties:

• f(·, w) ∈ O(D) for all w ∈ D,
• f(z, ·) ∈ O(D) for all z ∈ C,
• f is unbounded near some point (z0, 0) ∈ D× D.

Using the corollary to Lemma 8 of [Ter 1972], we conclude that there is
a non-empty domain V ⊂⊂ D such that f |D×V ∈ O(D × V ). Set F :=
{f |D×V , g|D×V }, where g ∈ O(D× D) is chosen in such a way that D× D is
the existence domain of g. Denote by (D′, p) the F -envelope of holomorphy
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of D×V . Then p(D′) ⊂ D×D. Moreover, using the fact that C is dense in D
one sees that D′ is univalent. Indeed, let us take a sequence Gj = G′

j ×G′′
j ⊂

D×D, j = 1, . . . , N , of bidiscs, Gj∩Gj+1 6= ∅, and functions fj ∈ O(Gj), j =
1, . . . , N , such that G1 ⊂ D× V , f1 = f |G1

, and fj |Gj∩Gj+1
= fj+1|Gj∩Gj+1

,
j = 1, . . . , N − 1. We claim that then fN = f |GN

, which implies that D′ is
univalent. By induction we may assume that fj = f |Gj

for a j < N . Then
for any point a ∈ C ∩ G′

j ∩ G′
j+1 we have two holomorphic functions f(a, ·)

and fj+1(a, ·) on G′′
j+1. They coincide on G′′

j ∩ G′′
j+1, and so on G′′

j+1. Now
fix a b ∈ G′′

j+1. Then f(·, b) and fj+1(·, b) are holomorphic in G′
j+1 and they

coincide on C ∩G′
j ∩G′

j+1; hence they are equal on G′′
j+1, i.e. f |Gj+1

= fj+1.

Set D := p(D′). Then D is an F̂ -domain of holomorphy, where

F̂ := {ĝ := g|D, f̂ := f |D}.

Observe that for any a ∈ C, the functions f̂(a, ·), ĝ(a, ·) extend to the whole
of D.

Fix R′ < R ∈ (0, 1) such that V ⊂⊂ P(0, R′). Suppose that there is an
a0 ∈ C with {a0} × P(0, R) ⊂ D. Then there is a small open neighborhood
U ⊂ D of a0 such that U × P(0, R′) ⊂ D. In view of the Hartogs lemma we
conclude that f is holomorphic on D×P(0, R′), in particular a holomorphic
extension of f |D×V , and therefore bounded near (z0, 0), a contradiction.
Thus, the singular set S1 for D must contain C.

Remark 2.4. Observe that Theorem 2.2(b) need not be true if D is
not fat. For example, let D := D2 \ {(0, 0)} ⊂ C2, F := O(D). By the
Hartogs extension theorem, any function from F extends holomorphically
to D2. Thus D is not an F -domain of holomorphy. Observe that for any
a ∈ D \ {0}, Da = D and Fa = O(D). Similarly, for any b ∈ D \ {0}, Db = D

and F b = O(D).

3. Applications: separately holomorphic functions. Directly from
Theorem 2.2 we get the following useful corollary.

Corollary 3.1. Let D ⊂ Ck × Cl be a domain, let ∅ 6= F ⊂ O(D)
and let A ⊂ prCk(D). Assume that for any a ∈ A we are given a domain

G(a) ⊃ Da in Cl such that :

• for any f ∈ F , the function f(a, ·) extends to an f̂a ∈ O(G(a)),

• the domain G(a) is an {f̂a : f ∈ F}-domain of holomorphy.

Let (X, p) be the F-envelope of holomorphy of D. Then there exists a pluripo-

lar set P ⊂ A such that for every a ∈ A\P we have (Xa, pa) ≃ (G(a), idG(a)).

Recall a version of the cross theorem for separately holomorphic func-
tions with pluripolar singularities (cf. [Jar-Pfl 2003, Main Theorem]).
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Theorem 3.2. Let D ⊂ Ck, G ⊂ Cl be domains of holomorphy and let

A ⊂ D, B ⊂ G be locally pluriregular sets (1). Consider the cross

X = X(A, B; D, G) := (A × G) ∩ (D × B)

and let

X̂ = X̂(A, B; D, G) := {(z, w) ∈ D × G : ωA,D(z) + ωB,G(w) < 1},

where ωA,D and ωB,G are generalized relative extremal functions. Let M ⊂ X
be a relatively closed set (2) such that :

• for every a ∈ A the fiber Ma := {w ∈ G : (a, w) ∈ M} is pluripolar ,
• for every b ∈ B the fiber M b := {z ∈ D : (z, b) ∈ M} is pluripolar.

Let F = Os(X \ M) denote the set of all functions separately holomorphic
on X \ M , i.e. of those functions f : X \ M → C for which:

• for every a ∈ A, f(a, ·) ∈ O(G \ Ma),
• for every b ∈ A, f(·, b) ∈ O(D \ M b).

Then there exists a relatively closed pluripolar set S ⊂ X̂ such that :

• S ∩ X ⊂ M ,
• for every f ∈ F there exists an f̂ ∈ O(X̂ \ S) with f̂ = f on X \ M ,

• X̂ \ S is an {f̂ : f ∈ F}-domain of holomorphy.

In the proof presented in [Jar-Pfl 2003] the assumption that M is rela-
tively closed in X played an important role. Observe that from the point of
view of the formulation of the above theorem, we only need to assume that
all the fibers Ma and M b are relatively closed. Corollary 3.1 permits us to
clarify this problem in certain cases.

Lemma 3.3. Let D ⊂ Ck, G0 ⊂ G ⊂ Cl be domains of holomorphy

and let A ⊂ D. Assume that for every a ∈ A we are given a relatively

closed pluripolar set M(a) ⊂ G. Let F denote the set of all functions f ∈
O(D × G0) such that for every a ∈ A, the function f(a, ·) extends to an

f̂a ∈ O(G \ M(a)). Assume that for every a ∈ A the set M(a) is singular

with respect to the family {f̂a : f ∈ F} (3). Then there exists a pluripolar

(1) A non-empty set A is said to be locally pluriregular if for any a ∈ A, the set A is
locally pluriregular at a, i.e. for any open neighborhood U of a we have h∗

A∩U,U (a) = 0,
where hA∩U,U denotes the relative extremal function of A∩U in U . For an arbitrary set A
define A∗ := {a ∈ A : A is locally pluriregular at a}. It is known that the set Z := A \A∗

is pluripolar. In particular, if A is non-pluripolar, then A \ Z is locally pluriregular.

(2) That is, M is closed in X.

(3) Recall that a relatively closed pluripolar set M ⊂ G is said to be singular with
respect to a family ∅ 6= G ⊂ O(G \ M) if there is no point a ∈ M which has an open
neighborhood U ⊂ G such that every function from G extends holomorphically to U
(cf. [Jar-Pfl 2000, §3.4]).
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set P ⊂ A such that if we put A0 := A \ P , then the set

M(A0) :=
⋃

a∈A0

{a} × M(a)

is relatively closed in A0 × G.

Proof. First observe that every function from O(G) may be regarded as
an element of F , which implies that for every a ∈ A the domain G(a) :=

G \ M(a) is a {f̂a : f ∈ F}-domain of holomorphy.

Let (X, p) be the F -envelope of holomorphy of D × G0. Since D and G
are domains of holomorphy, we may assume that p(X) ⊂ D × G.

By Corollary 3.1, there exists a pluripolar set P ⊂ A such that for every
a ∈ A0 := A\P we have (Xa, pa) ≃ (G(a), idG(a)). Thus p is injective on the

set B := p−1(A0 × G) and p(B) =
⋃

a∈A0
{a} × G(a) = (A0 × G) \ M(A0).

Hence p(B) = p(X) ∩ (A0 × G) and, consequently, p(B) is relatively open
in A0 × G.

Consequently, we get the following generalization of Theorem 3.2.

Theorem 3.4. Let D0 ⊂ D ⊂ Ck, G0 ⊂ G ⊂ Cl be domains of holo-

morphy and let A ⊂ D0, B ⊂ G0 be non-pluripolar sets. Let M ⊂ X :=
X(A, B; D, G) be such that :

• for every a ∈ A the fiber Ma is a closed pluripolar subset of G,
• for every b ∈ B the fiber M b is a closed pluripolar subset of D.

Let F denote the set of all functions f ∈ O(D0 × G0) such that :

• for every a ∈ A the function f(a, ·) extends holomorphically to G\Ma,
• for every b ∈ A the function f(·, b) extends holomorphically to D\M b.

Then there exist :

• pluripolar sets P ⊂ A, Q ⊂ B such that the sets A0 := A \ P and

B0 := B \ Q are locally pluriregular ,

• a relatively closed pluripolar set S ⊂ X̂0 := X̂(A0, B0; D, G)

such that :

• S ∩ X(A0, B0; D, G) ⊂ M ,

• for every f ∈ F there exists an f̂ ∈ O(X̂0 \S) with f̂ = f on D0×G0,

• X̂0 \ S is an {f̂ : f ∈ F}-domain of holomorphy.

Remark 3.5. More general versions of the cross theorem (also for N -fold
crosses) will be discussed in our forthcoming paper.
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