On the functional equation defined by Lie's product formula

by

GERD HERZOG and CHRISTOPH SCHMOEGER (Karlsruhe)

Abstract. Let *E* be a real normed space and *A* a complex Banach algebra with unit. We characterize the continuous solutions $f : E \to A$ of the functional equation $f(x+y) = \lim_{n\to\infty} (f(x/n)f(y/n))^n$.

Let \mathcal{A} be a complex Banach algebra with unit **1**. In this setting the famous Lie product formula reads

(1)
$$\exp(a+b) = \lim_{n \to \infty} (\exp(a/n) \exp(b/n))^n \quad (a, b \in \mathcal{A});$$

see [4, Theorem VIII.29] for matrices and a proof which also holds for Banach algebras, and Trotter's version for semigroups [6].

Let $p \in \mathcal{A}$ be a projection (that is, $p^2 = p$), and consider the complex Banach algebra $p\mathcal{A}p$ which has unit p. The exponential function in $p\mathcal{A}p$ will be denoted by \exp_p . Now, let E be a real normed space, let $A : E \to p\mathcal{A}p$ be a continuous and linear mapping (here $p\mathcal{A}p$ is considered as a real vector space), and set

(2)
$$f(x) := \exp_p(A(x)) = p \exp(A(x))p \quad (x \in E).$$

As an immediate consequence of (1) the function f is a continuous solution of the functional equation

(3)
$$f(x+y) = \lim_{n \to \infty} (f(x/n)f(y/n))^n \quad (x, y \in E).$$

In this paper we prove conversely that all continuous solutions of (3) are of type (2). More precisely we have

THEOREM 1. Let $f : E \to A$ be a continuous function which satisfies (3). Then p = f(0) is a projection, and there exists a unique continuous linear mapping $A : E \to pAp$ such that

$$f(x) = \exp_p(A(x)) \quad (x \in E).$$

²⁰⁰⁰ Mathematics Subject Classification: 39B52, 46H99.

Key words and phrases: Lie's product formula, functional equation, Banach algebras.

In the proof of Theorem 1 we use the following proposition. Note that $\sigma(a)$ denotes the spectrum of $a \in \mathcal{A}$.

PROPOSITION 1. Let $a, b \in \mathcal{A}$.

- (i) If $a^3 = a$ and $\sigma(a) \subseteq \{0, 1\}$, then $a^2 = a$.
- (ii) If $\exp(a) = \exp(b)$ and $||a|| < \pi$, then ab = ba.
- (iii) If $\exp(ta) = 1$ (t > 0), then a = 0.

Proof. (i) and (ii) follow from [2, Propositions 8.11 and 18.12], respectively, and (iii) follows by differentiation. \blacksquare

Proof of Theorem 1.

Step 1. We have

(4)

$$p^2 = p$$

Proof. From (3) we obtain

$$f(0) = \lim_{n \to \infty} f(0)^{2n} \Rightarrow f(0)^3 = \lim_{n \to \infty} f(0)^{2n+2} = f(0).$$

Hence $\sigma(f(0)) \subseteq \{-1, 0, 1\}$. Now, assume $-1 \in \sigma(f(0))$. Choose open sets $U, V \subseteq \mathbb{C}$ such that $U \cap V = \emptyset$, $-1 \in U$, and $0, 1 \in V$. Then $\sigma(f(0)) \subseteq U \cup V$ and $\sigma(f(0)) \cap U \neq \emptyset$. Since $f(0)^{2n} \to f(0)$ as $n \to \infty$, Theorem 3.4.4 in [1] proves

$$\sigma(f(0)^{2n}) \cap U \neq \emptyset$$

for *n* sufficiently large. But $\sigma(f(0)^{2n}) \subseteq \{0,1\} \subseteq V$, a contradiction. Therefore $\sigma(f(0)) \subseteq \{0,1\}$ and (4) follows from Proposition 1(i).

Step 2. We have

(5)
$$f(x) = pf(x) = f(x)p = pf(x)p \quad (x \in E);$$

in particular $f(x) \in p\mathcal{A}p \ (x \in E)$.

Proof. According to (3),

$$pf(x) = f(0)f(x+0) = f(0)\lim_{n \to \infty} (f(x/n)f(0))^n$$
$$= (\lim_{n \to \infty} (f(0)f(x/n))^n)f(0) = f(0+x)f(0) = f(x)p$$

for each $x \in E$. Thus,

$$f(x) = f(x+0) = \lim_{n \to \infty} f(x/n)^n f(0)^n \stackrel{(4)}{=} \lim_{n \to \infty} f(x/n)^n f(0)^{n+1}$$
$$= (\lim_{n \to \infty} f(x/n)^n f(0)^n) f(0) = f(x+0) f(0) = f(x)p,$$

and we have (5). In particular, if p = 0 then f(x) = 0 $(x \in E)$.

Step 3. For $x \in E$ and $m \in \mathbb{N}$,

(6)
$$f(mx) = f(x)^m.$$

Proof. Note that by (5),

$$f(x) = \lim_{n \to \infty} f(x/n)^n \quad (x \in E).$$

First consider m = 2. Again from (3) we obtain

$$f(2x) = f(x+x) = \lim_{n \to \infty} f(x/n)^{2n} = \lim_{n \to \infty} (f(x/n)^n)^2 = f(x)^2.$$

Now, let m > 2 and suppose $f(mx) = f(x)^m$ $(x \in E)$. Then

$$f((m+1)x) = \lim_{n \to \infty} (f(mx/n)f(x/n))^n = \lim_{n \to \infty} (f(x/n)^m f(x/n))^n$$
$$= \lim_{n \to \infty} (f(x/n)^n)^{m+1} = f(x)^{m+1}.$$

Thus (6) holds by induction.

Next, for each $x \in E$ let $f_x : \mathbb{R} \to \mathcal{A}$ be defined by

$$f_x(\alpha) := f(\alpha x).$$

Step 4. We have

(7)
$$f_x(\alpha)f_x(\beta) = f_x(\beta)f_x(\alpha) \quad (\alpha, \beta \ge 0, x \in E).$$

Proof. Let $x \in E$ and $m, n, r, s \in \mathbb{N}$. Now

$$f_x(1/r)f_x(1/s) = f(x/r)f(x/s) = f\left(s\frac{x}{rs}\right)f\left(r\frac{x}{rs}\right)$$
$$\stackrel{(6)}{=} f\left(\frac{x}{rs}\right)^{s+r} = f_x(1/s)f_x(1/r).$$

Hence

$$f_x(m/r)f_x(n/s) = f\left(m\frac{x}{r}\right)f\left(n\frac{x}{s}\right) \stackrel{(6)}{=} f(x/r)^m f(x/s)^n = f(x/s)^n f(x/r)^m$$
$$\stackrel{(6)}{=} f\left(n\frac{x}{s}\right)f\left(m\frac{x}{r}\right) = f_x(n/s)f_x(m/r).$$

Therefore (7) is valid for $\alpha, \beta \in \mathbb{Q} \cap [0, \infty)$, hence for $\alpha, \beta \in [0, \infty)$, since f is continuous.

Step 5. We have

(8)
$$f_x(\alpha + \beta) = f_x(\alpha)f_x(\beta) \quad (\alpha, \beta \ge 0, x \in E).$$

Proof. For $\alpha, \beta \ge 0$,

$$f_x(\alpha + \beta) = f(\alpha x + \beta x) \stackrel{(3)}{=} \lim_{n \to \infty} \left(f\left(\alpha \frac{x}{n}\right) f\left(\beta \frac{x}{n}\right) \right)^n$$
$$\stackrel{(7)}{=} \lim_{n \to \infty} f\left(\alpha \frac{x}{n}\right)^n f\left(\beta \frac{x}{n}\right)^n \stackrel{(6)}{=} \lim_{n \to \infty} f(\alpha x) f(\beta x) = f_x(\alpha) f_x(\beta).$$

Step 6. The limit

(9)
$$A(x) := \lim_{\alpha \to 0+} \frac{1}{\alpha} \left(f_x(\alpha) - p \right)$$

exists for each $x \in E$. Moreover

(10)
$$A(x) \in p\mathcal{A}p \quad (x \in E),$$

and

(11)
$$f(\alpha x) = p + \sum_{n=1}^{\infty} \frac{\alpha^n}{n!} A(x)^n \quad (\alpha \ge 0).$$

Note that in particular for $\alpha = 1$ we have

(12)
$$f(x) = p + \sum_{n=1}^{\infty} \frac{A(x)^n}{n!} = \exp_p(A(x)) = p \exp(A(x))p \quad (x \in E).$$

Proof. Since $f_x : [0, \infty) \to \mathcal{A}$ is a continuous solution of the functional equation in (8), the existence of the limit in (9) and the equation (10) follow from [3, Theorem 9.4.2]. Now, (10) follows from (5) and (9).

Step 7. We have

(13)
$$A(\beta x) = \beta A(x) \quad (\beta \ge 0, x \in E).$$

Proof. Obviously (13) holds for $\beta = 0$. For $\beta > 0$,

$$A(\beta x) = \lim_{\alpha \to 0+} \frac{1}{\alpha} \left(f(\alpha \beta x) - p \right) = \lim_{\alpha \to 0+} \frac{\beta}{\alpha \beta} \left(f_x(\alpha \beta) - p \right) = \beta A(x).$$

STEP 8. For $x, y \in E$,

(14)
$$\exp_p(A(x+y)) = \exp_p(A(x) + A(y)),$$

and

(15)
$$A(x+y)(A(x) + A(y)) = (A(x) + A(y))A(x+y).$$

Proof. Fix $x, y \in E$ and let $\alpha > 0$. Set

$$a := A(\alpha(x+y)), \quad b := A(\alpha x) + A(\alpha y).$$

Then, by Lie's product formula, and by (12) and (13),

$$\exp_p(b) = \lim_{n \to \infty} (\exp_p(A(\alpha x/n)) \exp_p(A(\alpha y/n)))^n$$
$$\stackrel{(3)}{=} \lim_{n \to \infty} (f(\alpha x/n) f(\alpha y/n))^n = f(\alpha x + \alpha y)$$
$$= \exp_p(A(\alpha x + \alpha y)) = \exp_p(a).$$

For $\alpha = 1$ we obtain (14), and by choosing $\alpha > 0$ such that

$$||a|| = \alpha ||A(x+y)|| < \pi,$$

Proposition 1(ii) proves ab = ba, hence (15).

Step 9. We have

(16)
$$A(x+y) = A(x) + A(y) \quad (x, y \in E).$$

Proof. According to (14) and (15) we have

$$\exp_p(A(x+y) - (A(x) + A(y))) = p \quad (x, y \in E)$$

Fix $x, y \in E$. By (13),

$$\exp_p(t(A(x+y) - (A(x) + A(y)))) = p \quad (t > 0),$$

and Proposition 1(iii) proves (16).

Step 10. We have

(17)
$$A(\alpha x) = \alpha A(x) \quad (\alpha \in \mathbb{R}, x \in E).$$

Proof. Fix $x \in E$. Then

 $\exp_p(t(A(x) + A(-x))) \stackrel{(13)}{=} \exp_p(A(tx) + A(-tx)) \stackrel{(16)}{=} \exp_p(A(tx - tx)) = p$ for each t > 0. Again, A(-x) = -A(x) follows from Proposition 1(iii). In combination with (13) this gives (17).

STEP 11. The linear mapping $A: E \to pAp$ is continuous.

Proof. It is sufficient to prove that A is continuous at 0. Assume the contrary. Then there is a sequence (x_n) in E with $||x_n|| = 1$ $(n \in \mathbb{N})$ and $||A(x_n)|| \to \infty$ $(n \to \infty)$. Set

$$y_n = \frac{x_n}{3\|A(x_n)\|}, \quad z_n = \frac{A(x_n)}{3\|A(x_n)\|}.$$

We have

$$f(y_n) = \exp_p(A(y_n)) = \exp_p(z_n) \to p \quad (n \to \infty),$$

because $y_n \to 0$ $(n \to \infty)$. Since $\|\exp_p(z_n) - p\| \le 1/2 < 1$, we conclude $z_n = \log_p(\exp_p(z_n)) \to 0 \quad (n \to \infty),$

a contradiction. Here \log_p denotes the power series

$$\log_p(p+a) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} a^k \quad (a \in p\mathcal{A}p, ||a|| < 1).$$

Finally, concerning the uniqueness of A, let $B : E \to pAp$ be a continuous linear operator such that

$$f(x) = \exp_p(B(x)) \quad (x \in E).$$

Then

$$\frac{1}{\alpha}\left(f(\alpha x) - p\right) = \frac{1}{\alpha}\left(\exp_p(\alpha(B(x))) - p\right) \to B(x) \quad (\alpha \to 0+).$$

According to (9), A(x) = B(x) ($x \in E$).

As an application of Theorem 1 we may characterize in terms of A those continuous solutions of (3) which satisfy the exponential equation of Cauchy (18) f(x+y) = f(x)f(y) $(x, y \in E)$. COROLLARY 1. Let $f : E \to A$ be a continuous solution of (3), and let p and $A : E \to pAp$ be as in Theorem 1. Then (18) holds if and only if (19) A(x)A(y) = A(y)A(x) $(x, y \in E)$.

Proof. If (19) holds then clearly

 $f(x+y) = \exp_p(A(x) + A(y)) = \exp_p(A(x)) \exp_p(A(y)) = f(x)f(y)$ for $x,y \in E.$

Now, let (18) be valid. Then f(x)f(y) = f(y)f(x), hence

$$\exp_p(A(x))\exp_p(A(y)) = \exp_p(A(y))\exp_p(A(x)) \quad (x, y \in E).$$

Fix $x, y \in E$ and let $\alpha > 0$ be such that

 $\max\{\|A(\alpha x)\|, \|A(\alpha y)\|\} < \pi.$

According to the result in [5],

$$A(\alpha x)A(\alpha y) = A(\alpha y)A(\alpha x),$$

from which (19) follows.

REMARK. Theorem 1 is also valid if \mathcal{A} is a real Banach algebra with unit 1. In this case apply the complex version to the complexification $\mathcal{A}_{\mathbb{C}}$ of \mathcal{A} and note that $p = f(0) \in \mathcal{A}$ and that A maps E to $p\mathcal{A}p$ according to (9).

As an example consider $E = \mathbb{R}$ and assume that $f : \mathbb{R} \to \mathcal{A}$ is a continuous solution of (3) with f(0) invertible. Then by Theorem 1, $f(0) = \mathbf{1}$ and there is a unique $a \in \mathcal{A}$ such that

$$f(x) = \exp(xa) \quad (x \in \mathbb{R}).$$

Here f is a solution of (18).

On the other hand consider $E = \mathbb{R}^2$ and again assume that $f : \mathbb{R}^2 \to \mathcal{A}$ is a continuous solution of (3) with f(0) invertible. Then there exist unique $a, b \in \mathcal{A}$ such that

$$f((x_1, x_2)) = \exp(x_1 a + x_2 b) \quad ((x_1, x_2) \in \mathbb{R}^2).$$

Here, f is a solution of (18) if and only if ab = ba.

References

- [1] B. Aupetit, A Primer on Spectral Theory, Universitext, Springer, New York, 1991.
- [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergeb. Math. Grenzgeb. 80, Springer, Berlin, 1973.
- [3] E. Hille and R. S. Phillips, *Functional Analysis and Semigroups*, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, RI, 1957.
- [4] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis, 2nd ed., Academic Press, New York, 1980.

- C. Schmoeger, Remarks on commuting exponentials in Banach algebras, Proc. Amer. Math. Soc. 127 (1999), 1337–1338.
- [6] H. F. Trotter, On the product of semi-groups of operators, ibid. 10 (1959), 545-551.

Mathematisches Institut I Universität Karlsruhe D-76128 Karlsruhe, Germany E-mail: Gerd.Herzog@math.uni-karlsruhe.de Christoph.Schmoeger@math.uni-karlsruhe.de

> Received August 28, 2005 Revised version June 8, 2006 (5734)