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On the functional equation defined

by Lie’s product formula

by

Gerd Herzog and Christoph Schmoeger (Karlsruhe)

Abstract. Let E be a real normed space and A a complex Banach algebra with
unit. We characterize the continuous solutions f : E → A of the functional equation
f(x + y) = limn→∞(f(x/n)f(y/n))n.

Let A be a complex Banach algebra with unit 1. In this setting the
famous Lie product formula reads

(1) exp(a + b) = lim
n→∞

(exp(a/n) exp(b/n))n (a, b ∈ A);

see [4, Theorem VIII.29] for matrices and a proof which also holds for Banach
algebras, and Trotter’s version for semigroups [6].

Let p ∈ A be a projection (that is, p2 = p), and consider the complex
Banach algebra pAp which has unit p. The exponential function in pAp will
be denoted by expp. Now, let E be a real normed space, let A : E → pAp
be a continuous and linear mapping (here pAp is considered as a real vector
space), and set

(2) f(x) := expp(A(x)) = p exp(A(x))p (x ∈ E).

As an immediate consequence of (1) the function f is a continuous solution
of the functional equation

(3) f(x + y) = lim
n→∞

(f(x/n)f(y/n))n (x, y ∈ E).

In this paper we prove conversely that all continuous solutions of (3) are of
type (2). More precisely we have

Theorem 1. Let f : E → A be a continuous function which satisfies (3).
Then p = f(0) is a projection, and there exists a unique continuous linear

mapping A : E → pAp such that

f(x) = expp(A(x)) (x ∈ E).
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In the proof of Theorem 1 we use the following proposition. Note that
σ(a) denotes the spectrum of a ∈ A.

Proposition 1. Let a, b ∈ A.

(i) If a3 = a and σ(a) ⊆ {0, 1}, then a2 = a.
(ii) If exp(a) = exp(b) and ‖a‖ < π, then ab = ba.
(iii) If exp(ta) = 1 (t > 0), then a = 0.

Proof. (i) and (ii) follow from [2, Propositions 8.11 and 18.12], respec-
tively, and (iii) follows by differentiation.

Proof of Theorem 1.

Step 1. We have

(4) p2 = p.

Proof. From (3) we obtain

f(0) = lim
n→∞

f(0)2n ⇒ f(0)3 = lim
n→∞

f(0)2n+2 = f(0).

Hence σ(f(0)) ⊆ {−1, 0, 1}. Now, assume −1 ∈ σ(f(0)). Choose open sets
U, V ⊆ C such that U ∩V = ∅, −1 ∈ U , and 0, 1 ∈ V . Then σ(f(0)) ⊆ U ∪V
and σ(f(0)) ∩ U 6= ∅. Since f(0)2n → f(0) as n → ∞, Theorem 3.4.4 in [1]
proves

σ(f(0)2n) ∩ U 6= ∅

for n sufficiently large. But σ(f(0)2n) ⊆ {0, 1} ⊆ V , a contradiction. There-
fore σ(f(0)) ⊆ {0, 1} and (4) follows from Proposition 1(i).

Step 2. We have

(5) f(x) = pf(x) = f(x)p = pf(x)p (x ∈ E);

in particular f(x) ∈ pAp (x ∈ E).

Proof. According to (3),

pf(x) = f(0)f(x + 0) = f(0) lim
n→∞

(f(x/n)f(0))n

= ( lim
n→∞

(f(0)f(x/n))n)f(0) = f(0 + x)f(0) = f(x)p

for each x ∈ E. Thus,

f(x) = f(x + 0) = lim
n→∞

f(x/n)nf(0)n (4)
= lim

n→∞

f(x/n)nf(0)n+1

= ( lim
n→∞

f(x/n)nf(0)n)f(0) = f(x + 0)f(0) = f(x)p,

and we have (5). In particular, if p = 0 then f(x) = 0 (x ∈ E).

Step 3. For x ∈ E and m ∈ N,

(6) f(mx) = f(x)m.
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Proof. Note that by (5),

f(x) = lim
n→∞

f(x/n)n (x ∈ E).

First consider m = 2. Again from (3) we obtain

f(2x) = f(x + x) = lim
n→∞

f(x/n)2n = lim
n→∞

(f(x/n)n)2 = f(x)2.

Now, let m > 2 and suppose f(mx) = f(x)m (x ∈ E). Then

f((m + 1)x) = lim
n→∞

(f(mx/n)f(x/n))n = lim
n→∞

(f(x/n)mf(x/n))n

= lim
n→∞

(f(x/n)n)m+1 = f(x)m+1.

Thus (6) holds by induction.

Next, for each x ∈ E let fx : R → A be defined by

fx(α) := f(αx).

Step 4. We have

(7) fx(α)fx(β) = fx(β)fx(α) (α, β ≥ 0, x ∈ E).

Proof. Let x ∈ E and m, n, r, s ∈ N. Now

fx(1/r)fx(1/s) = f(x/r)f(x/s) = f

(

s
x

rs

)

f

(

r
x

rs

)

(6)
= f

(

x

rs

)s+r

= fx(1/s)fx(1/r).

Hence

fx(m/r)fx(n/s) = f

(

m
x

r

)

f

(

n
x

s

)

(6)
= f(x/r)mf(x/s)n = f(x/s)nf(x/r)m

(6)
= f

(

n
x

s

)

f

(

m
x

r

)

= fx(n/s)fx(m/r).

Therefore (7) is valid for α, β ∈ Q ∩ [0,∞), hence for α, β ∈ [0,∞), since f
is continuous.

Step 5. We have

(8) fx(α + β) = fx(α)fx(β) (α, β ≥ 0, x ∈ E).

Proof. For α, β ≥ 0,

fx(α + β) = f(αx + βx)
(3)
= lim

n→∞

(

f

(

α
x

n

)

f

(

β
x

n

))n

(7)
= lim

n→∞

f

(

α
x

n

)n

f

(

β
x

n

)n
(6)
= lim

n→∞

f(αx)f(βx) = fx(α)fx(β).

Step 6. The limit

(9) A(x) := lim
α→0+

1

α
(fx(α) − p)
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exists for each x ∈ E. Moreover

(10) A(x) ∈ pAp (x ∈ E),

and

(11) f(αx) = p +
∞

∑

n=1

αn

n!
A(x)n (α ≥ 0).

Note that in particular for α = 1 we have

(12) f(x) = p +
∞

∑

n=1

A(x)n

n!
= expp(A(x)) = p exp(A(x))p (x ∈ E).

Proof. Since fx : [0,∞) → A is a continuous solution of the functional
equation in (8), the existence of the limit in (9) and the equation (10) follow
from [3, Theorem 9.4.2]. Now, (10) follows from (5) and (9).

Step 7. We have

(13) A(βx) = βA(x) (β ≥ 0, x ∈ E).

Proof. Obviously (13) holds for β = 0. For β > 0,

A(βx) = lim
α→0+

1

α
(f(αβx) − p) = lim

α→0+

β

αβ
(fx(αβ) − p) = βA(x).

Step 8. For x, y ∈ E,

(14) expp(A(x + y)) = expp(A(x) + A(y)),

and

(15) A(x + y)(A(x) + A(y)) = (A(x) + A(y))A(x + y).

Proof. Fix x, y ∈ E and let α > 0. Set

a := A(α(x + y)), b := A(αx) + A(αy).

Then, by Lie’s product formula, and by (12) and (13),

expp(b) = lim
n→∞

(expp(A(αx/n)) expp(A(αy/n)))n

(3)
= lim

n→∞

(f(αx/n)f(αy/n))n = f(αx + αy)

= expp(A(αx + αy)) = expp(a).

For α = 1 we obtain (14), and by choosing α > 0 such that

‖a‖ = α‖A(x + y)‖ < π,

Proposition 1(ii) proves ab = ba, hence (15).

Step 9. We have

(16) A(x + y) = A(x) + A(y) (x, y ∈ E).
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Proof. According to (14) and (15) we have

expp(A(x + y) − (A(x) + A(y))) = p (x, y ∈ E).

Fix x, y ∈ E. By (13),

expp(t(A(x + y) − (A(x) + A(y)))) = p (t > 0),

and Proposition 1(iii) proves (16).

Step 10. We have

(17) A(αx) = αA(x) (α ∈ R, x ∈ E).

Proof. Fix x ∈ E. Then

expp(t(A(x) + A(−x)))
(13)
= expp(A(tx) + A(−tx))

(16)
= expp(A(tx − tx)) = p

for each t > 0. Again, A(−x) = −A(x) follows from Proposition 1(iii). In
combination with (13) this gives (17).

Step 11. The linear mapping A : E → pAp is continuous.

Proof. It is sufficient to prove that A is continuous at 0. Assume the
contrary. Then there is a sequence (xn) in E with ‖xn‖ = 1 (n ∈ N) and
‖A(xn)‖ → ∞ (n → ∞). Set

yn =
xn

3‖A(xn)‖
, zn =

A(xn)

3‖A(xn)‖
.

We have

f(yn) = expp(A(yn)) = expp(zn) → p (n → ∞),

because yn → 0 (n → ∞). Since ‖expp(zn) − p‖ ≤ 1/2 < 1, we conclude

zn = logp(expp(zn)) → 0 (n → ∞),

a contradiction. Here logp denotes the power series

logp(p + a) =
∞

∑

k=1

(−1)k+1

k
ak (a ∈ pAp, ‖a‖ < 1).

Finally, concerning the uniqueness of A, let B : E → pAp be a continuous
linear operator such that

f(x) = expp(B(x)) (x ∈ E).

Then
1

α
(f(αx) − p) =

1

α
(expp(α(B(x))) − p) → B(x) (α → 0+).

According to (9), A(x) = B(x) (x ∈ E).

As an application of Theorem 1 we may characterize in terms of A those
continuous solutions of (3) which satisfiy the exponential equation of Cauchy

(18) f(x + y) = f(x)f(y) (x, y ∈ E).
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Corollary 1. Let f : E → A be a continuous solution of (3), and let

p and A : E → pAp be as in Theorem 1. Then (18) holds if and only if

(19) A(x)A(y) = A(y)A(x) (x, y ∈ E).

Proof. If (19) holds then clearly

f(x + y) = expp(A(x) + A(y)) = expp(A(x)) expp(A(y)) = f(x)f(y)

for x, y ∈ E.
Now, let (18) be valid. Then f(x)f(y) = f(y)f(x), hence

expp(A(x)) expp(A(y)) = expp(A(y)) expp(A(x)) (x, y ∈ E).

Fix x, y ∈ E and let α > 0 be such that

max{‖A(αx)‖, ‖A(αy)‖} < π.

According to the result in [5],

A(αx)A(αy) = A(αy)A(αx),

from which (19) follows.

Remark. Theorem 1 is also valid if A is a real Banach algebra with
unit 1. In this case apply the complex version to the complexification AC

of A and note that p = f(0) ∈ A and that A maps E to pAp according
to (9).

As an example consider E = R and assume that f : R → A is a contin-
uous solution of (3) with f(0) invertible. Then by Theorem 1, f(0) = 1 and
there is a unique a ∈ A such that

f(x) = exp(xa) (x ∈ R).

Here f is a solution of (18).
On the other hand consider E = R2 and again assume that f : R2 → A

is a continuous solution of (3) with f(0) invertible. Then there exist unique
a, b ∈ A such that

f((x1, x2)) = exp(x1a + x2b) ((x1, x2) ∈ R2).

Here, f is a solution of (18) if and only if ab = ba.
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