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Algebrability of the set of non-convergent Fourier series
by
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Abstract. We show that, given a set £ C T of measure zero, the set of continuous
functions whose Fourier series expansion is divergent at any point ¢t € F is dense-algebrable,
i.e. there exists an infinite-dimensional, infinitely generated dense subalgebra of C(T) every
non-zero element of which has a Fourier series expansion divergent in E.

1. Introduction and preliminaries. Many examples of functions with
some special or pathological properties have been found in analysis. Ex-
amples such as continuous nowhere differentiable functions, everywhere sur-
jective functions, or differentiable nowhere monotone functions have been
constructed in the past. Given such a special property, we say that the sub-
set M of functions which satisfy it is spaceable if M U {0} contains a closed
infinite-dimensional subspace. The set M will be called (dense) lineable if
M U{0} contains an infinite-dimensional (dense) vector space. At times, we
will be more specific, referring to the set M as u-lineable if it contains a
vector space of dimension u. Also, we let A(M) be the maximum cardinality
(if it exists) of such a vector space. We believe that the terms lineable and
spaceable were first introduced in [5] and, later, in [2] and [7] (see also [1]).

Some of these special properties are not isolated phenomena. In [2] it
was shown that the set of everywhere surjective functions is 2¢4"d®)_lineable
and that the set of differentiable functions on R which are nowhere mono-
tone is lineable in C(R). Fonf, Gurariy and Kadets showed ([6]) that the set
of nowhere differentiable functions on [0, 1] is spaceable in C|[0, 1]. Some of
these pathological behaviors occur in really interesting ways. For instance,
in [11] Rodriguez-Piazza proved that every separable Banach space is iso-
metric to a space of continuous nowhere differentiable functions, and in [8],
Hencl showed that any separable Banach space is isometrically isomorphic
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to a subspace of C[0, 1] whose non-zero elements are nowhere approximately
differentiable and nowhere Hélder.

This paper continues with the search for sets of functions enjoying special
properties, in particular, continuous functions whose Fourier series expan-
sion diverges on a set of Lebesgue measure zero.

The convergence of Fourier series has been deeply studied in the past.
It came as a considerable surprise when Du Bois-Reymond produced an
example of a continuous function f : T — C whose Fourier series is divergent
at one point (see [10, pp. 67-73] for a modern reference). This result can be
improved by means of an example of a continuous function whose Fourier
series expansion diverges on a set of measure zero ([9, p. 58]). This last result
is the best possible, since the Fourier expansion of every continuous function
converges almost everywhere (Carleson, see e.g. [10, p. 75]). Moreover, by
means of Baire’s theorem, the pathological behavior can be shown to be
generic: there exists a G5 dense subset £ C T such that the set of continuous
functions whose Fourier expansion diverges on this set is a G5 dense subset
of C(T) ([12, p. 102]). While writing this paper, the authors became aware of
recent work by F. Bayart ([4]) where using different techniques it is shown
that, if g C C(T) is the set of continuous functions whose Fourier series
expansion diverges on a set of measure zero, F, then Fg is dense-lineable.
This result is a consequence of our main result, Theorem 2.1.

Let us recall the following definition, introduced in [3]:

DEFINITION. Given a Banach algebra A and a subset B C A, we say
that:

(1) B is algebrable if there is a subalgebra C of A so that C € BU {0}
and the cardinality of any system of generators of C is infinite;
(2) B is dense-algebrable if, in addition, C can be taken dense in A.

Recently ([3]) it was shown that the set of complex-valued everywhere
surjective functions is algebrable. The aim of this paper is to show that,
given any set £ C T of measure zero, the set of continuous functions whose
Fourier series expansion is divergent at any point ¢ € E is dense-algebrable.

Here, and from now on, T denotes R/27Z, f(n) or f7(n) will denote the
nth Fourier coefficient of f € C(T), Z(f) denotes the set {n € Z : f(n) # 0},

and S, (f,t) will denote the nth partial Fourier sum >.0__ f(u)e®!.

u=-—"n

2. The main result

THEOREM 2.1. Let E C T be a set of measure zero. Let F C C(T) be
the set of continuous functions whose Fourier series erpansion diverges at
every point t € E. Then Fg is dense-algebrable.
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In order to prove this result, we need several different tools, amongst
them some technical lemmas and the construction of a double sequence.

2.1. Preliminary elements. By [9, pp. 57-58], given a set £ C T of
measure zero we can find a sequence (ﬁk)k of trigonometric polynomials,
a sequence (ng)g of positive integers, and a sequence (E}); of measurable
subsets of T such that every t € E belongs to infinitely many E}’s and:

1. |Hy(s)] <1forall s €T,
2. |Snk(ffk,t)| > 2% for every t € Ej.

Without loss of generality we may suppose that

ap

Hy(t) =Y Hy(r)e'™,
r=0

that is, Z(ﬁk) C [0, ax|, with (ay) increasing, ay > ny for every k € N. Let
us define Hy(t) = 1+ ¢/@+DtH, (¢) and let us call a, = 2a; + 1 (to have
Z(Hk) C [O,ak]).

Let (Qj); be a sequence of trigonometric polynomials that is dense
in C(T) and such that Z(Q;) C [—gj,q;]. We may clearly suppose that
the sequence (g;); is increasing, and we let b; = max{a;, g;}.

Next, consider the following linear order < on N x N:

i+ k<j +k or
G < k) & {2

j+k=7+kK andk <k
This order can be represented by the following diagram, in which each arrow
connects a pair with its immediate successor:

(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3)

2,2 2,
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With this order we define by recursion the following double sequence (p?g) ikt

pl=3b1+1, pl=3kb + 2max{k,k'}p), +1,

where (j', k') is the immediate predecessor of (j, k).

Of course, p{c < p{cl, if and only if (j,k) < (j,k"). Moreover (p{c)]k is
increasing in both indices and has, trivially, the following properties:

(P1) If (j, k) < (5, k') then by < pl.

(P2) p, > 3dby for every i,d.

(P3) If (j, k) < (i,d), then pi, > 2dp] + 3dby.

(P4) If (i,d) < (4, k), then p] > 2dp},.
2.2. The main construction. We now use the above elements to state

and prove a technical lemma that will be necessary for the proof of the
main result:

LEMMA 2.2. Suppose that

(1) P ru=p el
and

(i) s <n <d;

(il) plf >p7 > >pl (that is, iy > -+ > ip);

(iii) py, =P = 2 PR

(iv) [u| < dbg;

(v) —dbg < v <by, + -+ by, + dbg.

Then n = s, iy = jr, k. = d for every r and u = v.
Proof. pr > p?c , then

4 . GQ
Py (> 2(1;0/17;1 + 3dbg > 2517?@11 + 3dby

(PU+(i) .
> P e pp F by 4+ by, +3dbg

and, by (iv) and (v), we cannot have equation (1).
If py. > pj, then

L (P (P2) Q (i) .
ph > 2dpy > dp’} + 3dbg > np'} + 3dbg > pl} + -+ + plr + 3dby

and, by (iv) and (v), we cannot have equation (1).
So i1 = j1, k1 = d and we can convert (1) into

(2) PR AP bu=p 4
where —dbg < v < bk2 +"'+bks +(d+ 1)bd.
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Reasoning in the same way we can obtain io = j3 and ko = d, reducing

equation (2) to
R R A R (R

where —dbg < v < bkg + -+ bks + (d + 2)bd.

Continuing with this procedure (recall that, by (i), s < n) we arrive at

pif +~-+pfi" +u:pfjs +v

where —db; < v < by, + (d + s — 1)bg. With the same arguments one can
conclude that j; = is and ks = d. So it remains to prove that n = s. If

not, then n > s+ 1, and from (1), we obtain v = pfj“ 4 —i—pil" + u with
|u| < dbg and —dbg < v < (d + s)bg < 2dbgy. Now

: . . (PQ)
v=p5t i > Pt du > 3dbg — dbg = 2dbg > v,
and we reach a contradiction. =

Next, for each j > 1 and m > 1, let us define the function
m .
)y =327k et ().
k=1

Thanks to the Weierstrass M-test we know that, for each j € N, the se-
quence (f")m converges uniformly to a continuous function f; € C(T) with
| fill < 2. Define g; = (1/4)f; + Q; and let A be the algebra generated
by {g;};-

Since (Qj); is a dense sequence in C(T), it is clear that (g;); (and
hence A) is also dense in C(T). This immediately implies that A is infinite-
dimensional.

We will see that every g € A\ {0} has a Fourier series divergent at any
t € E. So let us take a generic element of A:

N
- 1 53
]:1

where s1 > --- > sy (s; is the number of functions that we multiply in each
summand of g) and #] > -+ > i{,j for every j.
The heart of the matter is the next technical lemma:

LeEMMA 2.3. If d > max{sy,ii,..., i)} then:
.1 i1 —
(a) /g\(pzll 4 —i—pj;l +u) = al(z} . -i;l)_12_sldﬂjl(u) for 0 < u < s1aq.
N i1 il
(b) glu) =0 for u < —(pjj +--- +4")-

1
(c) Ifl > i}, then @(pzll + - —}—pjfl +u) =0 for every 0 < u < syaq and
hence g # g.
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Proof. First of all, notice that if we expand the sum

al 1 1
we obtain terms of the form fp,, -+ f,Qp, ., - Qp, With s < 51 < d and
d > hj for every 1 < j < s (we can suppose that hy > --- > h,).

By the uniform convergence of the sequence (fj")m, the sequence

(e 7 Quys ++ Qu) ™ (v) converges t0 (fay = i, Qhyoy -+ Qn) " (v) for

every v. It is easy to see that this sequence is in fact constant from some m
on. Now, for a fixed m, the function f;" - fi"Qp, ., - - - Qn, is a trigonomet-
ric polynomial whose non-zero Fourier coefficients are contained in the set

o= v
_Qhﬂ_l_"'_thSUSakl+"'+akr+QhT+1+"'+th7
1§k1,...,kT§m}.

Therefore, the non-zero Fourier coefficients of fp,, -+ fp, Qp,., -+ Qp, are
contained in A = (J,, A™ and hence in

_{p + - —I—pk +v: —dbd<U<bk1-|— —|—bk —i—dbd,k?l,...,erl}.
Since B C [—dbg, +00), (P2) gives (b).

3 ,
Now, Lemma 2.2 tells us that, if pz -+ pl + u (Ju| < dbg) belongs
to B, then r = sy, hy =i}, ..., h, =i} andk:1 - =k, = d. Thus,
il it 1 it
9lpg +--+pg" +Hu) =01 7 (fa- S )™ ( A pyt ),
21 .. 'Zsl
for |u] < dby.

;1
Moreover, Lemma 2.2 also says that pd + - +p151 +u (Ju| < dby) is

i1

different from any other pk1 + - +pk + v with —dbg < v < by, +--- +
bkr + dby.
Thus, looking at the formula
F £ 1)
Aky 5oy Qg

1 il
~ ~ i(p'l 4. 51
— § § 92— k1— ksl Hkl(rl) . Hksl (T’SI)BZ(pk1+ +Pk31 +ri1+ +'I‘sl)t

k1,.. ,ksl—l T1y--3Tsq =0
one finds that, if 0 < u < syay4, then
1 - -
i o+ pg +w = > 2 () Halry,),

ritetrsg =u
0<ry,e0rsy <aq

which is exactly 2_31‘1@ (u), and this gives (a).
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Finally, to obtain (c) we can reason in the same way. The non-zero
Fourier coefficients of g; are in the set C' = {pf,c +v:0 < v < b}t Now,

1 1
thanks to Lemma 2.2, if pl +v :ps + - +p;51 + u for some 0 < v < by,
0 <u<sjaq < dbg, we obtain z% = [, which is impossible since [ > z% This
completes the proof of the lemma. =

Proof of Theorem 2.1. Now, set 31 = ay(ii---i3, )~ " and take any d >
max{sy,i},...,iY }. It follows that

(3) ‘S il ik (g,t) - S il ik, (g,t)]
Py tFpy  Faqtling Py T tpy  tad
i} i il sy
—(pg ++py ' +aq+1) Py APy Haat14ng
~ ut -~ wut
= ’ g g(u)e™ + E g(u)e™|.
i} i il il
—(p4 ++pg t +aat+1+na) P +tpg T +aatl

By Lemma 2.3(b), the first term of (3) is zero. Thus, by Lemma 2.3(a),
(3) is equal to

'zid+1+nd/_\ )
ﬂ12_51d‘ Z H;l(u)eWt.
u=aq+1

But, by the definition of H,;, we have

S1

Hjl (t) — Z <Skl> eik(adJrl)tﬁCI;(t)

k=0
and, since Z(ﬁIC’?) C [0, 00) for any k, we see that for u € [ag+1,aq+1+mng],
H (1) = syHy(u— (Gg+1))  (recall that ng < ).
Therefore (3) equals

nd
Z Hd<u)ezut
u=0

for every t € E4. Since any t € E belongs to infinitely many Ej;’s, we have

Brs127 514 = ﬁ1312_51d’5nd(ﬁd7t)’ > 51812d2_51d

limsup |S,,(g,t)] =00  for every t € E.
n

To finish the proof of Theorem 2.1 it only remains to prove that A is
infinitely generated. Now, if A were finitely generated, there would exist an
[ € N such that every gp, h € N, can be expressed as

N
(4) gnh = Zl 95 9.
]:

with s1 > -+ > sy and [ > z{ > > zég for every j. Taking h = [ in (4)
this contradicts Lemma 2.3(c), which finishes the proof of Theorem 2.1. m
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