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Banah-valued axiomati spetrabySeán Dineen and Robin E. Harte (Dublin)Abstrat. Using axiomati joint spetra we obtain a funtional alulus whih ex-tends our previous Gelfand�Waelbroek type results to inlude a Banah-valued Taylor�Waelbroek spetrum.1. Introdution. In previous papers [5�8℄ we developed a spetral the-ory and funtional alulus for an in�nite number of elements in a unitalBanah algebra A. In [8℄ we obtained a funtional alulus for the Banah-valued spetrum introdued by Waelbroek [20℄ when A is ommutative.In this paper we disuss axiomati spetra and obtain a holomorphi fun-tional alulus for ommuting elements in A ⊗̂γ X with respet to a lass ofspetra whih inludes the ommutative ase and the Taylor spetrum. Thefuntional alulus is more inlusive than that onsidered in [17, 22℄ as weonsider here a more general lass of holomorphi funtions.We refer to Curto [2℄ for a omprehensive survey of spetral theory fora �nite number of ommuting elements in a Banah algebra. Bakgroundinformation on tensor produts may be found in [3, 16℄ and we refer to[4, 12℄ for information on in�nite-dimensional holomorphy.Throughout this artile A will denote a Banah algebra over the omplexnumbers C, with identity e. We let C(A) and C0(A) denote, respetively, theset of all ommuting systems of elements and �nite ommuting systems ofelements in A. We let S(A) denote the spetrum of the unital Banah alge-bra A, that is, the set of all non-zero multipliative linear funtionals on A.We denote Banah spaes, always assumed to be over C, by X, Y, . . . and let
B(X) denote the Banah algebra of bounded linear operators from X into X.2. Spetral systems. Axiomati joint spetra were initially introduedby Sªodkowski and �elazko in 1974 [17℄. Sine then they have proved useful2000 Mathematis Subjet Classi�ation: 46G25, 46B15, 47A10, 46G20.Key words and phrases: funtional alulus, Taylor�Waelbroek spetrum, spetralsystem, polynomial extension. [213℄



214 S. Dineen and R. E. Harteboth as a theoretial tool and as a means of omparing the di�erent onretespetra that have been introdued over the years. Slight variations in thede�nition have also appeared in the literature (see for instane [2, 9, 15,17, 22℄), but the di�erenes are generally only a matter of onveniene. Wehave hosen a de�nition whih displays important features but whih is notwithout redundanies and we address this point in the remarks below.Definition 1 ([2, 17, 22℄). A spetral system for the unital Banah al-gebra A is a mapping σ∗ whih maps (ai)i∈I ∈ C0(A) onto a ompat subsetof C
I , the spetrum of (ai)i∈I , suh that the following hold:(a) σ∗({a}) is a non-empty subset of σ(a), the usual spetrum of a ∈ A,for any singleton set {a} in C0(A),(b) (the �nite polynomial spetral mapping property)

P (σ∗(a)) = σ∗(P (a))for all a ∈ C0(A) and all polynomials P between �nite-dimensionalspaes.() (the projetion property)
πI

J(σ∗((ai)i∈I)) = σ∗((ai)i∈J)for any subset J of the �nite set I where πI
J denotes the anonialprojetion from C

I onto C
J .

Remarks. (1) Some authors [2, 15℄ replae (a) with the ondition
σ∗({a}) = σ(a). In either ase we have σ∗({0}) = σ(0) = {0}.(2) Let a = (a1, . . . , an) ∈ C0(A). If j = (j1, . . . , jn) where eah ji isa non-negative integer and z = (z1, . . . , zn) ∈ C

n, let zj = z
j1
1 · · · zjn

n and
a

j = a
j1
1 · · · ajn

n . If P : C
n → C

m, P = (P1, . . . , Pm) where eah Pi is a
C-valued polynomial in n variables then eah Pi is a �nite sum ∑

J αjz
j,where αj ∈ C, and Pi(a) =

∑
J αja

j .(3) If I is a �nite set and J ⊂ I then the projetion πI
J((zi)i∈I) := (zj)j∈Jis a polynomial between �nite-dimensional spaes, and applying the �nitepolynomial spetral mapping property we see that (b)⇒() in De�nition 1.On the other hand, suppose (a) and () hold and also the one way spetralmapping property, that is,

P (σ∗(a)) ⊂ σ∗(P (a))for all a ∈ C0(A) and all polynomials P between �nite-dimensional spaes.Suppose a = (a1, . . . , an) ∈ C0(A), P : C
n → C

m is a polynomial and
µ := (µj)

m
j=1 ∈ σ∗(P (a)). By the projetion property µ ∈ πm(σ∗(a, P (a)))where

πm(z1, . . . , zn, w1, . . . , wm) = (w1, . . . , wm).



Banah-valued axiomati spetra 215Hene there exists λ = (λi)
n
i=1 ∈ C

n suh that (λ, µ) = ((λi)
n
i=1), (µj)

m
j=1) ∈

σ∗(a, P (a)). By the projetion property λ ∈ σ∗(a). Let
Q(z1, . . . , zn, w1, . . . , wm) = P (z1, . . . , zn) − (w1, . . . , wm).Then Q is a polynomial between �nite-dimensional spaes and Q(a,b) =

P (a)− b for any b = (bj)
m
j=1. By the one way polynomial spetral mappingproperty

Q(σ∗(a, P (a))) ⊂ σ∗(Q(a, P (a))) = σ∗({0})where 0 = (0, . . . , 0) ∈ C0(A). By the projetion property and (1), σ∗({0}) =
0 ∈ C

n. Hene Q(λ, µ) = P (λ) − µ = 0 and µ = P (λ) ∈ σ∗(P (a)). So
σ∗(P (a)) ⊂ P (σ∗(a)) and we have shown that the one way �nite polyno-mial spetral mapping property and the projetion property imply the �nitepolynomial spetral mapping property.Our �rst proposition, Theorem 2.3 in [17℄, says that spetral systemsalways extend from �nite to in�nite olletions.Proposition 1. If σ∗ is a spetral system for C0(A) then there exists aunique mapping , that we still denote by σ∗, whih maps (ai)i∈I ∈ C(A) ontoa ompat subset of C

I satisfying the projetion property for in�nite systemsand whose restrition to C0(A) oinides with σ∗.By (a) and (b) of De�nition 1 and by Proposition 1 the spetrum of
a := (ai)i∈I ∈ C(A) is a non-empty ompat subset of C

I .The projetion property and the �nite polynomial spetral mapping prop-erty an be ombined to transfer polynomial identities between elements in
a := (ai)i∈I and λ := (λi)i∈I ∈ σ∗(a). The method is very simple and useful(see [10℄ and Theorem 11.4.3 in [11℄). We give the full details in one ase inLemma 1 and su�ient details in the other ases that we require.Lemma 1. Let a = (ai)i∈I ∈ C(A) where A is a unital Banah algebra.Let σ∗ denote a spetral system and suppose λ := (λi)i∈I ∈ σ∗(a). If i, j, k ∈ Ithen the following are true:(i) If ai + aj = ak then λi + λj = λk.(ii) If ai = aj then λi = λj.(iii) If ai · aj = ak then λi · λj = λk.(iv) If α ∈ C and αai = aj then αλi = λj .Proof. (i) Let π((ai)i∈I) = (ai, aj , ak) and P (zi, zj , zk) = zi + zj − zk.By the projetion property (λi, λj , λk) ∈ σ∗(a) and by the �nite polynomialspetral mapping property

P (λi, λj , λk) = λi + λj − λk

∈ σ∗(P ({ai, aj, ak}) = σ∗({ai + aj − ak}) = σ({0}) = 0.



216 S. Dineen and R. E. HarteHene P (λi, λj , λk) = λi + λj − λk = 0. For (ii) use P (zi, zj) = zi − zj, for(iii) use P (zi, zj, zk) = zi · zj − zk, and for (iv) use P (zi, zj) = αzi − zj andthe method used to prove (i). This ompletes the proof.Our next result is Theorem 3.3 in [17℄. We inlude a simple proof basedon Lemma 1.Proposition 2. Let σ∗ denote a spetral system. If B is a losed om-mutative unital subalgebra of the unital Banah algebra A then there exists
S∗(B) ⊂ S(B) suh that

σ∗((ai)i∈I) = {(m(ai))i∈I : m ∈ S∗(B)}for all (ai)i∈I ⊂ B.Proof. If b := B = (bj)j∈J for some indexing set J and λ := (λj)j∈J ∈

σ∗(b), let λ̃ : B → C be de�ned by λ̃(bj) = λj . By (i), (iii), and (iv) above,
λ̃ ∈ S(B). Let S∗(B) := {λ̃ : λ ∈ σ∗(B)}. Then σ∗(b) = {(m(bj))j∈J : m ∈
S∗(B)}.Let a = (ai)i∈I and suppose ai ∈ B for all i and let c = (a,b). Then
c ∈ C(A). By the projetion property (λi)i∈I ∈ σ∗(a) if and only if thereexists (βj)j∈J ∈ σ∗(B) suh that ((λi)i∈I , (βj)j∈J) ∈ σ∗(c). By the above,there exists m ∈ S∗(B) suh that βj = m(bj) for all j ∈ J . If i ∈ I thenthere exist j ∈ J suh that ai = bj . Hene λi = βj = m(ai) = m(bj) and
(λi)i∈I = (m(ai))i∈I . Conversely suppose m ∈ S∗(B). Then (m(bj))j∈J ∈
σ∗(b) and by the projetion property there exists (λi)i∈I ∈ σ∗(a) suh that
((λi)i∈I , (m(bj)j∈J)) ∈ σ∗(c). As above, λi = m(ai) for all i ∈ I and by theprojetion property (m(ai))i∈I ∈ σ∗(a). This ompletes the proof.3. Tensor produts. We now introdue the setting in whih we willoperate. To avoid the exessive use of parentheses we use interhangeablythe following funtional notation: (f)x := f(x) =: (f)(x).Definition 2. Let γ denote a uniform ross-norm, let X denote a Ba-nah spae and let A denote a Banah algebra with identity e. If a ∈
A ⊗̂γ X we let Aa denote the losed unital subalgebra of A generated by
((e ⊗ x′)a)x′∈X′ and all Aa the algebra generated by a. If Aa is ommuta-tive we say that a is ommutative. For a ommutative in A ⊗̂γ X and σ∗ aspetral system let

σ∗(a) = σ∗(((e⊗ x′)a)x′∈X′).If λ ∈ σ∗(a) then λ ∈ C
X′ and there exists a unique mapping λ̃ : X ′ → Csuh that λx′ = λ̃(x′) for all x′ ∈ X ′. By Lemma 1, λ̃ is a linear mappingon X ′. Sine σ∗((e ⊗ x′)a) ⊂ σ((e ⊗ x′)a) and ‖(e ⊗ x′)a‖ ≤ ‖x′‖ · ‖a‖ wehave |λ̃(x′)| ≤ ‖a‖ · ‖x′‖ for all x′ ∈ X ′. Hene λ̃ ∈ X ′′ and ‖λ̃‖ ≤ ‖a‖.



Banah-valued axiomati spetra 217To re�ne this result we need the following lemma about arbitrary uniformross-norms on Banah spaes.Lemma 2. If γ is a uniform ross-norm and a ∈ X ⊗̂γ Y where X and
Y are Banah spaes then the mappings

T l
a : (X ′, σ(X ′, X)) → Y, T l

a(φ) = (φ ⊗ 1Y )a,

T r
a : (Y ′, σ(Y ′, Y )) → X, T r

a (θ) = (1X ⊗ θ)aare uniformly ontinuous on bounded sets.Proof. It su�es to onsider the mapping T l
a. Let a :=

∑n
i=1 xi ⊗ yi ∈

X ⊗ Y . If (φα)α and φα
ω∗

−→ φ as α → ∞ then
T l
a(φα) =

n∑

i=1

φα(xi)yi →
n∑

i=1

φ(xi)yi = T l
a(φ)(1)and T l

a is ontinuous on (X ′, σ(X ′, X)).Now suppose a ∈ X ⊗̂γ Y , φα ∈ X ′, ‖φα‖ ≤ M and φα
ω∗

−→ φ as α → ∞.Let ε > 0 be arbitrary. Choose b ∈ X ⊗ Y suh that ‖a − b‖ ≤ ε. Then
‖T l

a(φα) − T l
a(φ)‖ = ‖(φα ⊗ 1Y )a− (φ ⊗ 1Y )a‖ = ‖((φα − φ) ⊗ 1Y )a‖

≤ ‖((φα − φ) ⊗ 1Y )b‖ + ‖((φα − φ) ⊗ 1Y )(a− b)‖

≤ ‖((φα − φ) ⊗ 1Y )b‖ + 2Mε.Sine b ∈ X ⊗ Y , ((φα − φ) ⊗ 1Y )b → 0. Hene T l
a(φα) → T l

a(φ) as α → ∞and this ompletes the proof.If X is a Banah spae we let JX denote the anonial mapping from Xinto X ′′.Proposition 3. If a ∈ A ⊗̂γ X is ommutative then there exists a non-empty norm ompat subset A ⊂ {x ∈ X : ‖x‖ ≤ ‖a‖} suh that JX(A) =
σ∗(a).Proof. Let x′′ ∈ σ∗(a) ⊂ X ′′ and let (φα)α denote a bounded net in X ′whih onverges w∗ to φ. Then

x′′(φα) − x′′(φ) = x′′(φα − φ) ∈ σ∗((e ⊗ (φα − φ))a)and
|x′′(φα) − x′′(φ)| ≤ ‖(e ⊗ (φα − φ))a‖ = ‖T r

a (φα − φ)‖ → 0as α → ∞. Hene x′′ is w∗ ontinuous on bounded sets and thus belongs to
JX(X).From now on we identify σ∗(a) with a subset of X. This means that
x ∈ X belongs to σ∗(a) if and only if x′(x) ∈ σ∗((e ⊗ x′)a) for all x′ ∈ X ′.Having already noted that σ∗(a) ⊂ {x ∈ X : ‖x‖ ≤ ‖a‖} it now su�esto show that σ∗(a) is norm ompat. Let x0 ∈ σ∗(a) and let φ : A → C



218 S. Dineen and R. E. Hartebe given by φ(a) = x′(x0) if a = (e ⊗ x′)a. If x′ and y′ belong to X ′and (e ⊗ x′)a = (e ⊗ y′)a then (e ⊗ (x′ − y′))a = 0. Sine x0 ∈ σ∗(a),
(x′ − y′)x0 ∈ σ∗((e⊗ (x′ − y′))a) = σ∗({0}). Hene (x′ − y′)x0 = 0 and φ iswell de�ned.If ai = (e ⊗ x′

i)a and αi ∈ C for i = 1, . . . , n then
n∑

i=1

αi · ai =
n∑

i=1

αi · (e ⊗ x′
i)a =

(
e ⊗

( n∑

i=1

αi · x
′
i

))
aand φ is de�ned on a subspae of A. Sine

φ
( n∑

i=1

αi · ai

)
=

( n∑

i=1

αi · x
′
i

)
x0 =

n∑

i=1

αi · φ(ai),

φ is linear. If a = (e ⊗ x′)a then φ(a) ⊂ σ∗((e ⊗ x′)a) ⊂ σ(a) ⊂ {λ ∈ C :
|λ| ≤ ‖a‖}. Hene |φ(a)| ≤ ‖a‖ and ‖φ‖ ≤ 1.By the Hahn�Banah theorem φ an be extended to A as a ontinuouslinear mapping with the same norm. We hoose an extension and denote italso by φ.If x′ ∈ X ′, x ∈ X, b ∈ A and θ ∈ A′ then

θ((e ⊗ x′)(b ⊗ x)) = θ(b) · x′(x)and
x′((θ ⊗ 1X)(b ⊗ x)) = x′(θ(b)x) = θ(b) · x′(x).On taking �nite sums and using ontinuity we obtain

θ[(e ⊗ x′)(b)] = x′((θ ⊗ 1X)b)for all b ∈ A ⊗̂γ X. Applying this identity to φ and a = (e⊗ x′)a we obtain
x′(x0) = φ((e⊗ x′)a) = x′((φ⊗ 1X)a) for all x′ ∈ X ′. By the Hahn�Banahtheorem x0 = (φ⊗ 1X)a = T l

a(φ). Hene σ∗(a) ⊂ T l
a(BA′(1)). By Lemma 2,

σ∗(a) is a relatively norm ompat subset of X. If xn ∈ σ∗(a)
‖·‖
−→ x as

n → ∞ then xn → x weakly and hene xn → x in C
X′ . By De�nition 1,

x ∈ σ∗(a). Hene σ∗(a) is losed and this ompletes the proof.If 0 6∈ σ∗(a) we say that a is invertible. Sine (e ⊗ x′)a − x′(x)e =
(e⊗x′)(a−e⊗x) for all x ∈ X and all x′ ∈ X ′ we see that x 6∈ σ∗(a) if andonly if a − e ⊗ x is invertible.4. Algebrai polynomial extensions. If X and Y are vetor spaesover C we let Pa(

nX; Y ) denote the set of n-homogeneous polynomials from
X into Y . A polynomial is a �nite sum of homogeneous polynomials and wedenote by Pa(X; Y ) the spae of polynomials from X to Y . If P ∈ Pa(

nX; Y )we let P∨ denote the unique symmetri n-linear form on Xn assoiated with
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P (see [4℄). Universal properties of the tensor produt imply (see [1, 7℄) thefollowing result.Proposition 4. If X, Y, Z, W are vetor spaes, Q ∈ Pa(

nZ; W ) and
P ∈ Pa(

nX; Y ) then there exists a unique Q⊗P ∈ Pa(
nZ ⊗X; W ⊗Y ) suhthat

(Q ⊗ P )∨(z1 ⊗ x1, . . . , zn ⊗ xn) = Q∨(z1, . . . , zn) ⊗ P∨(x1, . . . , xn)for (zi)
n
i=1 ⊂ Z and (xi)

n
i=1 ⊂ X.If Z is an algebra A and Q(a) = an for all a ∈ A then Q ∈ Pa(

nA;A)and we let PA := Q⊗P . Note that PA(a⊗x) = an ⊗P (x) for all a ∈ A andall x ∈ X. If we identify X with the subspae e⊗X of A⊗X then we mayregard PA as an extension of P . If {a1, . . . , an} ⊂ A let
s(a1, . . . , an) =

1

n!

∑

σ∈Sn

aσ(1) · · · aσ(n)

denote the symmetrization of {a1, . . . , an} where Sn is the set of all permu-tations of {1, . . . , n}.For parts (a) and (b) of the following proposition we refer to [7℄.Proposition 5.(a) If a :=
∑t

i=1 ai ⊗ xi ∈ A⊗ X and P ∈ Pa(
nX; Y ) then

PA(a) =
∑

k∈tn

a
k ⊗ P∨(xk)

where tn = {(i1, . . . , in) : 1 ≤ ij ≤ t}, a
k = ai1 · · · ain , and xk =

(xi1 , . . . , xin) for k = (i1, . . . , in).(b) If P ∈ Pa(
nX; Y ) then PA is the unique polynomial in Pa(

nA⊗ X;
A⊗ Y ) suh that

(2) [PA]∨(a1 ⊗ x1, . . . , an ⊗ xn) = s(a1, . . . , an) ⊗ P∨(x1, . . . , xn)for any set {ai ⊗ xi}
n
i=1 ⊂ A⊗ X.() If φ ∈ X∗ := P(1X; C) then φA = e ⊗ φ.(d) If {φi}

n
i=1 ⊂ X∗ then

(3) (φ1 · · ·φn)A(a) =
1

n!

∑

σ∈Sn

(φσ(1))A(a) · · · (φσ(n))A(a).

Proof. () If a ∈ A and x ∈ X then φA(a⊗x) = a⊗φ(x) = (e⊗φ)(a⊗x).By linearity φA = e ⊗ φ.



220 S. Dineen and R. E. Harte(d) Clearly φ1 · · ·φn ∈ Pa(
nX) and

(φ1 · · ·φn)∨(x1, . . . , xn) =
1

n!

∑

σ∈Sn

φ1(xσ(1)) · · ·φn(xσ(n))

=
1

n!

∑

σ∈Sn

φσ(1)(x1) · · ·φσ(n)(xn).

If {ai}
n
i=1 ⊂ A⊗ X let

Q(a1, . . . ,an) =
1

(n!)2

∑

σ,τ∈Sn

(φσ(1))A(aτ(1)) · · · (φσ(n))A(aτ(n)).

The mapping Q is easily seen to be symmetri n-linear. Some tediousbut straightforward alulations, using parts (b), () and the formula for
(φ1, . . . , φn)∨, show that

Q(a1 ⊗ x1, . . . , an ⊗ xn) = [(φ1 · · ·φn)A]∨(a1 ⊗ x1, . . . , an ⊗ xn)when {ai⊗xi}
n
i=1 ⊂ A⊗X. Hene Q = [(φ1 · · ·φn)A]∨ and (3) follows easily.This ompletes the proof.If R : X → Y is a linear mapping between vetor spaes we let R[n] :

Xn → Y n denote the n-linear mapping de�ned by R[n](x1, . . . , xn) =
(R(x1), . . . , R(xn)).Lemma 3. If P : X → Y , R : Z → W are linear mappings betweenvetor spaes and Q ∈ Pa(

nY ; Z) then (R ◦ Q ◦ P )A = RA ◦ QA ◦ PA.Proof. If (xi)
n
i=1 ⊂ X then, by the polarization formula [4℄,

(R ◦ Q ◦ P )∨(x1, . . . , xn) =
1

n!2n

∑

εi=±1

ε1 · · · εn(R ◦ Q ◦ P )
( n∑

i=1

εixi

)

=
1

n!2n

∑

εi=±1

ε1 · · · εn(R ◦ Q)
( n∑

i=1

εiP (xi)
)

= R

(
1

n!2n

∑

εi=±1

ε1 · · · εnQ
( n∑

i=1

εiP (xi)
))

= R(Q∨(P (x1), . . . , P (xn)))

= R ◦ Q∨ ◦ P [n](x1, . . . , xn).If (xi)
n
i=1 ⊂ X and (ai)

n
i=1 ⊂ A then, using Proposition 5,
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[(R ◦ Q ◦ P )A]∨(a1 ⊗ x1, . . . , an ⊗ xn)

= s(a1, . . . , an) ⊗ (R ◦ Q ◦ P )∨(x1, . . . , xn)

= s(a1, . . . , an) ⊗ (R ◦ Q∨ ◦ P [n])(x1, . . . , xn)

= RA(s(a1 · · · an) ⊗ Q∨(P (x1), . . . , P (xn)))

= RA((QA)∨(a1 ⊗ P (x1), . . . , an ⊗ P (xn)))

= (RA ◦ (QA)∨ ◦ (PA)[n])(a1 ⊗ x1, . . . , an ⊗ xn).Hene [(R ◦ Q ◦ P )A]∨ = RA ◦ (QA)∨ ◦ (PA)[n] and
(R ◦ Q ◦ P )A(a) = [(R ◦ Q ◦ P )A]∨(an) = RA ◦ (QA)∨(PA(a), . . . , PA(a))

= (RA ◦ QA)(PA(a)) = RA ◦ QA ◦ PA(a).This ompletes the proof.The above result is true for arbitrary P and Q if A is ommutative [8℄whereas the following example shows that it does not generally hold.
Example 1. If H is a Hilbert spae and A = B(H), P (z1, z2) = z1z2for (z1, z2) ∈ C

2, Q(z) = z2 for z ∈ C and e1 = (1, 0) and e2 = (0, 1) denotethe standard unit vetor basis for C
2, then

(QA ◦ PA)(a ⊗ e1 + b ⊗ e2) =
1

4
(ab + ba)2while

(Q ◦ P )A(a ⊗ e1 + b ⊗ e2) =
1

6
(aabb + abab + abba + baba + baab + bbaa).If a denotes the unilateral shift and b = a∗ then

(Q ◦ P )A(a ⊗ e1 + b ⊗ e2) 6= (QA ◦ PA)(a ⊗ e1 + b ⊗ e2).5. Continuous polynomial extensions. In this setion we extend thealgebrai results of the previous setion to ontinuous polynomials on om-pleted tensor produts.Let P(nX; Y ) denote the spae of all ontinuous n-homogeneous polyno-mials from the Banah spae X to the Banah spae Y endowed with thetopology of uniform onvergene over the unit ball of X and let P(X; Y )denote the spae of all ontinuous polynomials.If A is a unital Banah algebra, γ is a uniform ross-norm, X and Y areBanah spaes and P ∈ P(X; Y ) satis�es
sup{‖PA(θ)‖ : θ ∈ A⊗ X, ‖θ‖γ ≤ 1} < ∞,then PA extends to de�ne a element in P(n(A ⊗̂γ X);A ⊗̂γ Y ). In this asewe say that P an be adapted to A ⊗̂γ X.



222 S. Dineen and R. E. HarteProposition 6. If A is a unital Banah algebra, γ is a uniform ross-norm, X is a Banah spae and {φi}
n
i=1 ⊂ X ′, then (φ1 · · ·φn)A ∈

P(n(A ⊗̂γ X);A ⊗̂γ Y ) and
(φ1 · · ·φn)A(a) =

1

n!

∑

σ∈Sn

(φσ(1))A(a) · · · (φσ(n))A(a).(4)If a is ommutative then
(φ1 · · ·φn)A(a) = (φ1)A(a) · · · (φn)A(a).(5) Proof. For (4) it su�es to apply ontinuity and (3) in Proposition 5,and for (5) the de�nition of a ommutative element and (4) omplete theproof.De�nition 3 below was introdued in [8℄ (see also [5℄) and shown to beneessary for the existene of a τ0-ontinuous funtional alulus for all a ∈

A ⊗̂γ X when A is ommutative, X is some in�nite-dimensional Banahspae and γ is a uniform ross-norm.Definition 3. Let A denote a unital Banah algebra and let γ denotea uniform ross-norm. A Banah spae X has the (A, γ)-extension propertyif every P ∈ P(X) an be adapted to A ⊗̂γ X and there exists c ≥ 1 suhthat for all n and all P ∈ P(nX),
‖PA‖ ≤ cn‖P‖.In this artile we are more involved with a ommutative subalgebra ofa non-ommutative algebra and give a more general de�nition, De�nition 4,whih fouses on partiular elements in A ⊗̂γ X rather than on the wholespae. We use the following notation from now on: if A is a unital Banahalgebra, γ is a uniform ross-norm, X is a Banah spae and a belongs to

A ⊗̂γ X, then ‖ · ‖γ′ is the norm on Aa ⊗ X indued by the norm ‖ · ‖γon A ⊗̂γ X. In general, the anonial mapping from Aa ⊗̂γ X into A ⊗̂γ Xis not an isomorphism onto its image, it will be injetive when X has theapproximation property and it will always be ontinuous, sine γ is a uniformross-norm, with norm less than or equal to 1. This means that ‖·‖γ′ ≤ ‖·‖γon Aa ⊗ X for any γ and any a ∈ A ⊗̂γ X. Sine there is no possibility ofonfusion we let Aa ⊗̂γ′ X denote the losure of Aa ⊗ X in A ⊗̂γ X. If ε isthe injetive tensor norm then Aa ⊗̂ε′ X = Aa ⊗̂ε X for any a ∈ A ⊗̂ε X.Definition 4. IfA is a unital Banah algebra, γ is a uniform ross-norm,
X is a Banah spae and a belongs to A ⊗̂γ X then X is (a, γ) adaptableif there exists c ∈ R suh that for all n, for every Banah spae Y and all
P ∈ P(nX; Y ) we have

sup{‖PA(θ)‖ : θ ∈ Aa ⊗ X, ‖θ‖γ ≤ 1} ≤ cn‖P‖.(6)



Banah-valued axiomati spetra 223When (6) holds, the restrition of PA to Aa ⊗X extends to de�ne a ontin-uous A⊗̂γ Y -valued n-homogeneous polynomial, that we still denote by PA,on Aa ⊗̂γ′ X.Results in [7, 8℄ imply that any Banah spae X is (a, π) adaptable forall a ∈ A ⊗̂π X, A arbitrary and π the projetive tensor produt, and (a, ε)adaptable for all a ∈ U ⊗̂ε X where U is a uniform Banah algebra withidentity and ε is the injetive tensor produt.
Example 2. If A = B(H) and C is a unital C∗-subalgebra of B(H)generated by a ommuting family of normal operators, then C is isometriallyisomorphi to a uniform algebra and C ⊗̂ε X is isometrially isomorphi to asubspae of B(H) ⊗̂ε X for any Banah spae X. By Example 6 in [7℄, X is

(a, ε) adaptable for any a ∈ C.We now restrit ourselves to a ommutative element a ∈ A ⊗̂γ X and toBanah spaes with the bounded approximation property in order to use theolletion (e ⊗ x′)x′∈X′ to obtain properties of a.Proposition 7. If γ is a uniform ross-norm, X and Y are Banahspaes, T : X → Y is a ontinuous linear operator , A is a Banah algebrawith identity e and a ∈ A ⊗̂γ X is ommutative then (e ⊗ T )a is ommuta-tive and A(e⊗T )a ⊂ Aa. If T is a �nite rank operator from X into X then
(e ⊗ T )a ∈ Aa ⊗ X.Proof. If y′ ∈ Y ′ then

(y′)A((e ⊗ T )a) = (e ⊗ y′)(e⊗ T )a = (e ⊗ (y′ ◦ T ))a = (y′ ◦ T )Aa.Sine y′◦T ∈ X ′ and a is ommutative this implies that (e⊗y′)(e⊗T )a ∈ Aaand hene (e ⊗ T )a is ommutative.If T (x) =
∑n

i=1 x′
i(x)xi for all x ∈ X where (x′

i)
n
i=1 ⊂ X ′ and (xi)

n
i=1 ⊂ Xthen by �rst onsidering a ⊗ x, then taking �nite sums and �nally usingontinuity, we see that

(e ⊗ T )a =
n∑

i=1

((e ⊗ x′
i)a) ⊗ xi ∈ Aa ⊗ X.This ompletes the proof.Definition 5. A Banah spae X has the bounded approximation prop-erty if there exists a bounded set (Tα)α∈Γ of �nite rank operators in B(X)whih onverges to the identity mapping on X uniformly on ompat subsetsof X. If eah Tα is a projetion we say that X has the bounded projetionproperty.The bounded projetion property is also known as the π-property.A separable Banah spae is a omplemented subspae of a Banah spae



224 S. Dineen and R. E. Hartewith the bounded approximation property if and only if it is a omplementedsubspae of a Banah spae with the bounded projetion property.Proposition 8. If X is a Banah spae with the bounded approximationproperty , γ is a uniform ross-norm, A is a Banah algebra with identity eand a ∈ A ⊗̂γ X, then (e ⊗ Tα)a → a as α → ∞. If a is ommutative then
a ∈ Aa ⊗̂γ′ X.Proof. Suppose ‖Tα‖ ≤ M for all α. Let ε > 0 be arbitrary. Choose
b :=

∑n
i=1 bi ⊗ xi ∈ A⊗ X suh that ‖a − b‖ ≤ ε. Then

‖(e⊗ (Tα − IX))b‖ =
∥∥∥

n∑

i=1

bi ⊗ (Tα − IX)xi

∥∥∥

≤
n∑

i=1

‖bi‖ · ‖(Tα − IX)(xi)‖ → 0as α → ∞. Hene
‖(e ⊗ Tα)a − a‖ = ‖(e ⊗ (Tα − IX))a‖

≤ ‖(e ⊗ (Tα − IX))b‖ + ‖(e⊗ (Tα − IX))(a− b)‖

≤ ‖(e ⊗ (Tα − IX))b‖ + (M + 1)εand (e ⊗ Tα)a → a as α → ∞.If a is ommutative, Proposition 7 implies that (e ⊗ Tα)a ∈ Aa ⊗ X forall α and, by the �rst part of the proposition, a ∈ Aa ⊗̂γ′ X. This ompletesthe proof.Proposition 9. If X and Y are Banah spaes and X has the boundedapproximation property , γ is a uniform ross-norm, A is a Banah algebrawith identity e, a is a ommutative element in A⊗̂γ X, X is (a, γ) adaptableand P ∈ P(X; Y ), then PA(a) is well de�ned , APA(a) ⊂ Aa and PA(a) isommutative.Proof. By linearity we may suppose that P is n-homogeneous. By Propo-sition 8, a ∈ Aa ⊗̂γ′ X and sine X is (a, γ) adaptable, PA ∈ P(n(Aa ⊗̂γ′ X);
A ⊗̂γ Y ) and PA(a) is well de�ned. To omplete the proof we must showthat (y′)A(PA(a)) ∈ Aa for all y′ ∈ Y ′. Sine Aa is a losed subspae of theBanah spae A it su�es, by Lemma 3 and Proposition 8, to show that

(y′)A(PA((e⊗ T )a)) = (y′)A((P ◦ T )Aa) = (y′ ◦ P ◦ T )A(a)(7)lies in Aa for any ontinuous �nite rank operator T from X into X. If
T (x) =

∑l
j=1 θj(x)xj where xj ∈ X and θj ∈ X ′ for all j then
(y′ ◦ P ◦ T )(x) =

∑

m={j1,...,jn}, 1≤ji≤l

θm(x) · y′(P∨(xm))



Banah-valued axiomati spetra 225where θm = θj1 · · · θjn
and xm = (xj1 , . . . , xjn

). By Proposition 6,
(y′ ◦ P ◦ T )A(a) =

∑

m={j1,...,jn}, 1≤ji≤l

y′(P∨(xm)) · θm
A (a)(8)

where θm
A (a) = (θj1)A(a) · · · (θjn

)A(a). Sine eah (θji
)A(a) belongs to Aa,

(y′ ◦ P ◦ T )A(a) ∈ Aa. This ompletes the proof.Proposition 10. If X is a Banah spae with the bounded approxima-tion property , γ is a uniform ross-norm, A is a Banah algebra with identity
e, a ∈ A ⊗̂γ X is ommutative and X is (a, γ) adaptable, then the mapping

P ∈ P(X) 7→ PA(a)is an algebra homomorphism.Proof. By linearity it su�es to show (P · Q)A(a) = PA(a) · QA(a) forall P ∈ P(nX) and all Q ∈ P(mX). Let (Tα)α denote the set of �nite rankoperators on X assoiated with the bounded approximation property. ByProposition 8,
(P · Q)A(a) = lim

α→∞
(P · Q)A((e ⊗ Tα)a) = lim

α→∞
(P · Q)A((Tα)Aa)

= lim
α→∞

((P · Q) ◦ Tα)A(a) = lim
α→∞

((P ◦ Tα) · (Q ◦ Tα))A(a).Now P ◦ Tα =
∑

i θ
n
i and Q ◦ Tα =

∑
j φm

j where the sums are �nite,
θn
i = θi1 · · · θin and φm

j = φj1 · · · θjm
, θi ∈ X ′ and φj ∈ X ′ for all i and j.Hene

(P ◦ Tα) · (Q ◦ Tα) =
∑

i,j

θn
i · φm

j .Proposition 6 implies, sine a is ommutative,
((P ◦ Tα) · (Q ◦ Tα))A(a) =

∑

i,j

(θn
i )A(a) · (φm

j )A(a)

= (P ◦ Tα)A(a) · (Q ◦ Tα)A(a)for all α. On letting α → ∞ we obtain, by Proposition 8, (P · Q)A(a) =
PA(a) · QA(a). This ompletes the proof.6. Polynomial funtional alulus. If σ∗ is a spetral system and
a ∈ A ⊗̂γ X is ommutative then Proposition 2 together with the identity
a′((e⊗x′)b) = x′((a′⊗1X)b) for all x′ ∈ X ′, a′ ∈ A′ and b ∈ A⊗̂γ X showsthat there exists a subset S∗(a) of S(Aa) suh that

σ∗(b) = {(m((e⊗ x′)b))x′∈X′ : m ∈ S∗(a)} = {(m ⊗ 1X)b : m ∈ S∗(a)}whenever b ∈ A ⊗̂γ X satis�es (e ⊗ x′)b ∈ Aa for all x′ ∈ X ′.Proposition 11. Let A denote a Banah algebra with identity e, X aBanah spae with the bounded approximation property , γ a uniform ross-



226 S. Dineen and R. E. Hartenorm and let σ∗ denote a spetral system. If a ∈ A⊗̂γ X is ommutative and
X is (a, γ) adaptable then

σ∗(PA(a)) = P (σ∗(a))for all P ∈ P(X).Proof. By the above we must show
m(PA(a)) = P ((m ⊗ 1X)a)(9)for all m ∈ S∗(a). Let (Tα)α denote a bounded net of �nite rank operatorswhih onverges to the identity uniformly on ompat subsets of X. ByProposition 7, (Tα)A(a) = (e ⊗ Tα)(a) ∈ Aa ⊗ X ⊂ Domain(PA) and, byProposition 8, (e⊗ Tα)a → a as α → ∞. Hene it su�es to prove (9) with

a replaed by TA(a) where T : X → X is a �nite rank operator and bylinearity we may also suppose that P ∈ P(nX).If T (x) =
∑l

j=1 θj(x)xj where xj ∈ X and θj ∈ X ′ for all j then
(P ◦ T )(x) =

∑

k={j1,...,jn}, 1≤ji≤l

θk(x)P∨(xk)

where θk = θj1 · · · θjn
and xk = (xj1 , . . . , xjn

). By Proposition 6,
PA(TA(a)) = (P ◦ T )A(a) =

∑

k={j1,...,jn}, 1≤ji≤l

P∨(xk) · θ
k
A(a)

where θk
A(a) = (θj1)A(a) · · · (θjn

)A(a). Sine m and (θji
)A are ontinuouslinear mappings,

m((θji
)A(a)) = m((e ⊗ θji

)a) = θji
((m ⊗ 1X)a),and as (θji

)A(a) belongs to Aa for all ji and m ∈ S(Aa),
m(PA(TA(a))) =

∑

k={j1,...,jn}, 1≤ji≤l

P∨(xk) · θ
k((m ⊗ 1X)a)

= P ◦ T ((m ⊗ 1X)a) = P ((m ⊗ 1X)(e ⊗ T )a)

= P ((m ⊗ 1X)(TA(a))).This ompletes the proof.7. Holomorphi funtional alulus. The results and proofs in thissetion are, in some ases, modi�ed versions of those given in [8℄, to whihwe refer for details.If U is an open subset of a Banah spae X we let H(U) denote thespae of holomorphi funtions on U and let τ0 denote the ompat opentopology on H(U). Let Hb(U) denote the subspae of H(U) onsisting ofthose funtions whih are bounded on the bounded subsets of U whih liestritly inside U . Endowed with the topology, τb, of uniform onvergene on



Banah-valued axiomati spetra 227these sets the spae Hb(U) is a Fréhet spae (we refer to [4, 8℄ for furtherdetails). When X is �nite-dimensional, Hb(U) = H(U). We let Br = {x ∈
X : ‖x‖ < r}.Lemma 4. Let A denote a Banah algebra with identity e, X a Banahspae with the bounded approximation property , γ a uniform ross-norm and
σ∗ a spetral system. If a ∈ A ⊗̂γ X is ommutative, X is (a, γ) adaptable,
c is a onstant for whih (6) holds and r > c‖a‖, let θa : Hb(Br) → Aa,

θa(f) := fA(a) :=
∞∑

n=0

(Pn)A(a)where ∑∞
n=0 Pn is the Taylor series expansion of f ∈ Hb(Br). Then θa is theunique τb ontinuous algebra homomorphism from Hb(Br) into A whih is

τ0 ontinuous on the bounded subsets of Hb(Br) with the following property :
θa(x

′) = x′
A(a)(10)for all x′ ∈ X ′. Moreover ,

m(θa(f)) = f((m ⊗ 1X)a)(11)for all f ∈ H(σ∗(a)) and all m ∈ S∗(Aa) and
σ∗(θa(f)) = f(σ∗(a))(12)for all f ∈ H(σ∗(a)).Proof. Existene, ontinuity and uniqueness follow as in Lemma 20 in [8℄,and Proposition 10 shows that θa is an algebra homomorphism. Sine r >

c‖a‖ the series ∑∞
n=0(Pn)A(a) onverges and, by Proposition 9, fA(a) ∈ Aafor all x′ ∈ X ′. By Propositions 2 and 9,

σ∗(fA(a)) = {(m ⊗ 1X)fA(a) : m ∈ S∗(a)}.If m ∈ S∗(a), (9) and Proposition 11 imply
m(fA(a)) =

∞∑

n=0

m((Pn)A(a)) =

∞∑

n=0

Pn((m ⊗ 1X)a) = f((m ⊗ 1X)a).This proves (11), whih implies (12) and ompletes the proof.Our next lemma yields a simpli�ed proof of a similar result in [8℄.Lemma 5. Let A denote a unital Banah algebra, γ a uniform ross-norm, X a Banah spae with the bounded projetion property and boundedset of projetions (Tα)α onverging to the identity and let σ∗ be a spetralsystem. Then given a ommutative in A ⊗̂γ X and c > 1 there exists δ > 0and for every ε > 0 a diret sum deomposition X = X1(ε) ⊕ X2(ε) with
X1(ε) �nite-dimensional , a deomposition of a, a = a1(ε) + a2(ε), and opensets U1(ε) ⊂ X1(ε) and U2(ε) ⊂ X2(ε) suh that the following hold for all
ε > 0:



228 S. Dineen and R. E. Harte1. ai(ε) ∈ Aa, i = 1, 2,2. U2(ε) = εB ∩ X2(ε) where B = {x ∈ X : ‖x‖ < 1},3. σ∗(a1(ε)) ⊂ U1(ε) and c‖a2(ε)‖ < ε,4. σ∗(a) + εB ⊂ U1(ε) ⊕ U2(ε) ⊂ σ∗(a) + εδB.Proof. Let d = supα ‖Tα‖ and let Tα := IX − Tα. Then X = Tα(X) ⊕
Tα(X) for all α where both Tα(X) and Tα(X) are given the indued normfrom X. Fix ε > 0. By Proposition 8, (Tα)A(a) → 0 as α → ∞ and we mayhoose β := αε suh that c‖(T β)A(a)‖ < ε. Let

a2 := a2(ε) := (T β)A(a) = (e ⊗ T β)aand let a1 := a1(ε) := a − a2 = (Tβ)A(a) = (e ⊗ Tβ)a. By Proposition 9,
ai ∈ Aa, and by Proposition 11, σ∗(ai) ⊂ Xi(ε) for i = 1, 2.Let

U1(ε) = σ∗(a1) + 2εd(B ∩ Tβ(X)), U2(ε) = 2ε(1 + d)(B ∩ T β(X)).If x ∈ σ∗(a) then x = Tβ(x) + T β(x), where Tβ(x) ∈ σ∗(a1), and by Propo-sition 3, ‖T β(x)‖ < ε. Hene
σ∗(a) + εB ⊂ σ∗(a1) + 2εB

⊂ σ∗(a1) + 2εd(B ∩ Tβ(X)) + 2ε(1 + d)(B ∩ T β(X))

= U1(ε) ⊕ U2(ε) ⊂ σ∗(a) + ε(3 + 4d)B.On taking δ = 3 + 4d the proof is omplete.If K is a ompat subset of a Banah spae we let H(K) denote the spaeof holomorphi germs on K. The ompat-open topology τ0 on H(K) isde�ned to be the indutive limit of (H(U), τ0) where U ranges over the openneighbourhoods of K. The τb topology on H(K) is de�ned as the indutivelimit topology derived from the spaes (Hb(U), τb), U ranging over the opensubsets of X ontaining K. We require the following well known fat aboutholomorphi funtions:
Hb(U × V ) ≡ H(U) ⊗̂π Hb(V )(13)when U is an open subset of a �nite-dimensional spae and V is an opensubset of a Banah spae.By Lemma 5 we an hoose a null sequene (εn)∞n=1 of positive numberssuh that (U1(εn) ⊕ U2(εn))∞n=1 is a dereasing basi open neighbourhoodsystem for σ∗(a). This implies (see [4, 5℄)

(H(σ∗(a)), τ) = lim−→n
(Hb(U1(εn) ⊕ U2(εn)), τ)where τ = τ0 or τb.To extend the funtional alulus in Lemma 4 we need a further onditionon σ∗. The existene of the set S∗(Aa) in the following de�nition is provedin Proposition 2.



Banah-valued axiomati spetra 229Definition 6. A spetral system σ∗ admits a unique �nite A-holomor-phi funtional alulus if for all a := (a1, . . . , an) ∈ C0(A) and every openset U ontaining σ∗(a) there exists a unique τ0-ontinuous algebra homo-morphism θa : H(U) → A suh that
θa(x

′) = x′
A(a)for all x′ ∈ (Cn)′ and

m(θa(f)) = f((m ⊗ 1Cn)a)for all f ∈ H(U) = Hb(U) and all m ∈ S∗(Aa).Proposition 12. Let A denote a Banah algebra with identity e, X aBanah spae whih is a omplemented subspae of a Banah spae with thebounded projetion property , and let a denote a ommutative element in A⊗̂γ

X where γ is a uniform ross-norm. If X is (a, γ) adaptable with onstant
c∗ satisfying (6) and σ∗ is a spetral system whih admits a unique �nite A-holomorphi funtional alulus, then for every open set U ontaining σ∗(A)there exists a unique τb-ontinuous algebra homomorphism θU := θa,U : f ∈
Hb(U) 7→ fA(a) ∈ A whih is τ0-ontinuous on bounded sets suh that

θU (x′) = (x′)A(a)(14)for all x′ ∈ X ′ and
m(θU (f)) = f((m ⊗ 1X)a)(15)for all f ∈ Hb(U) and all m ∈ S∗(Aa).Proof. It su�es to establish the result for a fundamental system ofneighbourhoods of σ∗(a). We �rst suppose that X has the bounded pro-jetion property. Fix ε > 0. We use our previous notation: U := U1 ⊕ U2where Ui ⊂ Xi(ε) =: Xi, U2 := εB ∩ X2, ai := ai(ε), i = 1, 2, and d =

supα ‖Tα‖ are de�ned as in Lemma 5. In this setting eah f ∈ Hb(U1 ⊕ U2)has an expansion f =
∑∞

n=1 αnfn ⊗ gn where (αn)∞n=1 ⊂ l1, (fn)∞n=1 is abounded subset of (H(U1), τ0), (gn)∞n=1 is a bounded subset of (Hb(U2), τb)and ∑∞
n=0 |αn| · ‖fn‖K · ‖gn‖Bδ

< ∞ for every ompat subset K ⊂ U1 andall δ < ε.Sine Aa2
⊂ Aa by Proposition 9 and X2 is a omplemented subspaeof X it is easily veri�ed that X2 is (a2, γ) adaptable with onstant c :=

c∗(1 + d), independent of ε, satisfying (6). By Lemma 5, c‖a2‖ < ε.Let θa2
: H(U2) → Aa denote the homomorphism de�ned in Lemma 4and let θa1
: H(U1) → A denote the unique homomorphism given by the�nite-dimensional funtional alulus. If θa := θa1

⊗ θa2
: Hb(U1 ⊕ U2) → Alet

θa

( ∞∑

n=1

αnfn ⊗ gn

)
=

∞∑

n=0

αnθa1
(fn) · θa2

(gn).(16)



230 S. Dineen and R. E. HarteThe mapping θa is an algebra homomorphism whih is τb-ontinuous on
Hb(U) and τ0-ontinuous on the bounded subsets of Hb(U). The proof ofLemma 21 in [8℄ shows that θa has all the required properties and the proofof Theorem 18 in [8℄ shows how the result an be extended to omplementedsubspaes. This ompletes the proof.Under the same hypotheses we have the following orollary.Corollary 1. There exists a unique τ0-ontinuous algebra homomor-phism θ := θa : f ∈ H(σ∗(a)) → fA(a) ∈ A with the following properties:
(a) θa(x

′) = x′
A(a)for all x′ ∈ X ′,

(b) m(θa(f)) = f((m ⊗ 1X)a) and σ∗(θa(f)) = f(σ∗(a))for all f ∈ H(σ∗(a)) and all m ∈ S∗(Aa).Proof. If U and V are open subsets of X and V ⊂ U we let RU,V (f) = f |Vdenote the restrition operator from H(U) to H(V ). The mapping RU,V isan algebra homomorphism. If σ∗(a) ⊂ V ⊂ U then, by uniqueness, we have
θU ◦ RU,V = θV . The de�nition of indutive limits implies that we obtainthe required homomorphism and that it is unique. The ontinuity propertyfollows, as in [8℄, from a result of Mujia [12℄. This ompletes the proof.
Example 3. Let A denote a ommutative unital Banah algebra. For

(ai)
n
i=1 ⊂ A we let σ((ai)

n
i=1) = {(m(ai))

n
i=1 : m ∈ S(A)}. This is the lassi-al joint spetrum based on the ommutative Gelfand theory whih satis�esthe hypothesis in De�nition 1 and hene is a spetral system. Results ofZame [21℄ and Putinar [15℄ show that σ admits a unique �nite A-holomorphifuntional alulus. An in�nite-dimensional holomorphi funtional alulusfor this spetrum was obtained in [8℄ and many of the tehniques developedfor that partiular ase were used in this artile. As it was �rst developed inan in�nite-dimensional tensor produt setting by Waelbroek [20℄ we refer toit as the Gelfand�Waelbroek spetrum and denote it by σW. If a ∈ A ⊗̂γ Xthen

σW(a) = {(m ⊗ 1)(a) : m ∈ S(A)}.

Example 4. The most important joint spetrum for a �nite number ofommuting elements in the non-ommutative Banah algebra B(Y ) is thejoint spetrum σT introdued by J. L. Taylor [18, 19℄. Talyor showed that
σT satis�es the onditions in De�nition 1 and hene σT is a spetral system.Putinar [14℄ established that σT admits a unique �nite B(Y )-holomorphifuntional alulus for any Banah spae Y . If a := (ai)

n
i=1 ⊂ B(Y ) then,by [18, 19℄, θa(f) ⊂ a

′′, the double ommutant of (ai)
n
i=1 in B(Y ), for any

f ∈ H(σT(a)). If the onditions on a ∈ B(Y )⊗̂γX, γ and X in Proposition 12hold then, in view of Lemma 4 and (15), the mapping θa in Proposition 12



Banah-valued axiomati spetra 231maps H(U), U a neighbourhood of σT(a), into A′′
a, the double ommutantof Aa in B(Y ).

Example 5. If A is a unital Banah algebra and a ∈ A let La denote theoperation of multipliation by a. Then La ∈ B(A) and if a = (ai)
n
i=1 ⊂ C0(A)then La := (Lai

)n
i=1 ∈ C0(B(A)). The Taylor split spetrum of a, σT,split(a),is de�ned to be σT(La). If A is ommutative then, by a remark in the proofof Corollary 5.21 in [2℄, σW(a) = σT(La) and hene the Taylor split spetrumgeneralizes the Gelfand�Waelbroek spetrum. The Taylor split spetrum isa spetral system and not neessarily [13℄ the same as the split spetrumwhen A = B(Y ).If a and b are ommutative elements in B(Y ) ⊗̂γ X where X and Y areBanah spaes and T ∈ B(Y ) then we say that T intertwines a and b if

(x′)A(a) ◦ T = T ◦ (x′)A(b) for all x′ ∈ X ′. Our �nal proposition extendsTheorem 4.5 in [19℄ from �nite-dimensional spaes to Banah spaes withthe bounded projetion property. In the proof (Tα)α will denote a boundedset of �nite rank projetions whih onverges uniformly to the identity 1X .Proposition 13. Let X and Y be Banah spaes and suppose X hasthe bounded projetion property. Let a and b denote ommutative elementsin B(Y )⊗̂γ X where γ is a uniform ross-norm suh that X is both (a, γ) and
(b, γ) adaptable. If T ∈ B(Y ) intertwines a and b and f ∈ H(U) where Uis an open subset of X ontaining σT(a) ∪ σT(b), then T intertwines fA(a)and fA(b).Proof. By (5), T intertwines (φn)A(a) and (φn)A(b) for all φ ∈ X ′ and,by the bounded projetion property, T intertwines PA(a) and PA(b) for all
P ∈ P(X). If S ∈ B(X) then (x′)A(SA(a)) = (x′ ◦ S)A(a) for all x′ ∈ X ′.Sine x′◦S ∈ X ′ this implies that T intertwines SA(a) and SA(b). Combiningthese two ases we see that T intertwines (P ◦ S)A(a) and (P ◦ S)A(b).We now use (16) and keep the notation used in that equation. Sine
θa2

(gn) =
∑∞

n=0(Pn◦Tα)A(a) and θb2
(gn) =

∑∞
n=0(Pn◦Tα)A(b) for some αwhere Pn ∈ P(nX) for all n and Tα = IX − Tα the above shows that

T intertwines θa2
(gn) and θb2

(gn). Now T intertwines a1 = (Tα)A(a) and
b1 = (Tα)A(b) and the �nite-dimensional intertwining result shows that Tintertwines θa1

(fn) and θb1
(fn). By ontinuity, linearity and (16) it followsthat T intertwines fA(a) and fA(b). This ompletes the proof.
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