Hypercyclic sequences of operators

by

FERNANDO LEÓN-SAAVEDRA (Cádiz) and VLADIMÍR MÜLLER (Praha)

Abstract. A sequence (T_n) of bounded linear operators between Banach spaces X, Y is said to be hypercyclic if there exists a vector $x \in X$ such that the orbit $\{T_n x\}$ is dense in Y. The paper gives a survey of various conditions that imply the hypercyclicity of (T_n) and studies relations among them. The particular case of X = Y and mutually commuting operators T_n is analyzed. This includes the most interesting cases (T^n) and $(\lambda_n T^n)$ where T is a fixed operator and λ_n are complex numbers. We also study when a sequence of operators has a large (either dense or closed infinite-dimensional) manifold consisting of hypercyclic vectors.

I. Introduction. Let X and Y be separable Banach spaces. Denote by B(X, Y) the set of all bounded linear operators from X to Y. Let $(T_n) \subset B(X, Y)$ be a sequence of operators. A vector $x \in X$ is called *hypercyclic* for (T_n) if the set $\{T_nx\}$ is dense in Y. The sequence (T_n) is called *hypercyclic* if there is at least one vector hypercyclic for (T_n) . We say that an operator $T: X \to X$ is *hypercyclic* if the sequence (T^n) of its iterates is hypercyclic.

Similarly, an operator T is said to be *supercyclic* if there exists a vector $x \in X$ such that the set $\{\lambda T^n x : \lambda \in \mathbb{C}, n \in \mathbb{N}\}$ is dense; the vector x with this property is called *supercyclic for* T.

Usually it is not easy to verify whether a sequence (T_n) is hypercyclic or not. There are many criteria that have been studied by a number of authors that imply the hypercyclicity of (T_n) (see e.g. [K], [GS], [BG], [BP]). In the second section we give a survey of various conditions implying the hypercyclicity and study relations among them. A number of illustrative examples are given.

The third section concentrates on the situation when Y = X and the operators $T_n: X \to X$ are mutually commuting. The relations among vari-

The first-named author partially supported by Junta de Andalucía FQM-257.

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A16; Secondary 47A53.

Key words and phrases: hypercyclic sequences, hypercyclic vectors, supercyclic vectors, hypercyclic subspaces, essential minimum modulus.

The second-named author supported by the grant No. 201/03/0041 of GA CR.

ous conditions are much simpler in this case. The following section studies the case when $T_n = S_1 \cdots S_n$ where $S_j : X \to X$ are mutually commuting. This includes the most interesting cases (T^n) and $(\lambda_n T^n)$ where T is a fixed operator and λ_n complex numbers.

Sequences of operators with "many hypercyclic vectors" are very important in hypercyclicity theory. The interest in them (especially in the cases of (T^n) and $(\lambda_n T^n)$) arises from the invariant subspace/subset problem.

There are two research lines in the literature. The first one, which was initiated by B. Beauzamy [Bea] and continued in [G], [GS], [He], [Bo], [B], [BC] and recently [Gri], studies the existence of dense manifolds consisting of hypercyclic vectors. The second, more recent, line studies the existence of closed infinite-dimensional subspaces all of whose nonzero elements are hypercyclic; see [Mo], [LMo], [GLM] and recently [BMP]. The questions of this type are studied in Section V below.

II. Hypercyclicity of sequences of operators. Let X, Y be separable Banach spaces and let $(T_n) \subset B(X, Y)$ be a sequence of operators. It is well known that the set of all hypercyclic vectors for (T_n) is a G_{δ} set. Indeed, $x \in X$ is hypercyclic for (T_n) if and only if $x \in \bigcap_U \bigcup_{n \in \mathbb{N}} T_n^{-1}U$, where U runs over a countable base of open subsets of Y; it is clear that $\bigcup_{n \in \mathbb{N}} T_n^{-1}U$ is open for each U.

LEMMA 1 ([GS]). Let $(T_n) \subset B(X, Y)$ be a sequence of operators. The following conditions are equivalent:

- (i) (T_n) has a dense subset of hypercyclic vectors;
- (ii) the set of all hypercyclic vectors for (T_n) is residual (i.e., its complement is of the first category);
- (iii) for all nonempty open subsets $U \subset X$, $V \subset Y$ there exists $n \in \mathbb{N}$ such that $T_n U \cap V \neq \emptyset$;
- (iv) for all $x \in X$, $y \in Y$ and $\varepsilon > 0$ there exist $n \in \mathbb{N}$ and $u \in X$ such that $||u x|| < \varepsilon$ and $||T_n u y|| < \varepsilon$.

Denote by B_X the closed unit ball in a Banach space X. The most practical criteria of hypercyclicity are the following two:

DEFINITION 2. We say that a sequence $(T_n) \subset B(X, Y)$ satisfies *condi*tion (C) if there exist an increasing sequence (n_k) of positive integers and a dense subset $X_0 \subset X$ such that

- (i) $\lim_{k \to \infty} T_{n_k} x = 0 \ (x \in X_0);$
- (ii) $\bigcup_k T_{n_k} B_X$ is dense in Y.

The second condition is similar:

DEFINITION 3. We say that a sequence $(T_n) \subset B(X, Y)$ satisfies *condi*tion (C_{fin}) if there exist an increasing sequence (n_k) of positive integers and a dense subset $X_0 \subset X$ such that

(i)
$$\lim_{k \to \infty} T_{n_k} x = 0 \ (x \in X_0);$$

(ii) $\bigcup_k (\underbrace{T_{n_k} B_X \oplus \cdots \oplus T_{n_k} B_X}_{j})$ is dense in $\underbrace{Y \oplus \cdots \oplus Y}_{j}$ for all $j \in \mathbb{N}$

Clearly, condition (C_{fin}) implies (C). Condition (C) is the weakest known property which can be practically used to show the hypercyclicity of a sequence (T_n). Moreover, it implies the existence of a dense (and hence residual) set of hypercyclic vectors. Furthermore, under a reasonable additional condition it implies that there is a closed infinite-dimensional subspace of hypercyclic vectors.

Condition (C_{fin}) has a number of equivalent formulations and it implies that there is a dense linear subspace consisting of hypercyclic vectors. The existence of subspaces consisting of hypercyclic vectors will be studied in Section V.

THEOREM 4. Let $(T_n) \subset B(X,Y)$ be a sequence of operators. The following conditions are equivalent:

- (i) (T_n) satisfies condition (C);
- (ii) for all $j \in \mathbb{N}$ and nonempty open subsets $U_0, U_1, \ldots, U_j \subset X$ and $V_0, V \subset Y$ such that U_0 and V_0 contain the origins of X and Y, respectively, there exists $n \in \mathbb{N}$ such that $T_n U_i \cap V_0 \neq \emptyset$ $(i = 1, \ldots, j)$ and $T_n U_0 \cap V \neq \emptyset$.

In particular, if (T_n) satisfies (C) then there is a dense set of hypercyclic vectors for (T_n) .

Proof. (i) \Rightarrow (ii). Clear.

(ii) \Rightarrow (i). Let $(x_n) \subset X$ and $(y_n) \subset Y$ be dense sequences. Set $u_{i,i} = x_i$ $(i \in \mathbb{N})$. By induction on k we construct an increasing sequence (n_k) and vectors $u_{i,k} \in X$ $(i = 1, \ldots, k - 1)$ and $v_k \in B_X$ such that

$$||T_{n_k}v_k - y_k|| < 2^{-k}, \quad ||T_{n_k}u_{i,k}|| < 2^{-k},$$

$$||u_{i,k} - u_{i,k-1}|| < \frac{1}{2^k \max\{1, ||T_{n_1}||, \dots, ||T_{n_{k-1}}||\}}$$

for all i, k with $1 \leq i < k$. For each i the sequence $(u_{i,k})_k$ is Cauchy. Let u_i be its limit. Then

$$||x_i - u_i|| \le \sum_{k=i+1}^{\infty} ||u_{i,k} - u_{i,k-1}|| \le \sum_{k=i+1}^{\infty} \frac{1}{2^k} = \frac{1}{2^i}.$$

Therefore (u_i) is dense in X.

Clearly the sequence $(T_{n_k}v_k)$ is dense, and so $\overline{\bigcup_k T_{n_k}B_X} = Y$. Further,

$$\lim_{k \to \infty} \|T_{n_k} u_i\| \le \lim_{k \to \infty} \left(\|T_{n_k} u_{i,k}\| + \sum_{j=k}^{\infty} \|T_{n_k}\| \cdot \|u_{i,j+1} - u_{i,j}\| \right)$$
$$\le \lim_{k \to \infty} \left(\frac{1}{2^k} + \sum_{j=k}^{\infty} \frac{1}{2^{j+1}} \right) = \lim_{k \to \infty} \frac{1}{2^{k-1}} = 0$$

for each *i*. Thus (T_n) satisfies (C).

To show that condition (C) implies the existence of a dense subset of hypercyclic vectors we use Lemma 1. Let $x \in X$, $y \in Y$ and $\varepsilon > 0$. By (ii), there are $x_0, x_1 \in X$ and $n \in \mathbb{N}$ such that $||x_0|| < \varepsilon/2$, $||T_n x_0 - y|| < \varepsilon/2$, $||x - x_1|| < \varepsilon/2$ and $||T_n x_1|| < \varepsilon/2$. Then $||(x_0 + x_1) - x|| < \varepsilon$ and $||T_n(x_0 + x_1) - y|| < \varepsilon$. By Lemma 1, (T_n) has a dense subset of hypercyclic vectors.

THEOREM 5. Let $(T_n) \subset B(X,Y)$ be a sequence of operators. The following conditions are equivalent:

- (i) (T_n) satisfies condition (C_{fin});
- (ii) $(\underbrace{T_n \oplus \cdots \oplus T_n}_{i})$ satisfies condition (C) for all $j \in \mathbb{N}$;
- (iii) $(\underbrace{T_n \oplus \cdots \oplus T_n}_{j})$ has a dense subset of hypercyclic vectors for all $i \in \mathbb{N}$:
- (iv) for all $j \in \mathbb{N}$ and all nonempty open subsets $U_1, \ldots, U_j \subset X$ and $V_1, \ldots, V_j \subset Y$ there is an $n \in \mathbb{N}$ such that $T_n U_i \cap V_i \neq \emptyset$ $(i = 1, \ldots, j);$
- (v) there is a subsequence (T_{n_k}) such that each of its subsubsequences has a dense set of hypercyclic vectors;
- (vi) there are dense subsets $X_0 \subset X$ and $Y_0 \subset Y$, an increasing sequence $(n_k) \subset \mathbb{N}$ and mappings $S_i : Y_0 \to X$ $(i \in \mathbb{N})$ such that

$$T_{n_k} x \to 0 \quad (x \in X_0),$$

$$S_k y \to 0 \quad (y \in Y_0),$$

$$T_{n_k} S_k y \to y \quad (y \in Y_0);$$

- (vii) for each Banach space Z the sequence of operators $L_{T_n} : \overline{F(Z,X)} \to \overline{F(Z,Y)}$ defined by $L_{T_n}S = T_nS$ $(S \in \overline{F(Z,X)})$ has a dense set of hypercyclic vectors; here F(Z,X) denotes the set of all finite rank operators from Z to X;
- (viii) for each Banach space Z the sequence (L_{T_n}) satisfies condition (C).

Proof. The equivalences $(vi) \Leftrightarrow (v) \Leftrightarrow (iii)$ were proved in [BG]. The implications $(i) \Rightarrow (ii)$ and $(vi) \Rightarrow (i)$ are obvious. The equivalence $(iii) \Leftrightarrow (iv)$ follows

from Lemma 1 and the implications (viii) \Rightarrow (vii) and (ii) \Rightarrow (iii) follow from Theorem 4.

(i) \Rightarrow (viii). Let X_0 be a dense subset of X and let (n_k) satisfy $T_{n_k}x \to 0$ $(x \in X_0)$ and $\bigcup (T_{n_k}B_X \oplus \cdots \oplus T_{n_k}B_X) = Y \oplus \cdots \oplus Y.$

Let $\mathcal{M} \subset B(Z, X)$ be the set of all finite rank operators with range included in the linear space generated by X_0 . Clearly \mathcal{M} is dense in $\overline{F(Z, X)}$. For $G \in \mathcal{M}$ we have $\lim_k L_{T_{n_k}}G = \lim_k T_{n_k}G = 0$.

Let $F \in F(Z, Y)$ and $\varepsilon > 0$. We can express $F = \sum_{i=1}^{j} z_i^* \otimes y_i$ for some $y_i \in Y$ and $z_i^* \in Z^*$. Since (T_n) satisfies condition (C_{fin}) , there are vectors $u_i \in X$ (i = 1, ..., j) and $k \in \mathbb{N}$ such that

$$||T_{n_k}u_i - y_i|| < \frac{\varepsilon}{j \max\{||z_1^*||, \dots ||z_j^*||\}}, \quad ||u_i|| \le \frac{1}{j \max\{||z_1^*||, \dots, ||z_j^*||\}}.$$

Set $F_0 = \sum_{i=1}^j z_i^* \otimes u_i \in F(Z, X)$. Then $||F_0|| \le \sum_{i=1}^j ||z_i^*|| \cdot ||u_i|| \le 1$ and j

$$\|L_{T_{n_k}}F_0 - F\| = \|T_{n_k}F_0 - F\| = \left\|\sum_{i=1}^J z_i^* \otimes T_{n_k}u_i - \sum_{i=1}^J z_i^* \otimes y_i\right\|$$
$$= \left\|\sum_{i=1}^j z_i^* \otimes (T_{n_k}u_i - y_i)\right\| \le \sum_{i=1}^j \|z_i^*\| \cdot \|T_{n_k}u_i - y_i\| < \varepsilon.$$

 $(\text{vii}) \Rightarrow (\text{iii})$. Let $j \in \mathbb{N}$ and let Z be a j-dimensional Banach space. Then $\overline{F(Z,X)}$ is isomorphic to $\underbrace{X \oplus \cdots \oplus X}_{j}$ and $\overline{F(Z,Y)}$ to $\underbrace{Y \oplus \cdots \oplus Y}_{j}$. In the same way L_{T_n} can be identified with $T_n \oplus \cdots \oplus T_n$.

For completeness we also mention other conditions that have been studied in the literature, for instance, in [BG, Theorem 2.2] (see also [BP, Remark 2.6(3)] in the case of commuting operators with dense range). In the diagram below we show the relations among them. The abbreviations there mean:

> (HC) (Hypercyclicity criterion) There exist dense subsets $X_0 \subset X$ and $Y_0 \subset Y$, an increasing sequence $(n_k) \subset \mathbb{N}$ and mappings $S_k: Y_0 \to X$ such that

$$T_{n_k} x \to 0 \quad (x \in X_0),$$

$$S_k y \to 0 \quad (y \in Y_0),$$

$$T_{n_k} S_k y = y \quad (y \in Y_0, k \in \mathbb{N}).$$

(hc) (T_n) is hypercyclic.

(dense hc) (T_n) has a dense set of hypercyclic vectors.

(4 nbhd) (4 neighbourhoods condition) for all nonempty open subsets $U, U_0 \subset X$ and $V, V_0 \subset Y$ such that U_0 and V_0 contain the origins in X and Y, respectively, there exists $n \in \mathbb{N}$ such

that $T_nU \cap V_0 \neq \emptyset$ and $T_nU_0 \cap V_n \neq \emptyset$ (when X = Y this condition reduces to "the three open sets condition", which was introduced in [GS, Section III]).

(her hc) (Hereditarily hypercyclic) There is a subsequence (T_{n_k}) such that each of its subsubsequences is hypercyclic.

The relations among these conditions are given in the following diagram:

Moreover, there are no other implications among the conditions in question.

The implications (HC) \rightarrow (C_{fin}) and (C_{fin}) \rightarrow (her hc) were proved in Theorem 5, the implication (C) \rightarrow (4 nbhd) in Theorem 4. For the implication (4 nbhd) \rightarrow (dense hc) see Proposition 6 below.

The remaining implications are trivial.

The negative results follow from the examples below. Note that it is sufficient to show $(C_{fin}) \nleftrightarrow (HC), (C) \nleftrightarrow (her hc), (her hc) \nleftrightarrow (dense hc)$ and (dense hc) $\nleftrightarrow (C)$.

PROPOSITION 6 (cf. [GS]). If $(T_n) \subset B(X, Y)$ satisfies (4 nbhd) then there is a dense subset of hypercyclic vectors for (T_n) .

Proof. The result was essentially proved already in the proof of Theorem 4. Let $x \in X$, $y \in Y$ and $\varepsilon > 0$. Then there are $n \in \mathbb{N}$, $u \in X$ and $v \in Y$ such that $||u - x|| < \varepsilon/2$, $||T_n u|| < \varepsilon/2$, $||v|| < \varepsilon/2$ and $||T_n u - y|| < \varepsilon/2$. Set x' = u + v. Then $||x - x'|| \le ||x - u|| + ||v|| < \varepsilon$ and $||T_n x' - y|| < ||T_n v - y|| + ||T_n u|| < \varepsilon$. By Lemma 1, this implies that (T_n) has a dense subset of hypercyclic vectors.

EXAMPLE 7. Let X be a Hilbert space with an orthonormal basis $\{e_F : F \subset \mathbb{N}, \text{ card } F < \infty\}$. Let Y = X and let the operators $T_n : X \to X$ be defined by

$$T_n e_F = \begin{cases} n e_{F \setminus \{n\}} & (n \in F), \\ 0 & (n \notin F). \end{cases}$$

It is easy to verify that the sequence (T_n) satisfies condition (C_{fin}) for the dense subspace $X_0 \subset X$ generated by the vectors $\{e_F : F \subset \mathbb{N}\}$. However, (T_n) does not satisfy (HC) since the operators T_n have nondense ranges, $T_n X = \bigvee \{e_F : n \notin F\}$.

Note that the operators T_n are even commuting.

EXAMPLE 8. Let X and $T_n : X \to X$ be as in the previous example. Note that $e_{\{n\}} \perp T_n X$ for each n. Consider the operators $S_n : X \oplus \mathbb{C} \to X$ defined by

$$S_n(x \oplus \lambda) = T_n x + \lambda e_{\{n\}}$$
 $(x \in X, \lambda \in \mathbb{C}).$

Since the operators (T_n) satisfy (C_{fin}) and hence are hereditarily hypercyclic, it is easy to see that the sequence (S_n) is also hereditarily hypercyclic. On the other hand, the set of all vectors hypercyclic for (S_n) is not dense. Indeed, let $x \in X, \lambda \in \mathbb{C}, \lambda \neq 0$. Then

$$||S_n(x \oplus \lambda)|| = ||T_n x + \lambda e_{\{n\}}|| \ge |\lambda| > 0,$$

and so $x \oplus \lambda$ is not hypercyclic. This shows that (her hc) \neq (dense hc).

EXAMPLE 9. Let X be a separable Hilbert space with an orthonormal basis $\{e_1, e_2, \ldots\}$. Let $Y = \mathbb{C}^2$ and (y_n) be a dense sequence of elements of Y. Define $T_n : X \to Y$ by $T_n e_n = y_n$ and $T_n e_i = 0$ $(i \neq n)$. Clearly $T_n x \to 0$ for each x that is a finite linear combination of the vectors e_i $(i \in \mathbb{N})$. Further $\bigcup_n T_n B_X \supset \{y_n : n \in \mathbb{N}\}^- = Y$. Thus (T_n) satisfies condition (C).

On the other hand, let (n_k) be any increasing sequence of positive integers such that (T_{n_k}) is hypercyclic. Let $U \subset Y$ be a nonempty open set such that $\overline{U} \neq Y$ and $\mathbb{C} \cdot U \subset U$. Choose a subsequence of those indices n_k for which $y_{n_k} \in U$. For such an n_k we have $T_{n_k}X = \mathbb{C} \cdot y_{n_k} \subset U$, and so (T_n) is not hereditarily hypercyclic. Consequently, (C) \neq (her hc).

EXAMPLE 10. Let dim X = 1 (i.e., $X = \mathbb{C}$) and let Y be a separable Hilbert space. Let (y_n) be a dense sequence in Y. Define $T_n : X \to Y$ by $T_n(\lambda) = \lambda y_n$. Clearly each nonzero $\lambda \in X$ is hypercyclic for (T_n) . It is easy to see that (T_n) does not satisfy condition (4 nbhd). Indeed, consider the neighbourhoods $U = \{z \in \mathbb{C} : |z| > 2\}, V_0 = \{y \in Y : ||y|| < 1\}, U_0 = \{z \in \mathbb{C} : |z| < 1\}$ and $V = \{y \in Y : ||y|| > 2\}$. Thus (dense hc) $\neq (4 \text{ nbhd})$.

EXAMPLE 11. Let $X = \mathbb{C}^2$ and dim $Y = \infty$. Let (y_n) be a dense sequence in Y and (x_n) dense in X. For each n find $u_n \in X$ linearly independent of x_n such that $||u_n|| = 1/n$. For $m, n \in \mathbb{N}$ define $T_{m,n} : X \to Y$ by $T_{m,n}x_n = 0$ and $T_{m,n}u_n = y_m$. Then $(T_{m,n})$ is a countable set of operators satisfying condition (4 nbhd).

Let (T_{m_k,n_k}) be any subsequence such that $T_{m_k,n_k}x \to 0$ for all x in a dense subset of X. Then $T_{m_k,n_k} \to 0$ in the strong operator topology, and therefore this subsequence is bounded by the Banach–Steinhaus theorem. Thus $(T_{m,n})$ does not satisfy (C). Hence (4 nbhd) \neq (C).

III. Sequences of commuting operators. In this section we assume that Y = X and $(T_n) \subset B(X)$ is a sequence of mutually commuting operators. The situation is much simpler in this case.

THEOREM 12. Let $(T_n) \subset B(X)$ be a sequence of mutually commuting operators. The following conditions are equivalent:

- (i) (T_n) satisfies condition (C);
- (ii) (T_n) satisfies condition (C_{fin}) ;
- (iii) (T_n) is hereditarily hypercyclic;
- (iv) (T_n) satisfies (4 nbhd); in fact in this case the 4 neighbourhoods condition reduces to the "3 neighbourhoods condition": for all nonempty open subsets $U, V, W \subset X$ with $0 \in W$ there exists n such that $T_n U \cap W \neq \emptyset$ and $T_n W \cap V \neq \emptyset$.

Proof. (i) \Rightarrow (ii). Let $X_0 \subset X$ be a dense subset and $(n_k) \subset \mathbb{N}$ an increasing sequence such that $T_{n_k}x \to 0$ $(x \in X_0)$ and $\bigcup_k T_{n_k}B_x = X$.

By Theorem 4, (T_{n_k}) is hypercyclic. Let $x \in X$ be a hypercyclic vector for (T_{n_k}) .

Let $y_1, \ldots, y_r \in X$ and $\varepsilon > 0$. Since x is hypercyclic, there are k_1, \ldots, k_r such that $||T_{n_{k_i}}x - y_i|| < \varepsilon/2$ $(i = 1, \ldots, r)$. Further, there are $u \in X$, $||u|| \leq \max\{||T_{n_{k_i}}|| : i = 1, \ldots, r\}^{-1}$ and $s \in \mathbb{N}$ such that

$$||T_{n_{k_s}}u - x|| < \frac{\varepsilon}{2\max\{||T_{n_{k_1}}||, \dots, ||T_{n_{k_r}}||\}}$$

Set $x_i = T_{n_k} u$ (i = 1, ..., r). Then $x_i \in B_X$ and

 $\|T_{n_{k_s}}x_i - y_i\| = \|T_{n_{k_s}}T_{n_{k_i}}u - y_i\| \le \|T_{n_{k_i}}(T_{n_{k_s}}u - x)\| + \|T_{n_{k_i}}x - y_i\| < \varepsilon$ for all $i = 1, \dots, r$.

 $(ii) \Rightarrow (iii)$. Clear.

(iii) \Rightarrow (iv). Let $U, V, W \subset X$ be nonempty open sets, $0 \in W$. Let (n_k) be a sequence of positive integers such that each subsequence of (T_{n_k}) is hypercyclic. Let x be a hypercyclic vector for (T_{n_k}) . Since each nonzero multiple of x is also hypercyclic, we can assume that $x \in W$. Consider the subsequence $(T_{n_k})_{k\in F}$ where $F = \{k : T_{n_k}x \in V\}$. Consequently, each $k \in F$ satisfies $T_{n_k}W \cap V \neq \emptyset$.

Let y be a vector hypercyclic for this subsequence. Thus there exists $k_0 \in F$ such that $T_{n_{k_0}} y \in U$. Moreover, we can choose increasing numbers $k_i \in F$ such that $T_{n_k} y \to 0$ $(i \to \infty)$. Thus

$$\lim_{i\to\infty}T_{n_{k_i}}T_{n_{k_0}}y=\lim_{i\to\infty}T_{n_{k_0}}T_{n_{k_i}}y=0$$

and there is an *i* with $T_{n_{k_i}}T_{n_{k_0}}y \in W$. Hence $T_{n_{k_i}}U \cap W \neq \emptyset$.

 $(iv) \Rightarrow (i)$. By Proposition 6, the sequence (T_n) has a dense subset of hypercyclic vectors.

Let $U_1, \ldots, U_r, V, W \subset X$ be nonempty open subsets, $0 \in W$. Let x be a hypercyclic vector for the sequence (T_n) . Find $n_1, \ldots, n_r \in \mathbb{N}$ such that $T_{n_i}x \in U_i$ $(i = 1, \ldots, r)$. Let $\varepsilon > 0$ satisfy $\{y : \|y - T_{n_i}x\| < \varepsilon\} \subset U_i$ $(i = 1, \ldots, r)$ and $\{y : \|y\| < \varepsilon\} \subset W$. By assumption, there are $x' \in X$ and $n_0 \in \mathbb{N}$ such that $\|x' - x\| < \varepsilon \max\{\|T_{n_1}\|, \ldots, \|T_{n_r}\|\}^{-1}, \|T_{n_0}x'\| < \varepsilon \max\{\|T_{n_1}\|, \ldots, \|T_{n_r}\|\}^{-1}$ and $T_{n_0}W \cap V \neq \emptyset$. Then $\|T_{n_i}x' - T_{n_i}x\| \le \varepsilon$ $||T_{n_i}|| \cdot ||x' - x|| < \varepsilon$, and so $T_{n_i}x' \in U_i$ (i = 1, ..., r). Further $||T_{n_0}T_{n_i}x'|| = ||T_{n_i}T_{n_0}x'|| \le ||T_{n_i}|| \cdot ||T_{n_0}x'|| < \varepsilon$, and so $T_{n_0}T_{n_i}x' \in W$.

Thus for commuting operators $T_n: X \to X$ we have the following situation:

 $(\mathrm{HC}) \ \overrightarrow{\longleftarrow} \ (\mathrm{C}) \ \overrightarrow{\longleftarrow} \ (\mathrm{dense} \ \mathrm{hc}) \ \overrightarrow{\longleftarrow} \ (\mathrm{hc})$

A sequence (T_n) of commuting operators satisfying condition (C) but not (HC) was given in Example 7.

An example of commuting operators with a dense set of hypercyclic vectors but not satisfying condition (C) is the space $X = \mathbb{C}$ and $T_n(\lambda) = r_n \lambda$ ($\lambda \in \mathbb{C}$) where (r_n) is a dense sequence in \mathbb{C} .

The existence of a hypercyclic sequence of commuting operators with a nondense set of hypercyclic vectors is an open problem:

PROBLEM 13. Let (T_n) be a hypercyclic sequence of mutually commuting operators acting on a Banach space X. Is the set of all vectors hypercyclic for (T_n) dense in X?

IV. Commuting chains of operators. The most important case of a sequence of operators is the sequence (T^n) of powers of a fixed operator $T \in B(X)$. Of importance are also sequences of the form $(\lambda_n T^n)$ where $T \in B(X)$ and λ_n are nonzero complex numbers. Hypercyclicity of these sequences is closely connected with the supercyclicity of the operator T. Indeed, an operator $T \in B(X)$ is supercyclic (i.e., there exists $x \in X$ such that the set $\{\lambda T^n x : \lambda \in \mathbb{C}, n \geq 0\}$ is dense) if and only if there are complex numbers λ_n such that the sequence $(\lambda_n T^n)$ is hypercyclic. In this way problems concerning the supercyclicity of operators reduce to problems concerning hypercyclicity of sequences of operators.

It turns out that the most important property of sequences (T^n) or $(\lambda_n T^n)$ is that they form a chain of commuting operators. We call a sequence $(T_n) \subset B(X)$ a chain of commuting operators if there are mutually commuting operators $S_i \in B(X)$ such that $T_n = S_1 \cdots S_n$ for all n.

For chains of commuting operators the situation is even simpler. A hypercyclic chain always has a dense subset of hypercyclic vectors and condition (C) is equivalent to (HC).

PROPOSITION 14. Let $S_j \in B(X)$ $(j \in \mathbb{N})$ be mutually commuting operators and $T_n = S_1 \cdots S_n$. Suppose that the sequence (T_n) is hypercyclic. Then there exists a dense subset of vectors hypercyclic for (T_n) .

Proof. Let $x \in X$ be a vector hypercyclic for (T_n) . Clearly $T_1X \supset T_2X \supset \cdots$, and so T_n has dense range for all n. We show that T_jx is hypercyclic for all j. We have $\{T_nT_jx : n \in \mathbb{N}\}^- \supset T_j\{T_nx : n \in \mathbb{N}\}^- = T_jX$, which is

a dense subset of X. Hence $T_j x$ is hypercyclic and the sequence (T_n) has a dense subset of hypercyclic vectors.

THEOREM 15. Let $S_j : X \to X$ $(j \in \mathbb{N})$ be mutually commuting operators and let $T_n = S_1 \cdots S_n$. Suppose that the sequence (T_n) satisfies condition (C_{fin}) . Then it satisfies (HC).

Proof. Since any subsequence of (T_n) is again a chain of commuting operators, without loss of generality we can assume that (T_n) satisfies condition (C_{fin}) for the whole sequence (T_n) , i.e., $T^n x \to 0$ for all x in a dense subset of X.

Note first that for all $k, j \in \mathbb{N}$ we have

(1)
$$\overline{\bigcup_{n>k} \left(S_{k+1}\cdots S_n B_X\right)^j} = Y^j.$$

Indeed, we have $T_k B_X \subset ||T_k|| B_X$, and so

$$\bigcup_{n>k} (S_{k+1} \cdots S_n B_X)^j \supset ||T_k||^{-1} \bigcup_{n>k} (S_1 \cdots S_n B_X)^j = ||T_k||^{-1} \bigcup_{n>k} (T_n B_X)^j,$$

which is dense in Y^j .

Let (x_k) be a sequence dense in X. By induction on j we construct an increasing sequence n_j and vectors $u_{k,j} \in X$ $(k, j \in \mathbb{N}, j \ge k)$. Set formally $n_0 = 0$ and $u_{k,k} = x_k$.

Let $j \geq 2$ and suppose that n_{j-1} and $u_{k,j-1} \in X$ $(k \in \mathbb{N})$ have already been constructed. By (1), we can find $n_j > n_{j-1}$ and vectors $u_{k,j} \in X$ $(k = 1, \ldots, j - 1)$ such that

$$\|S_{n_{j-1}+1}\cdots S_{n_j}u_{k,j} - u_{k,j-1}\| < \frac{1}{2^{k+j}\prod_{i \le n_{j-1}} \max\{1, \|S_i\|\}}$$

and $||u_{k,j}|| < 1/2^{k+j}$, which completes the construction.

Write for short $R_j = S_{n_{j-1}+1} \cdots S_{n_j}$. Then

$$||R_j u_{k,j} - u_{k,j-1}|| < \frac{1}{2^{k+j} \prod_{i \le j-1} \max\{1, ||R_i||\}}$$

for all k, j, and $||u_{k,j}|| < 2^{-(k+j)}$ (k < j).

For fixed
$$k, j \in \mathbb{N}$$
 consider the sequence $(R_{j+1} \cdots R_m u_{k,m})_{m=j}^{\infty}$. Since

$$\begin{aligned} \|R_{j+1}\cdots R_{m+1}u_{k,m+1} - R_{j+1}\cdots R_m u_{k,m}\| \\ &\leq \|R_{j+1}\cdots R_m\| \cdot \|R_{m+1}u_{k,m+1} - u_{k,m}\| \leq 1/2^{k+m+1}, \end{aligned}$$

the sequence $(R_{j+1} \cdots R_m u_{k,m})_{m=j}^{\infty}$ is Cauchy. Denote by $v_{k,j}$ its limit. For all k, j we have

$$R_{j+1}v_{k,j+1} = \lim_{m \to \infty} R_{j+1}R_{j+2} \cdots R_m u_{k,m} = v_{k,j}.$$

In particular, $T_{n_j}v_{k,j} = R_1 \cdots R_j v_{k,j} = v_{k,0}$ for all k, j. Furthermore,

$$\|v_{k,0} - x_k\| = \lim_{m \to \infty} \|R_1 \cdots R_m u_{k,m} - u_{k,k}\|$$

$$\leq \sum_{m=k}^{\infty} \|R_1 \cdots R_{m+1} u_{k,m+1} - R_1 \cdots R_m u_{k,m}\|$$

$$\leq \sum_{m=0}^{\infty} \frac{1}{2^{k+m+1}} = \frac{1}{2^k},$$

and so the sequence $(v_{k,0})$ is dense in X.

Finally, for j > k we have

$$\begin{aligned} \|v_{k,j}\| &= \lim_{m \to \infty} \|R_{j+1} \cdots R_m u_{k,m}\| \\ &\leq \|u_{k,j}\| + \sum_{m=j}^{\infty} \|R_{j+1} \cdots R_{m+1} u_{k,m+1} - R_{j+1} \cdots R_m u_{k,m}\| \\ &\leq \|u_{k,j}\| + \sum_{m=j}^{\infty} \|R_1 \cdots R_m\| \cdot \|R_{m+1} u_{k,m+1} - u_{k,m}\| \\ &\leq \frac{1}{2^{k+j}} + \sum_{m=j}^{\infty} \frac{1}{2^{k+m+1}} = \frac{1}{2^{k+j-1}}, \end{aligned}$$

and so $\lim_{j\to\infty} ||v_{k,j}|| = 0$. Hence the sequence (T_n) satisfies condition (HC) for the sequence (n_j) and the dense set $\{v_{k,0} : k \in \mathbb{N}\}$.

COROLLARY 16. Let $T \in B(X)$ and let (λ_n) be a sequence of complex numbers. Then all the conditions (C), (C_{fin}), (HC), (her hc) and (4 nbhd) are equivalent for the sequence $(\lambda_n T^n)$.

If $(\lambda_n T^n)$ is hypercyclic then there is a dense subset of hypercyclic vectors.

PROBLEM 17. Is there a chain of commuting operators (and in particular a sequence of the form (T^n)) which is hypercyclic but does not satisfy the hypercyclicity criterion (or any equivalent conditions)?

V. Subspaces of hypercyclic vectors. In this section we study the existence of a dense (closed infinite-dimensional, respectively) subspace consisting of hypercyclic vectors.

In the case of a hypercyclic sequence (T^n) where $T \in B(X)$ is a fixed operator it is known that there is always a dense subspace consisting of hypercyclic vectors. The proof, however, uses special properties of the sequence (T^n) .

Our first result gives the existence of a dense subspace consisting of hypercyclic vectors for any sequence $(T_n) \subset B(X, Y)$ satisfying C_{fin} .

THEOREM 18. Let $(T_n) \subset B(X,Y)$ be a sequence of operators satisfying condition (C_{fin}). Then there exists a dense subspace $X_1 \subset X$ such that each nonzero vector in X_1 is hypercyclic for (T_n) .

Proof. Let Z be any separable infinite-dimensional Banach space. Let $x \in X, x \neq 0 \text{ and } \varepsilon > 0. \text{ Set } \mathcal{M} = \{ V \in \overline{F(Z,X)} : \operatorname{dist}\{x, VZ\} < \varepsilon \}.$ Clearly \mathcal{M} is open. We show that it is dense in $\overline{F(Z, X)}$.

Let $W \in \overline{F(Z,X)}$ and $\delta > 0$. Then there exists a finite rank operator $W_1: Z \to X$ such that $||W - W_1|| < \delta/2$. Let $z \in \ker W_1$ and $z^* \in Z^*$ satisfy $\langle z, z^* \rangle = 1.$ Set

$$W_2 = W_1 + \frac{\delta \cdot (z^* \otimes x)}{2 \|x\| \cdot \|z^*\|}.$$

Then

$$||W - W_2|| \le ||W - W_1|| + ||W_1 - W_2|| < \delta$$
 and $W_2 z = \frac{\delta x}{2||x|| \cdot ||z^*||}$

Thus $W_2 \in \mathcal{M}$ and \mathcal{M} is dense in $\overline{F(Z, X)}$.

Let $(x_k) \subset X$ be a dense sequence of nonzero vectors. Clearly $V \in$ F(Z,X) has dense range if and only if dist $\{x_k, VZ\} < 1/k$ for all k. By the Baire category theorem, the set of all operators in $\overline{F(Z,X)}$ with dense range is residual.

By Theorem 5, the operators $L_{T_n}: \overline{F(Z,X)} \to \overline{F(Z,Y)}$ satisfy condition (C), and so there is a residual set of vectors hypercyclic for (L_{T_n}) . Thus there exists an operator $V \in \overline{F(Z,X)}$ with dense range such that V is hypercyclic for (L_{T_n}) .

It is easy to see that each nonzero vector in the range VZ is hypercyclic for the sequence (T_n) . This completes the proof.

Next we study the existence of a closed infinite-dimensional subspace consisting of hypercyclic vectors for a sequence $(T_n) \subset B(X,Y)$. Such a subspace is known to exist (under a natural additional assumption) if (T_n) is hereditarily hypercyclic. We prove it now for sequences satisfying the more practical condition (C). Moreover, the proof is essentially simplified.

Note that a particularly simple argument is available in the case of a sequence (T^n) satisfying the hypercyclicity criterion (HC) (see [ChT]).

We say for short that a subspace $X_1 \subset X$ is a hypercyclic subspace for a sequence $(T_n) \subset B(X, Y)$ if each nonzero vector in X_1 is hypercyclic for (T_n) .

THEOREM 19 (cf. [Mo]). Let $(T_n) \subset B(X, Y)$ be a sequence of operators. Suppose that (n_k) is an increasing sequence of positive integers such that

- (i) there exists a dense subset $X_0 \subset X$ such that $\lim_{k\to\infty} T_{n_k} x = 0$ (ii) $\frac{(x \in X_0);}{\bigcup_{k \in \mathbb{N}} T_{n_k} B_X} = Y;$

(iii) there exists a closed infinite-dimensional subspace $X_1 \subset X$ with the property that $\lim_{k\to\infty} T_{n_k} x = 0$ $(x \in X_1)$.

Then there exists a closed infinite-dimensional hypercyclic subspace for (T_n) .

Proof. Without loss of generality we can assume that $\lim_{n\to\infty} T_n x = 0$ for all $x \in X_0 \cup X_1$. Let $\{e_1, e_2, \ldots\}$ be a normalized basic sequence in X_1 . Let K be the corresponding basic constant and let $\varepsilon < 1/2K$. Let (y_k) be a dense sequence in Y. Let \prec be an order on $\mathbb{N} \times (\mathbb{N} \cup \{0\})$ defined by $(i, j) \prec (i', j')$ if either i + j < i' + j', or i + j = i' + j' and i < i'.

Set $z_{i,0} = e_i$ (i = 1, 2, ...). By induction with respect to the order \prec we construct vectors $z_{i,j} \in X_0$ $(i, j \in \mathbb{N})$ and an increasing sequence $n_{i,j} \subset \mathbb{N}$.

Let $(i, j) \in \mathbb{N} \times \mathbb{N}$ and suppose that $z_{i',j'} \in X_0$ and $n_{i',j'} \in \mathbb{N}$ have already been constructed for all $(i', j') \prec (i, j)$. By definition, there exist $n_{i,j} > \max\{n_{i',j'} : (i',j') \prec (i,j)\}$ and $z_{i,j} \in X_0$ such that

$$\|T_{n_{i,j}}z_{i',j'}\| < \frac{\varepsilon}{2^{i'+j'+i}} \quad ((i',j') \prec (i,j)), \quad \|T_{n_{i,j}}z_{i,j} - y_i\| < \frac{\varepsilon}{2^{2i+j}}, \\ \|z_{i,j}\| < \frac{\varepsilon}{2^{i+j}\max\{1,2^{i'}\|T_{n_{i',j'}}\| : (i',j') \prec (i,j)\}}.$$

In this way, the vectors $z_{i,j} \in X_0$ and numbers $n_{i,j}$ are inductively constructed.

Set $z_i = \sum_{j=0}^{\infty} z_{i,j}$ $(i \in \mathbb{N})$. Then

$$||z_i - e_i|| \le \sum_{j=1}^{\infty} ||z_{i,j}|| < \sum_{j=1}^{\infty} \frac{\varepsilon}{2^{i+j}} = \frac{\varepsilon}{2^i}.$$

Hence $\sum_{i=1}^{\infty} ||z_i - e_i|| < \sum_{i=1}^{\infty} \varepsilon/2^i = \varepsilon$, and so (z_i) is a basic sequence.

Let $M = \bigvee \{z_i : i = 1, 2, ...\}$. Let $z \in M$ be any nonzero vector. Then $z = \sum_{i=1}^{\infty} \alpha_i z_i$ for some complex coefficients α_i . We show that z is hypercyclic for (T_n) .

Fix $k \in \mathbb{N}$ with $\alpha_k \neq 0$. Since every nonzero scalar multiple of a hypercyclic vector is also hypercyclic, we can assume that $\alpha_k = 1$. Then

$$\begin{split} \|T_{n_{k,r}}z - y_{r}\| &\leq \sum_{i \neq k} |\alpha_{i}| \cdot \|T_{n_{k,r}}z_{i}\| + \|T_{n_{k,r}}z_{k} - y_{r}\| \\ &\leq \sum_{i \neq k} \sum_{j=0}^{\infty} |\alpha_{i}| \cdot \|T_{n_{k,r}}z_{i,j}\| + \sum_{j \neq r} \|T_{n_{k,r}}z_{k,j}\| + \|T_{n_{k,r}}z_{k,r} - y_{r}\| \\ &\leq \sum_{(i,j) \prec (k,r)} \max\{|\alpha_{i}| : i \in \mathbb{N}\} \cdot \|T_{n_{k,r}}z_{i,j}\| \end{split}$$

$$+ \sum_{(k,r)\prec(i,j)} \max\{|\alpha_i| : i \in \mathbb{N}\} \cdot \|T_{n_{k,r}} z_{i,j}\| + \|T_{n_{k,r}} z_{k,r} - y_r\|$$

$$< \sum_{(i,j)\prec(k,r)} \max\{|\alpha_i| : i \in \mathbb{N}\} \cdot \frac{\varepsilon}{2^{i+j+k}}$$

$$+ \sum_{(k,r)\prec(i,j)} \max\{|\alpha_i| : i \in \mathbb{N}\} \cdot \frac{\varepsilon}{2^{i+j+k}} + \frac{\varepsilon}{2^{2k+r}}$$

$$\leq \sum_{i=1}^{\infty} \sum_{j=0}^{\infty} \max\{|\alpha_i| : i \in \mathbb{N}\} \cdot \frac{\varepsilon}{2^{i+j+k}} \leq \frac{K\varepsilon}{2^{k-1}}.$$

Hence z is hypercyclic for (T_n) .

THEOREM 20. Let $(T_n) \subset B(X,Y)$ be a sequence of operators satisfying condition (C) for a subsequence (n_k) . Suppose that there are infinitedimensional subspaces M_1, M_2, \ldots such that $X \supset M_1 \supset M_2 \supset \cdots$ and $\sup_k ||T_{n_k}|M_k|| < \infty$. Then there exists a closed infinite-dimensional hypercyclic subspace for (T_n) .

Proof. Without loss of generality we can assume that $T_n x \to 0$ for all x in a dense subset $X_0 \subset X$. It is sufficient to construct a closed infinitedimensional subspace $X_1 \subset X$ such that $T_n x \to 0$ $(x \in X_1)$.

We can find a basic sequence (x_n) such that $x_i \in M_i$ for all *i*. Let *K* be the basic constant of this sequence. Let $\varepsilon < 1/2K$ be a positive number. For each *n* find $e_n \in X_0$ such that

$$||x_n - e_n|| < \frac{\varepsilon}{2^n \max\{1, ||T||, \dots, ||T^n||\}}.$$

Clearly (e_n) is a basic sequence with basic constant $\leq 2K$. Let (y_n) be a dense sequence in Y. Choose a subsequence (e_{n_k}) such that $||T_{n_k}e_{n_i}|| < 2^{-(k+i)}$ (i < k) and dist $\{y_k, T_{n_k}B_X\} < 2^{-k}$. Set $X_1 = \bigvee \{e_{n_k} : k \in \mathbb{N}\}$. Let $e \in X_1$ be an arbitrary vector. We can write $e = \sum_{i=1}^{\infty} \alpha_i e_{n_i}$ for some complex coefficients α_i . We have

$$\|T_{n_k}e\| \le \sum_{i=1}^{k-1} \|T_{n_k}\alpha_i e_{n_i}\| + \left\|\sum_{i=k}^{\infty} T_{n_k}\alpha_i x_{n_i}\right\| + \sum_{i=k}^{\infty} \|T_{n_k}\alpha_i (e_{n_i} - x_{n_i})\|$$

$$\le 2K \sum_{i=1}^{k-1} \frac{1}{2^{i+k}} + \sup_n \|T_n|M_n\| \cdot \left\|\sum_{i=k}^{\infty} \alpha_i x_{n_i}\right\| + 2K \sum_{i=k}^{\infty} \frac{\varepsilon}{2^i}$$

$$\le \frac{K}{2^{k-1}} + \sup_n \|T_n|M_n\| \cdot \left\|\sum_{i=k}^{\infty} \alpha_i x_{n_i}\right\| + \frac{K\varepsilon}{2^{k-2}} \to 0$$

as $k \to \infty$. Further $\overline{\bigcup_j T_{n_j} B_X} = Y$, and so there is a closed infinitedimensional subspace consisting of hypercyclic vectors for (T_n) . We now give a negative result—a condition implying that there is no closed infinite-dimensional subspace consisting of hypercyclic vectors.

Recall the quantity $j_{\mu}(T) = \sup\{j(T|M) : M \subset X, \operatorname{codim} M < \infty\}$, where *j* denotes the minimum modulus, $j(S) = \inf\{\|Sx\| : \|x\| \le 1\}$. The number $j_{\mu}(T)$ can be called the *essential minimum modulus* of *T*.

LEMMA 21. Let $T_1, \ldots, T_k \in B(X, Y)$ and let $X_1 \subset X$ be a closed infinite-dimensional subspace. Let $\varepsilon > 0$. Then there exists $x \in X_1$ of norm one such that $||T_ix|| > j_{\mu}(T_i) - \varepsilon$ $(i = 1, \ldots, k)$.

Proof. For i = 1, ..., k there is a subspace $M_i \subset X$ of finite codimension such that $j(T_i|M_i) > j_{\mu}(T_i) - \varepsilon$. Let x be any vector of norm one in $X_1 \cap \bigcap_{i=1}^k M_i$. Then

$$||T_ix|| \ge j(T_i|M_i) > j_\mu(T_i) - \varepsilon$$

for all $i = 1, \ldots, k$.

THEOREM 22. Let X, Y be Banach spaces, let $(T_n) \subset B(X,Y)$ (n = 1, 2, ...), let (a_n) be a sequence of positive numbers such that $\lim_{i\to\infty} a_i = 0$ and let $X_1 \subset X$ be a closed infinite-dimensional subspace. Let $\delta > 0$. Then there exists a vector $x \in X_1$ with $||x|| \leq \sup_i a_i + \delta$ and $||T_n x|| \geq a_n j_\mu(T_n)$ for all $n \in \mathbb{N}$.

Moreover, there is a subset X_2 dense in X_1 with the property that for each $x \in X_2$ there exists n_0 such that $||T_n x|| \ge a_n j_\mu(T_n)$ $(n \ge n_0)$.

Proof. Without loss of generality we can assume that $a_1 \ge a_2 \ge \cdots$. Let $\varepsilon > 0$ satisfy $(1 - \varepsilon)^2 (a_1 + \delta/2) > a_1$. Find numbers $r_0 < r_1 < \cdots$ such that $a_{r_k} < (1 - \varepsilon)^3 \delta/2^{k+3}$ for all k. Find $x_0 \in X_1$ such that $||x_0|| = a_1 + \delta/2$ and $||T_n x_0|| > (1 - \varepsilon)(a_1 + \delta/2)j_{\mu}(T_n)$ $(n \le r_0)$.

Let $k \ge 0$ and suppose that x_0, \ldots, x_k have already been constructed. Let $E_k = \bigvee \{T_n x_i : 0 \le i \le k, 1 \le n \le r_{k+1}\}$. Let M_k be a subspace of X of finite codimension such that

$$||e+m|| \ge (1-\varepsilon) \max\{||e||, ||m||/2\} \quad (e \in E_k, m \in M_k)$$

(see [M]). Since the space $L_k = \bigcap_{i=1}^k \bigcap_{n=1}^{r_{k+1}} T_n^{-1} M_i < \infty$ is of finite codimension, we can choose $x_{k+1} \in X_1 \cap L_k$ such that $||x_{k+1}|| = \delta 2^{-(k+2)}$ and

$$||T_n x_{k+1}|| \ge (1-\varepsilon)\delta 2^{-(k+2)} j_\mu(T_n) \quad (1 \le n \le r_{k+1}).$$

Set $x = \sum_{i=0}^{\infty} x_i$. Then $x \in X_1$ and

$$||x|| \le \sum_{i=0}^{\infty} ||x_i|| \le a_1 + \delta/2 + \sum_{i=1}^{\infty} \delta 2^{-(i+1)} = a_1 + \delta.$$

For $n = 1, \ldots, r_0$ we have

$$||T_n x|| = \left||T_n x_0 + \sum_{i=1}^{\infty} T_n x_i|\right| \ge (1-\varepsilon) ||T_n x_0|| > a_1 j_\mu(T_n) \ge a_n j_\mu(T_n).$$

Let $k \ge 0$ and $r_k < n \le r_{k+1}$. Then

$$\|T_n x\| = \left\| \sum_{i=0}^{\infty} T_n x_i \right\| \ge (1-\varepsilon) \left\| \sum_{i=0}^{k+1} T_n x_i \right\|$$
$$\ge \frac{(1-\varepsilon)^2}{2} \|T_n x_{k+1}\| \ge \frac{(1-\varepsilon)^3}{2} \cdot \frac{\delta}{2^{k+2}} j_\mu(T_n) \ge a_n j_\mu(T_n).$$

Thus $||T_n x|| \ge a_n j_\mu(T_n)$ for all $n \in \mathbb{N}$.

To show the second statement, let $u \in X_1$ and $\varepsilon > 0$. Find n_0 such that $a_n < \varepsilon$ for all $n \ge n_0$. As in the first part, taking $x_0 = u$, construct a vector $x \in X_1$ with $||x - u|| \le \varepsilon$ and $||T_n x|| \ge a_n j_\mu(T_n)$ $(n \ge n_0)$.

COROLLARY 23. Let X, Y be Banach spaces and let $(T_n) \subset B(X,Y)$ be a sequence of operators satisfying $\lim_{n\to\infty} j_{\mu}(T_n) = \infty$. Then there is no closed infinite-dimensional hypercyclic subspace for (T_n) .

Proof. Let M be a closed infinite-dimensional subspace of X. By the previous result for the numbers $\alpha_n = (j_\mu(T_n))^{-1/2}$, there exists $x \in M$ such that $||T_n x|| \to \infty$. Therefore x is not hypercyclic for (T_n) .

We apply the previous results to the sequences of the form $(\lambda_n T^n)$ where $T \in B(X)$ and λ_n are complex numbers. Denote by $\sigma_e(T) = \{\lambda \in \mathbb{C} : T - \lambda \text{ is not Fredholm}\}$ the essential spectrum of T.

COROLLARY 24. Let $T \in B(X)$ be an operator and let (λ_n) be a sequence of complex numbers. Suppose that $(\lambda_n T^n)$ satisfies condition (C) and $\sup_n |\lambda_n| d^n < \infty$ where $d = \operatorname{dist}\{0, \sigma_e(T)\}$. Then there exists a closed infinite-dimensional hypercyclic subspace for $(\lambda_n T^n)$.

Proof. Since $(\lambda_n T^n)$ satisfies condition (C), the range of T is dense. Without loss of generality we can assume that the numbers λ_n are nonzero.

Choose $\lambda \in \sigma_{\rm e}(T)$ with $|\lambda| = d$. Thus $T - \lambda$ is not Fredholm. We show that $T - \lambda$ is not upper semi-Fredholm. This is clear if d = 0 since the range of T is dense. If d > 0 then $\lambda \in \partial \sigma_{\rm e}(T)$ and $T - \lambda$ is not upper semi-Fredholm by [HW].

By [LS], there is a compact operator $K \in B(X)$ with dim ker $(T - \lambda - K)$ = ∞ . Set $M_0 = \ker(T - \lambda - K)$. For each n we have $T^n = (T - K)^n + K_n$ for some compact operator K_n . Find subspaces $M'_n \subset X$ of finite codimension such that $||K_n|M'_n|| \leq |\lambda_n|^{-1}$. Set $M_n = M_0 \cap \bigcap_{i \leq n} M'_i$. Then $M_1 \supset M_2$ $\supset \cdots$ and dim $M_n < \infty$. For $z \in M_n$ with ||z|| = 1 we have

$$\|\lambda_n T^n z\| \le \|\lambda_n (T-K)^n z\| + \|\lambda_n K_n\| \le |\lambda_n \lambda^n| + 1 = |\lambda_n| d^n + 1,$$

and so $\sup_n \|\lambda_n T^n | M_n \| < \infty$. The statement now follows from Theorem 20. \blacksquare

COROLLARY 25. Let $T: X \to X$ and suppose that $(\lambda_n T^n)$ satisfies (C) and T is not Fredholm. Then there is an infinite-dimensional closed hypercyclic subspace for $(\lambda_n T^n)$.

Proof. We have $d = \text{dist}\{0, \sigma_{e}(T)\} = 0$, and so the statement follows from the previous corollary.

COROLLARY 26. Let $T \in B(X)$ and suppose that (T^n) satisfies (C). The following conditions are equivalent:

- (i) there exists a closed infinite-dimensional hypercyclic subspace for (T^n) ;
- (ii) the essential spectrum of T intersects the closed unit ball.
- *Proof.* Write $d = \text{dist}\{0, \sigma_{e}(T)\}$.
- (ii) \Rightarrow (i). If $d \leq 1$ then Corollary 24 implies (i).

(i) \Rightarrow (ii). Let d > 1. Then T is Fredholm. Recall the following standard construction from operator theory (see [S], [BHW]): let $\ell^{\infty}(X)$ be the space of all bounded sequences of elements of X; with the naturally defined algebraic operations and sup-norm it is a Banach space. Let $\widetilde{X} = \ell^{\infty}(X)/m(X)$ where m(X) is the subspace of all precompact sequences. Let $\widetilde{T} : \widetilde{X} \to \widetilde{X}$ be the operator induced by T. It is well known that \widetilde{T} is invertible and $\sigma(\widetilde{T}) = \sigma_{\rm e}(T)$. By the spectral radius formula we have $d = {\rm dist}\{0, \sigma(\widetilde{T})\} = r(\widetilde{T}^{-1})^{-1} = \lim_{n\to\infty} ||\widetilde{T}^{-n}||^{-1/n} = \lim_{n\to\infty} j(\widetilde{T}^n)^{1/n}$ where r denotes the spectral radius. By [F] we find that $j_{\mu}(T^n) \leq 2j(\widetilde{T}^n) \leq 4j_{\mu}(T^n)$ for all n. Thus $1 < d = \lim_{n\to\infty} j_{\mu}(T^n)^{1/n}$ and $\lim_{n\to\infty} j_{\mu}(T^n) = \infty$.

Let M be a closed infinite-dimensional subspace of X. By Theorem 22 for the numbers $\alpha_n = (j_\mu(T^n))^{-1/2}$, there exists $x \in M$ such that $\lim_{n\to\infty} ||T^n x|| = \infty$. Hence x is not hypercyclic for (T^n) .

References

- [Bea] B. Beauzamy, Un opérateur, sur l'espace de Hilbert, dont tous les polynômes sont hypercycliques, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 923–925.
- [B] L. Bernal-González, Densely hereditarily hypercyclic sequences and large hypercyclic manifolds, Proc. Amer. Math. Soc. 127 (1999), 3279–3285.
- [BC] L. Bernal-González and M. C. Calderón-Moreno, Dense linear manifolds of monsters, J. Approx. Theory 119 (2002), 156–180.
- [BG] L. Bernal-González and K.-G. Grosse-Erdmann, The hypercyclicity criterion for sequences of operators, Studia Math. 157 (2003), 17–32.
- [BP] J. Bès and A. Peris, Hereditarily hypercyclic operators, J. Funct. Anal. 167 (1999), 94–112.
- [BMP] J. Bonet, F. Martínez-Giménez and A. Peris, Universal and chaotic multipliers on spaces of operators, J. Math. Anal. Appl. 297 (2004), 599–611.
- [Bo] P. S. Bourdon, Invariant manifolds of hypercyclic vectors, Proc. Amer. Math. Soc. 118 (1993), 845–847.

- [BHW] J. J. Buoni, R. Harte and T. Wickstead, *Upper and lower Fredholm spectra*, ibid. 66 (1977), 309–314.
- [ChT] K. C. Chan and R. D. Taylor Jr., Hypercyclic subspaces of a Banach space, Integral Equations Operator Theory 41 (2001), 381–388.
- [F] A. S. Faĭnshteĭn, Measures of noncompactness of linear operators and analogues of the minimum modulus for semi-Fredholm operators, in: Spectral Theory of Operators 6, Èlm, Baku, 1985, 182–195 (in Russian).
- [G] G. Godefroy, Opérateurs ayant un sous-espace dense de vecteurs hypercycliques, Séminaire d'Initiation à l'Analyse, Publ. Math. Univ. Pierre et Marie Curie 94, Paris, 1989.
- [GS] G. Godefroy and J. H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229–269.
- [GLM] M. González, F. León-Saavedra and A. Montes-Rodríguez, Semi-Fredholm theory: hypercyclic and supercyclic subspaces, Proc. London Math. Soc. 81 (2000), 169–189.
- [Gri] S. Grivaux, Construction of operators with prescribed behaviour, Arch. Math. (Basel) 81 (2003), 291–299.
- [HW] R. Harte and T. Wickstead, Upper and lower Fredholm spectra II, Math. Z. 154 (1977), 253–256.
- [He] D. A. Herrero, Limits of hypercyclic and supercyclic operators, J. Funct. Anal. 99 (1991), 179–190.
- [K] C. Kitai, Invariant closed sets for linear operators, dissertation, Univ. of Toronto, Toronto, 1982.
- [LS] A. Lebow and M. Schechter, Semigroups of operators and measures of noncompactness, J. Funct. Anal. 7 (1971), 1–26.
- [LMo] F. León-Saavedra and A. Montes-Rodríguez, Spectral theory and hypercyclic subspaces, Trans. Amer. Math. Soc. 353 (2000), 247–267.
- [Mo] A. Montes-Rodríguez, Banach spaces of hypercyclic vectors, Michigan Math. J. 43 (1996), 419–436.
- [M] V. Müller, Local behaviour of the polynomial calculus of operators, J. Reine Angew. Math. 430 (1992), 61–68.
- [S] B. N. Sadovskiĭ, Limit-compact and condensing operators, Uspekhi Mat. Nauk 27 (1972), no. 1, 81–146 (in Russian); English transl.: Russian Math. Surveys 27 (1972), no. 1, 85–155.

Departamento de Matemáticas Facultad de Ciencias Universidad de Cádiz Pol. Rio San Pedro S/N 1500 Puerto Real, Spain E-mail: fernando.leon@uca.es Mathematical Institute Czech Academy of Sciences Žitná 25 115 67 Praha 1, Czech Republic E-mail: muller@math.cas.cz

Received June 21, 2003 Revised version March 2, 2006 (5225)

18