STUDIA MATHEMATICA 175 (1) (2006)

Maximal regularity of delay equations in Banach spaces

by

CARLOS LIZAMA and VERÓNICA POBLETE (Santiago)

Abstract. We characterize existence and uniqueness of solutions for an inhomogeneous abstract delay equation in Hölder spaces. The main tool is the theory of operator-valued Fourier multipliers.

1. Introduction. Partial differential equations with delay have been extensively studied in the last years. In an abstract way they can be written as

(1.1)
$$u'(t) = Au(t) + Fu_t + f(t), \quad t \in \mathbb{R},$$

where (A, D(A)) is an (unbounded) linear operator on a Banach space X, $u_t(\cdot) = u(t + \cdot)$ on [-r, 0], r > 0, and the delay operator F is supposed to belong to $\mathcal{B}(C([-r, 0], X), X)$.

First studies on equation (1.1) go back to J. Hale [8] and G. Webb [12]. A general and systematic study of linear delay equations with emphasis on the qualitative behavior and asymptotic properties can be found in the recent monograph by Bátkai and Piazzera [5]. See also [13]. The problem to find conditions for all solutions of (1.1) to be in the same space as f arises naturally from recent studies on maximal regularity and their application to nonlinear problems in the theory of evolution equations; see the recent monograph by Denk-Hieber-Prüss [7] and references therein.

Recently, a significant progress has been made in finding sufficient conditions for operator-valued functions to be C^{α} -Fourier multipliers (see [3]). In particular, in [4] the theory of operator-valued Fourier multipliers is applied to obtain results on the hyperbolicity of delay equations and in [9] to obtain stability of linear control systems in Banach spaces. Also in [10] existence and uniqueness of periodic solutions for equation (1.1) via L^p -Fourier multiplier theorems has recently been obtained.

²⁰⁰⁰ Mathematics Subject Classification: 34G10, 34K30, 47D06.

Key words and phrases: Fourier multipliers, delay differential equations, C_0 -semigroups.

The first author is partially supported by FONDECYT Grant #1050084.

C. Lizama and V. Poblete

In this paper we obtain necessary and sufficient conditions of well-posedness of the delay equation (1.1) in the Hölder spaces $C^{\alpha}(\mathbb{R}, X)$ ($0 < \alpha < 1$), under the condition that X is a B-convex space. We stress that here A is not necessarily the generator of a C_0 -semigroup.

The Fourier multiplier approach allows us to give a direct treatment of the equation, in contrast with the approach using the correspondence between (1.1) and the solutions of the abstract Cauchy problem

$$\mathcal{U}'(t) = \mathcal{A}\mathcal{U}(t) + \mathcal{F}(t), \quad t \ge 0,$$

where $\mathcal{A} = \begin{pmatrix} A & F \\ 0 & d/d\sigma \end{pmatrix}$. In the latter case the question of well-posedness of the delay equation reduces to the question whether or not the operator $(\mathcal{A}, D(\mathcal{A}))$ generates a C_0 -semigroup; see [5, 6, 11] and references therein.

2. Preliminaries. Let X, Y be Banach spaces and let $0 < \alpha < 1$. We consider the spaces

$$\dot{C}^{\alpha}(\mathbb{R}, X) = \{ f : \mathbb{R} \to X : f(0) = 0, \, \|f\|_{\alpha} < \infty \}$$

normed by

$$||f||_{\alpha} = \sup_{t \neq s} \frac{||f(t) - f(s)||}{|t - s|^{\alpha}}$$

Let $\Omega \subset \mathbb{R}$ be an open set. By $C_c^{\infty}(\Omega)$ we denote the space of all C^{∞} -functions in $\Omega \subseteq \mathbb{R}$ having compact support in Ω .

We denote by $\mathcal{F}f$ or \tilde{f} the Fourier transform, i.e.

$$(\mathcal{F}f)(s) := \int_{\mathbb{R}} e^{-ist} f(t) \, dt \quad (s \in \mathbb{R}, \, f \in L^1(\mathbb{R}, X)).$$

DEFINITION 2.1. Let $M : \mathbb{R} \setminus \{0\} \to \mathcal{B}(X, Y)$ be continuous. We say that M is a \dot{C}^{α} -multiplier if there exists a mapping $L : \dot{C}^{\alpha}(\mathbb{R}, X) \to \dot{C}^{\alpha}(\mathbb{R}, Y)$ such that

(2.1)
$$\int_{\mathbb{R}} (Lf)(s)(\mathcal{F}\phi)(s) \, ds = \int_{\mathbb{R}} (\mathcal{F}(\phi \cdot M))(s)f(s) \, ds$$

for all $f \in C^{\alpha}(\mathbb{R}, X)$ and $\phi \in C^{\infty}_{c}(\mathbb{R} \setminus \{0\})$.

Here $(\mathcal{F}(\phi \cdot M))(s) = \int_{\mathbb{R}} e^{-ist} \phi(t) M(t) dt \in \mathcal{B}(X, Y)$. Note that *L* is well defined, linear and continuous (cf. [3, Definition 5.2]).

Define

$$C^{\alpha}(\mathbb{R}, X) = \{ f : \mathbb{R} \to X : \|f\|_{C^{\alpha}} < \infty \}$$

with the norm

$$||f||_{C^{\alpha}} = ||f||_{\alpha} + ||f(0)||.$$

Let $C^{\alpha+1}(\mathbb{R}, X)$ be the Banach space of all $u \in C^1(\mathbb{R}, X)$ such that $u' \in C^{\alpha}(\mathbb{R}, X)$, equipped with the norm

$$||u||_{C^{\alpha+1}} = ||u'||_{C^{\alpha}} + ||u(0)||.$$

By Definition 2.1 and since

$$\int_{\mathbb{R}} \left(\mathcal{F}(\phi M)(s) \right)(s) \, ds = 2\pi(\phi M)(0) = 0,$$

it follows that $f \in C^{\alpha}(\mathbb{R}, X)$ implies $Lf \in C^{\alpha}(\mathbb{R}, X)$. Moreover, if $f \in C^{\alpha}(\mathbb{R}, X)$ is bounded then Lf is bounded as well (see [3, Remark 6.3]).

The following multiplier theorem is due to Arendt–Batty and Bu [3, Theorem 5.3].

THEOREM 2.2. Let
$$M \in C^2(\mathbb{R} \setminus \{0\}, \mathcal{B}(X, Y))$$
 be such that
(2.2) $\sup_{t \neq 0} \|M(t)\| + \sup_{t \neq 0} \|tM'(t)\| + \sup_{t \neq 0} \|t^2 M''(t)\| < \infty.$

Then M is a \dot{C}^{α} -multiplier.

REMARK 2.3. If X is B-convex, in particular if X is a UMD space, Theorem 2.2 remains valid if condition (2.2) is replaced by the weaker condition

(2.3)
$$\sup_{t \neq 0} \|M(t)\| + \sup_{t \neq 0} \|tM'(t)\| < \infty,$$

where $M \in C^1(\mathbb{R} \setminus \{0\}, \mathcal{B}(X, Y))$ (cf. [3, Remark 5.5]).

We use the symbol $\widehat{f}(\lambda)$ for the Carleman transform:

$$\widehat{f}(\lambda) = \begin{cases} \int_{0}^{\infty} e^{-\lambda t} f(t) dt, & \operatorname{Re} \lambda > 0, \\ \\ 0 \\ -\int_{-\infty}^{0} e^{-\lambda t} f(t) dt, & \operatorname{Re} \lambda < 0, \end{cases}$$

where $f \in L^1_{loc}(\mathbb{R}, X)$ is of subexponential growth; by this we mean

$$\int_{-\infty}^{\infty} e^{-\varepsilon |t|} \|f(t)\| \, dt < \infty \quad \text{ for each } \varepsilon > 0.$$

We remark that if $u' \in L^1_{loc}(\mathbb{R}, X)$ is of subexponential growth, then

$$\widehat{u'}(\lambda) = \lambda \widehat{u}(\lambda) - u(0), \quad \operatorname{Re} \lambda \neq 0.$$

3. A characterization. In this section we consider the equation

(3.1)
$$u'(t) = Au(t) + Fu_t + f(t), \quad t \in \mathbb{R},$$

where $A : D(A) \subseteq X \to X$ is a closed linear operator, $f \in C^{\alpha}(\mathbb{R}, X)$, and, for some r > 0, $F : C([-r, 0], X) \to X$ is a bounded linear operator. Moreover u_t is an element of C([-r, 0], X) defined by $u_t(\theta) = u(t + \theta)$ for $-r \leq \theta \leq 0$. EXAMPLE 3.1. Let $\mu : [-r, 0] \to \mathcal{B}(X)$ be of bounded variation. Let $F : C([-r, 0], X) \to X$ be the bounded operator given by the Riemann-Stieltjes integral

$$F(\phi) = \int_{-r}^{0} \phi \, d\mu \quad \text{ for all } \phi \in C([-r, 0], X).$$

An important special case involves operators F defined by

$$F(\phi) = \sum_{k=0}^{n} C_k \phi(\tau_k), \quad \phi \in C([-r, 0], X),$$

where $C_k \in \mathcal{B}(X)$ and $\tau_k \in [-r, 0]$ for $k = 0, 1, \ldots, n$. For concrete equations with the above classes of delay operators see the monograph of Bátkai and Piazzera [5, Chapter 3].

DEFINITION 3.2. We say that (1.1) is C^{α} -well posed if for each $f \in C^{\alpha}(\mathbb{R}, X)$ there is a unique function $u \in C^{\alpha+1}(\mathbb{R}, X) \cap C^{\alpha}(\mathbb{R}, [D(A)])$ such that (1.1) is satisfied.

Set $e_{\lambda}(t) := e^{i\lambda t}$ for all $\lambda \in \mathbb{R}$, and define the operators $\{F_{\lambda}\}_{\lambda \in \mathbb{R}} \subseteq \mathcal{B}(X)$ by

(3.2)
$$F_{\lambda}x = F(e_{\lambda}x)$$
 for all $\lambda \in \mathbb{R}$ and $x \in X$.

We define the *real spectrum* of (3.1) by

$$\sigma(\Delta) = \{ s \in \mathbb{R} : isI - F_s - A \in \mathcal{B}([D(A)], X) \text{ is not invertible} \}.$$

PROPOSITION 3.3. Let X be a Banach space and let $A : D(A) \subset X \to X$ be a closed linear operator. Suppose that (1.1) is C^{α} -well posed. Then

 $\begin{array}{ll} \text{(i)} & \sigma(\varDelta) = \emptyset, \\ \text{(ii)} & \{i\eta(i\eta I - A - F_\eta)^{-1}\}_{\eta \in \mathbb{R}} \text{ is bounded}. \end{array}$

Proof. Let $x \in D(A)$ and let $u(t) = e^{i\eta t}x$ for $\eta \in \mathbb{R}$. Then $u_t(s) = e^{it\eta}e^{is\eta}x$. Thus

(3.3)
$$F(u_t) = e^{it\eta}F(e_\eta x) = e^{it\eta}F_\eta x.$$

Now if $(i\eta - A - F_{\eta})x = 0$, then u(t) is a solution of equation (1.1) when $f \equiv 0$. Hence by uniqueness x = 0. Now let $L : C^{\alpha}(\mathbb{R}, X) \to C^{\alpha+1}(\mathbb{R}, X)$ be the bounded operator which takes each $f \in C^{\alpha}(\mathbb{R}, X)$ to the unique solution $u \in C^{\alpha+1}(\mathbb{R}, X)$ of (1.1). Fix $y \in X$ and $s_0 \in \mathbb{R}$, and define $f(t) = e^{it\eta}y$, $t \in \mathbb{R}$. Let u(t) be the unique solution of (1.1) such that L(f) = u.

We claim that $v(t) := u(t + s_0)$ and $w(t) := e^{i\eta s_0}u(t)$ both satisfy (1.1) when f is replaced by $e^{is_0\eta}f(t)$. First we notice that

$$v_t(s) = u(t + s_0 + s) = u_{t+s_0}(s).$$

Hence $F(v_t) = F(u_{t+s_0})$. Then an easy computation shows that v(t) satisfies (1.1). On the other hand,

$$w_t(s) = w(t+s) = e^{i\eta s_0}u(t+s) = e^{i\eta s_0}u_t(s)$$

Hence $F(w_t) = e^{is_0\eta}F(u_t)$. Thus

$$e^{i\eta s_0}u'(t) = e^{i\eta s_0}(Au(t) + F(u_t) + f(t)) = Aw(t) + F(w_t) + e^{i\eta s_0}f(t),$$

that is, w(t) satisfies (1.1). By uniqueness we again have

$$u(t+s) = e^{i\eta s}u(t)$$

for all $t, s \in \mathbb{R}$. In particular, when t = 0 we obtain

$$u(s) = e^{i\eta s}u(0), \quad s \in \mathbb{R}$$

Now let $x = u(0) \in D(A)$. Then $u(t) = e^{i\eta t}x$ satisfies (1.1), that is, by (3.3),

$$i\eta u(t) = Au(t) + F(u_t) + e^{i\eta t}y = Au(t) + e^{i\eta t}F_{\eta}x + e^{i\eta t}y$$

In particular, if t = 0 we obtain

$$i\eta x = Ax + F_{\eta}x + y,$$

since x = u(0). Thus

$$(3.4) \qquad (i\eta I - A - F_{\eta})x = y$$

and hence $i\eta I - A - F_{\eta}$ is bijective. This shows assertion (i) of the proposition.

Next we notice that $u(t) = (i\eta - A - F_{\eta})^{-1}y$ by (3.4). Since $||e_{\eta} \otimes x||_{\alpha} = K_{\alpha}|\eta|^{\alpha}||x||$, we have

$$K_{\alpha}|\eta|^{\alpha} \|i\eta(i\eta - A - F_{\eta})^{-1}y\| = \|e_{\eta} \otimes i\eta(i\eta - A - F_{\eta})^{-1}y\|_{\alpha} = \|u'\|_{\alpha}$$

$$\leq \|u\|_{1+\alpha} = \|Lf\|_{1+\alpha} \leq \|L\| \|f\|_{\alpha} \leq \|L\|(\|f\|_{\alpha} + \|f(0)\|)$$

$$= \|L\|(\|e_{\eta} \otimes y\|_{\alpha} + \|y\|) \leq \|L\|(K_{\alpha}|\eta|^{\alpha} + 1)\|y\|.$$

Hence for $\varepsilon > 0$ it follows that

$$\sup_{|\eta|>\varepsilon} \|i\eta(i\eta - A - F_{\eta})^{-1}y\| \le \|L\| \sup_{|\eta|>\varepsilon} \left(1 + \frac{1}{K_{\alpha}|\eta|^{\alpha}}\right) < \infty.$$

Recall that a Banach space X has Fourier type p, where $1 \le p \le 2$, if the Fourier transform defines a bounded linear operator from $L^p(\mathbb{R}, X)$ to $L^q(\mathbb{R}, X)$, where q is the conjugate index of p. For example, the space $L^p(\Omega)$, where $1 \le p \le 2$, has Fourier type p; X has Fourier type 2 if and only if X is a Hilbert space; X has Fourier type p if and only if X^* has Fourier type p. Every Banach space has Fourier type 1; X is B-convex if it has Fourier type p for some p > 1. Every uniformly convex space is B-convex.

Our main result in this paper establishes that the converse of Proposition 3.3 is true. THEOREM 3.4. Let A be a closed linear operator defined on a B-convex space X. Then the following assertions are equivalent:

- (i) Equation (1.1) is C^{α} -well posed.
- (ii) $\sigma(\Delta) = \emptyset$ and $\sup_{\eta \in \mathbb{R}} \|i\eta(i\eta I A F_{\eta})^{-1}\| < \infty$.

Proof. (ii) \Rightarrow (i). Define the operator $M(t) = (B_t - A)^{-1}$, with $B_t = itI - F_t$. Note that by hypothesis $M \in C^1(\mathbb{R}, \mathcal{B}(X, [D(A)]))$.

We claim that M is a C^{α} -multiplier. In fact, by hypothesis it is clear that $\sup_{t \in \mathbb{R}} \|M(t)\| < \infty$. On the other hand, we have

$$M'(t) = -M(t)B'_t M(t)$$

with $B'_t = iI - F'_t$ and $F'_t(x) = F(e'_t x)$ where $e'_t(s) = ise^{ist}$. Note that for each $x \in X$,

(3.5)
$$\|F_t x\|_X \le \|F(e_t x)\|_X \le \|F\| \|e_t x\|_{\infty} \le \|F\| \|x\|_X,$$

and

(3.6)
$$\|F'_t x\|_X \le \|F(e'_t x)\|_X \le \|F\| \|e'_t x\|_\infty \le r \|F\| \|x\|_X.$$

Hence B'_t is uniformly bounded with respect to $t \in \mathbb{R}$ and we conclude from the hypothesis that

(3.7)
$$\sup_{t \in \mathbb{R}} \|tM'(t)\| = \sup_{t \in \mathbb{R}} \|[tM(t)]B'_tM(t)\| < \infty,$$

and hence the claim follows from Theorem 2.2 and Remark 2.3.

Now, define $N \in C^1(\mathbb{R}, \mathcal{B}(X))$ by $N(t) = (id \cdot M)(t)$, where id(t) := it for all $t \in \mathbb{R}$. We will prove that N is a C^{α} -multiplier. In fact, with a direct calculation, we have

$$tN'(t) = itM(t) + it^{2}M'(t) = itM(t) + i[itM(t)]B'_{t}[itM(t)]$$

= N(t) + iN(t)B'_{t}N(t).

By hypothesis and (3.6) it follows that

$$\sup_{t\in\mathbb{R}} \|tN'(t)\| \le \sup_{t\in\mathbb{R}} \|N(t)\| + \sup_{t\in\mathbb{R}} \|N(t)B'_tN(t)\| < \infty,$$

hence from Theorem 2.2 and Remark 2.3 the claim is proved.

A similar calculation proves that $P \in C^1(\mathbb{R} \setminus \{0\}, \mathcal{B}(X))$ defined by $P(t) = F_t M(t)$ is a C^{α} -multiplier. In fact, we have $tP'(t) = F'_t N(t) + F_t tM'(t)$, and hence from (3.5), (3.6) and (3.7) we see that $\sup_{t \in \mathbb{R}} ||P(t)|| + \sup_{t \in \mathbb{R}} ||tP'(t)|| < \infty$.

Let $f \in C^{\alpha}(\mathbb{R}, X)$. Since M, N and P are C^{α} -multipliers, there exist $\overline{u} \in C^{\alpha}(\mathbb{R}, [D(A)]), v \in C^{\alpha}(\mathbb{R}, X)$ and $w \in C^{\alpha}(\mathbb{R}, X)$ such that

Maximal regularity of delay equations

(3.8)
$$\int_{\mathbb{R}} \overline{u}(s)(\mathcal{F}\phi)(s) \, ds = \int_{\mathbb{R}} \mathcal{F}(\phi \cdot M)(s)f(s) \, ds,$$

(3.9)
$$\int_{\mathbb{R}} v(s)(\mathcal{F}\psi)(s) \, ds = \int_{\mathbb{R}} \mathcal{F}(\psi \cdot id \cdot M)(s)f(s) \, ds,$$

(3.10)
$$\int_{\mathbb{R}} w(s)(\mathcal{F}\varphi)(s) \, ds = \int_{\mathbb{R}} \mathcal{F}(\varphi \cdot F_{\cdot}M)(s)f(s) \, ds,$$

for all $\phi, \psi, \varphi \in C^{\infty}_{c}(\mathbb{R})$.

Note that for $x \in X$ and $\phi \in C^{\infty}_{c}(\mathbb{R})$ we have

(3.11)
$$\mathcal{F}(\phi F.M)(s)x = \int_{\mathbb{R}} e^{-ist}\phi(t)F_tM(t)x\,dt = \int_{\mathbb{R}} e^{-ist}\phi(t)F(e_tM(t)x)\,dt,$$

where $\int_{\mathbb{R}} e^{-ist} \phi(t) e_t M(t) x \, dt \in C([-r,0],X)$. Now, for all $\theta \in [-r,0]$ we have

$$\left\| \int_{\mathbb{R}} e^{-ist} \phi(t) e_t(\theta) M(t) x \, dt \right\|_X \le \int_{\mathbb{R}} |\phi(t)| \, \|M(t)x\|_X \, dt.$$

Since F is bounded, we deduce that

(3.12)
$$\mathcal{F}(\phi \cdot F.M)(s)x = F(\mathcal{F}(\phi \cdot e.M)(s)x).$$

Furthermore, observe that for $\theta \in [-r, 0]$ fixed we have $e_{\cdot}(\theta)\phi \in C_{c}^{\infty}(\mathbb{R})$. Using (3.8) we obtain

$$\int_{\mathbb{R}} \overline{u}(s+\theta)(\mathcal{F}\phi)(s)ds = \int_{\mathbb{R}} \overline{u}(s+\theta) \int_{\mathbb{R}} e^{-ist}\phi(t) dt ds$$
$$= \int_{\mathbb{R}} \overline{u}(s+\theta) \int_{\mathbb{R}} e^{-i(s+\theta)t} e_t(\theta)\phi(t) dt ds$$
$$= \int_{\mathbb{R}} \overline{u}(s+\theta)(\mathcal{F}e_{\cdot}(\theta)\phi)(s+\theta) ds$$
$$= \int_{\mathbb{R}} \overline{u}(s)(\mathcal{F}e_{\cdot}(\theta)\phi)(s) ds$$
$$= \int_{\mathbb{R}} \mathcal{F}(e_{\cdot}(\theta)\phi \cdot M)(s)f(s) ds,$$

hence $\int_{\mathbb{R}} \overline{u}_s(\mathcal{F}\phi)(s) \, ds = \int_{\mathbb{R}} \mathcal{F}(e_{\cdot}\phi \cdot M)(s)f(s) \, ds.$

Since $\theta \mapsto \int_{\mathbb{R}} \overline{u}_s(\theta)(\mathcal{F}\phi)(s) \, ds \in C([-r,0],X)$ (see [3, p. 25]), from the boundedness of F and (3.12) it follows that

(3.13)
$$\int_{\mathbb{R}} \mathcal{F}(\phi \cdot F_{\cdot}M)(s)f(s) \, ds = \int_{\mathbb{R}} F\mathcal{F}(\phi \cdot e_{\cdot}M)(s)f(s) \, ds$$
$$= \int_{\mathbb{R}} F\overline{u}_{s}(\mathcal{F}\phi)(s) \, ds$$

for all $\phi \in C_{c}^{\infty}(\mathbb{R})$. Since F M is a C^{α} -multiplier, from (3.10) we obtain

$$\int_{\mathbb{R}} w(s)(\mathcal{F}\phi)(s) \, ds = \int_{\mathbb{R}} F\overline{u}_s(\mathcal{F}\phi)(s) \, ds$$

for all $\phi \in C_c^{\infty}(\mathbb{R})$. We conclude that there exists $y_1 \in X$ satisfying $w(t) = F\overline{u}_t + y_1$, proving that $F\overline{u}_{\cdot} \in C^{\alpha}(\mathbb{R}, X)$.

Choosing $\phi = id \cdot \psi$ in (3.8) we deduce from (3.9) that

(3.14)
$$\int_{\mathbb{R}} \overline{u}(s) \mathcal{F}(id \cdot \psi)(s) \, ds = \int_{\mathbb{R}} v(s) (\mathcal{F}\psi)(s) \, ds,$$

and it follows from Lemma 6.2 in [3] that $\overline{u} \in C^{\alpha+1}(\mathbb{R}, X)$ and $\overline{u}' = v + y_2$ for some $y_2 \in X$.

Since (id I - F - A)M = I we have $id \cdot M = I + F M + AM$ and replacing in (3.9) gives

$$(3.15) \qquad \int_{\mathbb{R}} v(s)(\mathcal{F}\phi)(s) \, ds = \int_{\mathbb{R}} \mathcal{F}(\phi \cdot (I + F_{\cdot}M + AM))(s)f(s) \, ds$$
$$= \int_{\mathbb{R}} (\mathcal{F}\phi)(s)f(s) \, ds + \int_{\mathbb{R}} \mathcal{F}(\phi \cdot F_{\cdot}M)(s)f(s) \, ds$$
$$+ \int_{\mathbb{R}} \mathcal{F}(\phi \cdot AM)(s)f(s) \, ds$$

for all $\phi \in C^{\infty}_{c}(\mathbb{R})$.

Since $\overline{u}(t) \in D(A)$ and $\mathcal{F}(\phi \cdot M)(s)x \in D(A)$ for all $x \in X$, using the fact that A is closed and inserting (3.8) and (3.13) in (3.15) we obtain

(3.16)
$$\int_{\mathbb{R}} v(s)(\mathcal{F}\phi)(s) \, ds = \int_{\mathbb{R}} F\overline{u}_s(\mathcal{F}\phi)(s) \, ds + \int_{\mathbb{R}} A\overline{u}(s)(\mathcal{F}\phi)(s) f(s) \, ds + \int_{\mathbb{R}} f(s)(\mathcal{F}\phi)(s) \, ds$$

for all $\phi \in C_c^{\infty}(\mathbb{R})$. By Lemma 5.1 in [3] this implies that for some $y_3 \in X$ one has

$$v(t) = F\overline{u}_t + A\overline{u}(t) + f(t) + y_3, \quad t \in \mathbb{R}.$$

Consequently, $\overline{u}'(t) = v(t) + y_2 = F\overline{u}_t + A\overline{u}(t) + f(t) + y$ where $y = y_2 + y_3$. In particular $A\overline{u} \in C^{\alpha}(\mathbb{R}, X)$. Now, by hypothesis we can define $x = (A + F)^{-1}y \in D(A)$, and then it is clear that $u(t) := \overline{u}(t) + x$ is in $C^{\alpha+1}(\mathbb{R}, X) \cap C^{\alpha}(\mathbb{R}, [D(A)])$ and satisfies (1.1). We have shown that a solution of (1.1) exists.

In order to prove uniqueness, suppose that

(3.17)
$$u'(t) = Au(t) + Fu_t, \quad t \in \mathbb{R},$$

where $u \in C^{\alpha+1}(\mathbb{R}, X) \cap C^{\alpha}(\mathbb{R}, [D(A)])$ and, as shown, $Au, Fu_{\cdot} \in C^{\alpha}(\mathbb{R}, X)$.

We claim that $\widehat{u}_{\cdot}(\lambda) \in C([-r, 0], X)$ for $\operatorname{Re} \lambda \neq 0$. In fact, let $\operatorname{Re} \lambda > 0$. Then

$$\begin{aligned} \|e^{-\lambda t}u_t\|_{\infty} &= \sup_{\theta \in [-r,0]} \|e^{-\lambda t}u(t+\theta)\|_X \le \sup_{\theta \in [-r,0]} e^{-\operatorname{Re}\lambda t}(1+|t+\theta|^{\alpha}) \\ &\le e^{-\operatorname{Re}\lambda t}(1+(|t|+r)^{\alpha}). \end{aligned}$$

Since $e^{-\operatorname{Re}\lambda t}(1+(|t|+r)^{\alpha}) \in L^1(\mathbb{R}_+)$, applying the dominated convergence theorem we obtain the claim. Analogously we argue for $\operatorname{Re}\lambda < 0$.

Now, note that for $\operatorname{Re} \lambda > 0$ and $\theta \in [-r, 0]$,

$$\begin{split} \int_{0}^{\infty} e^{-\lambda t} u_{t}(\theta) \, dt &= \int_{0}^{\infty} e^{-\lambda t} u(t+\theta) \, dt = \int_{\theta}^{\infty} e^{-\lambda (t-\theta)} u(t) \, dt \\ &= e^{\lambda \theta} \int_{\theta}^{\infty} e^{-\lambda t} u(t) \, dt = e^{\lambda \theta} \Big(\int_{0}^{\infty} e^{-\lambda t} u(t) \, dt + \int_{\theta}^{0} e^{-\lambda t} u(t) \, dt \Big) \\ &= e^{\lambda \theta} \widehat{u}(\lambda) + e^{\lambda \theta} \int_{\theta}^{0} e^{-\lambda t} u(t) \, dt. \end{split}$$

Analogously if $\operatorname{Re} \lambda < 0$ and $\theta \in [-r, 0]$, then

$$-\int_{-\infty}^{0} e^{-\lambda t} u_t(\theta) dt = -\int_{-\infty}^{0} e^{-\lambda t} u(t+\theta) dt = -\int_{-\infty}^{\theta} e^{-\lambda(t-\theta)} u(t) dt$$
$$= -e^{\lambda \theta} \Big(\int_{-\infty}^{0} e^{-\lambda t} u(t) dt - \int_{\theta}^{0} e^{-\lambda t} u(t) dt \Big)$$
$$= e^{\lambda \theta} \hat{u}(\lambda) + e^{\lambda \theta} \int_{\theta}^{0} e^{-\lambda t} u(t) dt.$$

Since F is bounded, we obtain

(3.18) $\widehat{Fu}(\lambda) = F\widehat{u}(\lambda) = Fg\widehat{u}(\lambda) + Fgh \quad \text{for } \operatorname{Re} \lambda \neq 0$

where $g(\theta) = e^{\lambda\theta}$ and $h(\theta) = \int_{\theta}^{0} e^{-\lambda t} u(t) dt$. Note that $gh \in C([-r, 0], X)$. Since $\widehat{u'}(\lambda) = \lambda \widehat{u}(\lambda) - u(0)$ for $\operatorname{Re} \lambda \neq 0$, one has $\widehat{u}(\lambda) \in D(A)$ and

(3.19)
$$\widehat{u'}(\lambda) = \widehat{Au}(\lambda) + \widehat{Fu}(\lambda) \quad \text{for } \operatorname{Re} \lambda \neq 0.$$

Using the fact that A is closed, from (3.18) and (3.19) we get

$$(\lambda I - Fg - A)\widehat{u}(\lambda) = u(0) + Fgh$$
 for all $\lambda \in \mathbb{C} \setminus i\mathbb{R}$.

Since $i\mathbb{R} \subset \rho(A)$, it follows that the Carleman spectrum $\operatorname{sp}_{\mathcal{C}}(u)$ of u is empty. Hence $u \equiv 0$ by [2, Theorem 4.8.2].

We denote by $\mathcal{K}_F(X)$ the class of operators in X satisfying (ii) in the above theorem. If $A \in \mathcal{K}_F(X)$ we have $u', Au, Fu \in C^{\alpha}(\mathbb{R}, X)$, and hence we deduce the following result.

COROLLARY 3.5. Let X be B-convex and $A \in \mathcal{K}_F(X)$. Then

- (i) (1.1) has a unique solution in $Z := C^{\alpha+1}(\mathbb{R}, X) \cap C^{\alpha}(\mathbb{R}, [D(A)])$ if and only if $f \in C^{\alpha}(\mathbb{R}, X)$.
- (ii) There exists a constant M > 0 independent of $f \in C^{\alpha}(\mathbb{R}, X)$ such that

$$(3.20) ||u'||_{C^{\alpha}(\mathbb{R},X)} + ||Au||_{C^{\alpha}(\mathbb{R},X)} + ||Fu_{\cdot}||_{C^{\alpha}(\mathbb{R},X)} \le M ||f||_{C^{\alpha}(\mathbb{R},X)}.$$

REMARK 3.6. The inequality (3.20) is a consequence of the closed graph theorem and known as the *maximal regularity property* for equation (1.1). From it we deduce that the operator L defined by

$$D(L) = Z,$$
 $(Lu)(t) = u'(t) - Au(t) - Fu_t,$

is an isomorphism onto. In fact, since A is closed, the space Z becomes a Banach space under the norm

$$||u||_{Z} := ||u||_{C^{\alpha}(\mathbb{R},X)} + ||u'||_{C^{\alpha}(\mathbb{R},X)} + ||Au||_{C^{\alpha}(\mathbb{R},X)}.$$

Such isomorphisms are crucial for the treatment of nonlinear versions of (1.1).

Assume X is B-convex and $A \in \mathcal{K}_F(X)$ and consider the semilinear problem

(3.21)
$$u'(t) = Au(t) + Fu_t + f(t, u(t)), \quad t \ge 0.$$

Define the Nemytskiĭ superposition operator $N : Z \to C^{\alpha}(\mathbb{R}, X)$ by N(v)(t) = f(t, v(t)), and the bounded linear operator

$$S: C^{\alpha}(\mathbb{R}, X) \to Z$$

by S(g) = u where u is the unique solution of the linear problem

$$u'(t) = Au(t) + Fu_t + g(t).$$

Then to solve (3.21) we have to show that the operator $H: Z \to Z$ defined by H = SN has a fixed point.

For related information we refer to Amann [1] where results on quasilinear delay equations involving the method of maximal regularity are presented.

We finish this paper with the following result which gives us a useful criterion to verify condition (ii) in the above theorem.

THEOREM 3.7. Let X be a B-convex space and let $A : D(A) \subset X \to X$ be a closed linear operator such that $i\mathbb{R} \subset \varrho(A)$ and $\sup_{s \in \mathbb{R}} ||A(isI-A)^{-1}|| =: M < \infty$. Suppose that

(3.22)
$$||F|| < \frac{1}{||A^{-1}||M}.$$

Then for each $f \in C^{\alpha}(\mathbb{R}, X)$ there is a unique function $u \in C^{\alpha+1}(\mathbb{R}, X) \cap C^{\alpha}(\mathbb{R}, [D(A)])$ such that (1.1) is satisfied.

Proof. From the identity

 $isI - A - F_s = (isI - A)(I - F_s(isI - A)^{-1}), \quad s \in \mathbb{R},$

it follows that $isI - A - F_s$ is invertible whenever $||F_s(isI - A)^{-1}|| < 1$. Next observe that

$$(3.23) ||F_s|| \le ||F||,$$

and hence

 $||F_s(isI - A)^{-1}|| = ||F_sA^{-1}A(isI - A)^{-1}|| \le ||F|| \, ||A^{-1}||M =: \alpha.$

Therefore, under the condition (3.22) we obtain $\sigma(\Delta) = \emptyset$ and the identity

(3.24)
$$(isI - A - F_s)^{-1} = (isI - A)^{-1}(I - F_s(isI - A)^{-1})$$

 $= (isI - A)^{-1}\sum_{n=0}^{\infty} [F_s(isI - A)^{-1}]^n.$

For all $n \in \mathbb{N}$ we have

$$\begin{aligned} \|is(isI - A)^{-1}[F_s(isI - A)^{-1}]^n\| \\ &\leq \|is(isI - A)^{-1}\| \|F_s A^{-1} A(isI - A)^{-1}\|^n \\ &\leq \|is(isI - A)^{-1}\|F_s A^{-1}\|^n \|A(isI - A)^{-1}\|^n \\ &\leq \|is(isI - A)^{-1}\| \|A^{-1}\|^n \|F_s\|^n \|A(isI - A)^{-1}\|^n \end{aligned}$$

By (3.23) we obtain

$$\|is(isI - A)^{-1}[F_s(isI - A)^{-1}]^n\| \le \|is(isI - A)^{-1}\| \|A^{-1}\|^n \|F\|^n M^n$$

= $\|is(isI - A)^{-1}\|\alpha^n$.

Finally, by (3.24), one has

$$||is(isI - A - F_s)^{-1}|| \le ||is(isI - A)^{-1}|| \frac{1}{1 - \alpha} \le \frac{M + 1}{1 - \alpha}.$$

This proves that $\{is(isI - A - F_s)^{-1}\}$ is bounded and the conclusion follows from Theorem 3.4.

References

- [1] H. Amann, Quasilinear parabolic functional evolution equations, preprint.
- [2] W. Arendt, C. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplace Transforms and Cauchy Problems, Monogr. Math. 96, Birkhäuser, Basel, 2001.
- W. Arendt, C. Batty and S. Bu, Fourier multipliers for Hölder continuous functions and maximal regularity, Studia Math. 160 (2004), 23-51.
- [4] A. Bátkai, E. Fašanga and R. Shvidkoy, Hyperbolicity of delay equations via Fourier multipliers, Acta Sci. Math. (Szeged) 69 (2003), 131–145.
- [5] A. Bátkai and S. Piazzera, Semigroups for Delay Equations, Res. Notes Math. 10, A.K. Peters, Boston, MA, 2005.

- [6] A. Bátkai and S. Piazzera, Semigroups and linear partial differential equations with delay, J. Math. Anal. Appl. 264 (2001), 1–20.
- [7] R. Denk, M. Hieber and J. Prüss, *R-boundedness, Fourier multipliers and problems of elliptic and parabolic type*, Mem. Amer. Math. Soc. 166 (2003), no. 788.
- [8] J. K. Hale, Functional Differential Equations, Appl. Math. Sci. 3, Springer, 1971.
- Y. Latushkin and F. Räbiger, Operator valued Fourier multipliers and stability of strongly continuous semigroups, Integral Equations Operator Theory 51 (2005), 375-394.
- [10] C. Lizama, Fourier multipliers and periodic solutions of delay equations in Banach spaces, J. Math. Anal. Appl., to appear.
- [11] M. Stein, H. Vogt and J. Voigt, The modulus semigroup for linear delay equations III, J. Funct. Anal. 220 (2005), 388-400.
- G. Webb, Functional differential equations and nonlinear semigroups in L^p-spaces, J. Differential Equations 29 (1976), 71–89.
- [13] J. Wu, Theory and Applications of Partial Differential Equations, Appl. Math. Sci. 119, Springer, 1996.

Departamento de Matemática Facultad de Ciencias Universidad de Santiago de Chile Casilla 307, Correo 2 Santiago, Chile E-mail: clizama@lauca.usach.cl vpoblete@lauca.usach.cl

> Received November 16, 2005 Revised version March 6, 2006

(5803)