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The Bohr inequality for ordinary Dirichlet series

by

R. Balasubramanian (Chennai), B. Calado (Paris)
and H. Queffélec (Lille)

Abstract. We extend to the setting of Dirichlet series previous results of H. Bohr
for Taylor series in one variable, themselves generalized by V. I. Paulsen, G. Popescu and
D. Singh or extended to several variables by L. Aizenberg, R. P. Boas and D. Khavinson.
We show in particular that, if f(s) =

∑

∞

n=1
ann−s with ‖f‖∞ := sup

ℜs>0 |f(s)| < ∞,

then
∑

∞

n=1
|an|n

−2 ≤ ‖f‖∞ and even slightly better, and
∑

∞

n=1
|an|n

−1/2 ≤ C‖f‖∞, C

being an absolute constant.

Introduction. A well-known inequality of H. Bohr ([12]) states that if
f(z) =

∑∞
n=0 anzn is analytic and bounded in the open unit disc D, and if

‖f‖∞ := supz∈D |f(z)|, then

(1)

∞
∑

n=0

|an|
(

1

3

)n

≤ ‖f‖∞.

Moreover, the value 1/3 is sharp: if
∑∞

n=0 |an|rn ≤ ‖f‖∞ for each such f ,
then r ≤ 1/3; and equality in (1) holds for constant functions only ([24]).

On the other hand, by the Cauchy–Schwarz inequality we have

(2)
∞
∑

n=0

|an|rn ≤
(

∞
∑

n=0

|an|2
)1/2(

∞
∑

n=0

r2n
)1/2

≤ Cr‖f‖∞,

with Cr := (1 − r2)−1/2 for each r < 1 and each such f , since

(

∞
∑

n=0

|an|2
)1/2

= ‖f‖2 ≤ ‖f‖∞.

Here ‖f‖2 is the norm of the function f in the Hardy space H2 ([19]).
Recently, E. Bombieri and J. Bourgain ([14]) showed that the best possible

Cr in the inequality (2) is equivalent to (1 − r2)−1/2 when r
<→ 1.
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Note that (1) can be seen as another manifestation (see [4] or [5]) of the
hypercontractivity properties of the Poisson kernel (Pr)0≤r<1 since it states
that this kernel, acting on H∞ by convolution, maps contractively H∞ to
the space ℓ1 of summable sequences for r ≤ 1/3, whereas (2) states that the
same kernel always maps continuously H∞ to ℓ1 for r < 1 (and of course
not for r = 1). For other hypercontractivity properties of the Poisson kernel
(Pr)0≤r<1, see for example [29].

Various extensions of Bohr’s inequality have recently been proposed by
different authors after P. G. Dixon used it in the construction of a Banach al-
gebra satisfying the non-unital von Neumann inequality and non-isomorphic
to a subalgebra of L(H), the algebra of bounded linear operators on the
Hilbert space H ([17]). For example, R. P. Boas and D. Khavinson ([9]) and
L. Aizenberg ([1]) studied multidimensional analogues of (1) for the poly-
disc, ball or other domains, showing that the n-dimensional Bohr radius Kn

of the unit n-dimensional polydisc {(z1, . . . , zn) ∈ C
n : ∀j ∈ [1, n], |zj| < 1}

satisfies

1

3
√

n
< Kn <

2
√

log n√
n

,

so that there is no Bohr phenomenon for power series in infinitely many
variables.

Similarly, P. B. Djakov and M. S. Ramanujan studied the Bohr phe-
nomenon when the space ℓ1 is replaced by ℓp, 1 ≤ p ≤ 2 ([18]); C. Bénéteau,
A. Dahlner, D. Khavinson and B. Korenblum studied the case of the Hardy
spaces Hp in one variable ([7] and [6]); and V. Paulsen, G. Popescu and
D. Singh studied the following two restricted versions of (1) ([24]):

(3) if a0 = 0, then
∞
∑

n=1

|an|
(

1√
2

)n

≤ ‖f‖∞,

and the value 1/
√

2 is optimal; and

(4) if ‖f‖∞ = 1, then |a0|2 +
∞
∑

n=1

|an|
(

1

2

)n

≤ 1,

and the value 1/2 is optimal. See also [16] and [2].

H. Bohr called attention to a formal connection between ordinary Dirich-
let series and Taylor series in infinitely many variables ([12] or [25]). The
aim of this work is precisely to perform a similar study for Banach spaces of
ordinary Dirichlet series

∑∞
n=1 ann−s, where the multiplier rn is obviously

replaced by n−σ. This multiplier has also good hypercontractivity properties
([4] or [5]). More precisely, influenced by the recent survey by H. Helson [20],
we will introduce the following terminology.
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Let (E , ‖ · ‖) be a Banach space of Dirichlet series f(s) =
∑∞

n=1 ann−s

with a finite abscissa of convergence: σc(f) < ∞. We attach to E two ab-
scissas (reminiscent of the Bohr radii 1/3, 1/

√
2, . . .):

1) The isometric Bohr abscissa ̺1(E), defined as the minimum of those
σ ≥ 0 such that

∑∞
n=1 |an|n−σ ≤ ‖f‖ for each f ∈ E . We may have ̺1(E)

= ∞.
2) The isomorphic Bohr abscissa ̺(E), defined as the infimum of those

σ ≥ 0 such that
∑∞

n=1 |an|n−σ < ∞ for each f ∈ E . Equivalently, by
the closed graph theorem, ̺(E) is the infimum of those σ ≥ 0 such that
∑∞

n=1 |an|n−σ ≤ Cσ‖f‖ for each f ∈ E , if one assumes that the linear forms
f 7→ an(f) are uniformly bounded on E . We will say that ̺(E) is attained

if
∑∞

n=1 |an|n−̺(E) < ∞ for any f ∈ E , which may happen due to the less
brutal convergence of Dirichlet series compared to Taylor series.

We will denote as usual by Ω(n) the number of prime divisors of n,
counted with their multiplicities. We will be interested in the following Ba-
nach spaces:

H∞ is the space of bounded analytic functions f on C+ := {s ∈ C :
ℜs > 0} such that in some right half-plane Cσ := {s ∈ C : ℜs > σ} one can
write f as a convergent ordinary Dirichlet series f(s) =

∑∞
n=1 ann−s (by a

theorem of Bohr, [11] or [4] or [5], one can always take σ = 0).
For k ≥ 1, H∞

k := {f(s) =
∑∞

n=1 ann−s ∈ H∞ : an = 0 if Ω(n) > k}.
For 1 ≤ p < ∞, Hp is the completion of the space of Dirichlet polyno-

mials P (s) :=
∑N

n=1 ann−s for the norm

‖P‖Hp :=

(

lim
T→∞

1

2T

T\
−T

|P (it)|p dt

)1/p

(the limit exists by the theory of almost periodic functions [13]).
Hp is isometric to the Hardy space Hp(T∞) of the infinite-dimensional

torus, and if f ∈ Hp, one can represent f as an ordinary Dirichlet series
∑∞

n=1 ann−s with an → 0, so that σc(f) ≤ 1 (see [4] or [5] for more infor-
mation on the spaces Hp).

Using hypercontractivity properties of the Poisson kernel, F. Bayart ([4]
or [5]) was able to prove that ̺(H1) = 1/2 (see also [20]). In fact, he proved
that

∑∞
n=1 |an|2/nε < ∞ for each ε > 0 and each f ∈ H1, so that by the

Cauchy–Schwarz inequality,
∞
∑

n=1

|an|
n1/2+ε

≤
( ∞
∑

n=1

|an|2
nε

)1/2( ∞
∑

n=1

1

n1+ε

)1/2

< ∞,

and σc(f) ≤ 1/2.
Now, it follows from a celebrated and non-trivial theorem of H. F. Boh-

nenblust and E. Hille ([10]), answering a long-standing question of H. Bohr,
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that one also has ̺(H∞) = 1/2, which, according to Helson’s comments, is a
little strange since H∞ is a much smaller space than H1. One of our theorems
shows that we can yet make a difference between the two spaces, in that
̺(H∞) = 1/2 is attained, whereas ̺(H1) = 1/2 is not. The Bohr abscissa
̺(H∞

k ) is known to be equal to 1/2 − 1/(2k) ([10]); we will show that it
is equally attained. The determination of the isometric Bohr abscissa ̺1(E)
is obviously more delicate, and whereas we are able to determine ̺(E) for
the preceding spaces, we will content ourselves, apart from two exceptions,
with estimates for ̺1(E) (observe that ̺1(E) ≥ ̺(E)). One of our theorems
shows that ̺1(H∞) < ∞, whereas there is no Bohr phenomenon for power
series in infinitely many variables and Bohr’s theory shows that H∞ can
be seen as a space of Taylor series on the infinite polydisc (see also [15]),
so one might think that there is no such phenomenon for Dirichlet series.
Comparing with [18], we shall also examine the effect of replacing the space
ℓ1 by ℓp, 1 ≤ p ≤ 2, and comparing with (3) and (4) ([24]), we shall examine
the effect of taking a1 = 0, or of replacing |a1| by |a1|2, without affecting the
other terms. Accordingly, this work consists of two parts: the first is devoted
to the study of the isomorphic Bohr abscissa, and the second to the more
delicate study of the isometric Bohr abscissa.

We shall sometimes use the notation E1 ≪(k) E2 (resp. E1 ≫(k) E2) to
say that E1 ≤ C(k)E2 (resp. E1 ≥ C(k)E2) where C(k) is an absolute positive
constant (depending on k only). Moreover,

∑

p and
∑

p,q will be summations
over the prime numbers.

1. The isomorphic Bohr abscissa. The main theorem of this section
is the following result:

Theorem 1.1.

1) For 1 ≤ q < ∞, ̺(Hq) = 1/2, but it is not attained.

2) ̺(H∞) = 1/2, and it is attained.

Proof. As already mentioned, ̺(H1) = 1/2 follows from Bayart’s result
([4] or [5]), and H. F. Bohnenblust and E. Hille proved that ̺(H∞) = 1/2.
So, for every p ∈ [1,∞], ̺(Hp) = 1/2 since H∞ ⊂ Hp ⊂ H1. The novelty
here is that only ̺(H∞) is attained.

1) Recall that a sequence (λn)n≥1 of complex numbers is completely

multiplicative if λmn = λmλn for all m, n ∈ N. F. Bayart showed the following
result ([4]):

Proposition 1.1. Let p, q ≥ 1 with p ≤ q and (λn)n≥1 be a completely

multiplicative sequence such that λpk
≤
√

p/q for large k, where pk is the

kth prime number. Then (λn)n≥1 ∈ M(Hp,Hq), the set of multipliers from

Hp to Hq.
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Recall that a multiplier from Hp to Hq (resp. from Hp to ℓq) is a sequence
(µn)n≥1 such that

∑∞
n=1 µnann−s ∈ Hq (resp. (µnan)n≥1 ∈ ℓq) for each

f(s) =
∑∞

n=1 ann−s in Hp.

Proposition 1.1 implies that for all 1 ≤ q < ∞, ̺(Hq) is not attained.
In fact take p = 2 and (λn)n≥1 the completely multiplicative sequence

such that λpk
=
√

2/q for all k, where pk is the kth prime number. Now,
if (1/

√
n)n≥1 ∈ M(Hq, ℓ1), we have (λn/

√
n)n≥1 ∈ M(H2, ℓ1) since if

∑∞
n=1 ann−s ∈ H2, then

∑∞
n=1 λnann−s ∈ Hq and

∑∞
n=1 |λnan/

√
n| < ∞.

So,
∑∞

n=1 |λn|2/n < ∞, whence
∑∞

k=1 |λpk
|2/pk < ∞, which contradicts the

divergence of
∑∞

k=1 1/pk, since λpk
is a positive constant independent of k.

2) We now show that ̺(H∞) is attained. This will be a consequence of
the following more general result:

Theorem 1.2. Set λ(x) :=
√

log x log log x for x ≥ 3 and λ(x) := 0 for

x < 3. There exists a constant β > 0 such that if (µn)n≥1 is a non-increasing

sequence of non-negative real numbers, and if
∑∞

n=1 µne−cλ(n)/
√

n < ∞ for

some c < β, then (µn)n≥1 is a multiplier from H∞ to ℓ1.

Proof of Theorem 1.1. Theorem 1.2 implies Theorem 1.1 since we can
take µn := 1/

√
n, or even µn := eδλ(n)/

√
n with δ < β, since

∑∞
n=1 e−ελ(n)/n

< ∞ for each ε > 0.

Proof of Theorem 1.2. The proof will be conveniently split into three
lemmas, the first of which is of independent interest.

Lemma 1.1. If f(s) =
∑∞

n=1 ann−s ∈ H∞ and x ≥ 2, then
∥

∥

∥

∑

n≤x

ann−s
∥

∥

∥

∞
≤ C‖f‖∞ log x,

where C > 0 is an absolute constant.

Proof. Without loss of generality, we can assume x = N +1/2, where N
is an integer. We use Perron’s effective formula (see [28, p. 135]) to get, for
each positive T ,

A(x) :=
∑

n≤x

an =
1

2iπ

2+iT\
2−iT

f(s)
xs

s
ds + O

(

x2

T

∞
∑

n=1

|an|
n2|log(x/n)|

)

,

where the O is absolute. Observe moreover that |an| ≤ ‖f‖∞.

If n > x then
∣

∣

∣

∣

log
x

n

∣

∣

∣

∣

= log
n

x
≥ log

N + 1

N + 1/2
≥ 1

4(N + 1/2)
,

and if n < x then

log
x

n
≥ log

N + 1/2

N
≥ 1

4N
,
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so that the error term is dominated by x3‖f‖∞/T = ‖f‖∞ if we choose
T := x3. Now, let 0 < ε < 2, and use the Cauchy formula to write

2+iT\
2−iT

f(s)
xs

s
ds =

ε+iT\
ε−iT

f(s)
xs

s
ds +

2\
ε

f(u + iT )
xu+iT

u + iT
du

−
2\
ε

f(u − iT )
xu−iT

u − iT
du.

The last two integrals are uniformly dominated by ‖f‖∞x2/T = ‖f‖∞/x
(recall that T = x3), so they can be forgotten. And for the first integral we
have
∣

∣

∣

∣

T\
−T

f(ε + it)
xε+it

ε + it
i dt

∣

∣

∣

∣

≤
T\
−T

‖f‖∞
xε

√
ε2 + t2

dt = 2xε‖f‖∞
T/ε\
0

du√
u2 + 1

≤ 2xε‖f‖∞
(

1 +

T/ε\
1

du

u

)

≪ xε‖f‖∞ log(T/ε).

We now set ε := 1/log x to obtain

|A(x)| ≪ ‖f‖∞ log(x3 log x) ≪ ‖f‖∞ log x.

Finally, for s ∈ C+, we apply what we have just seen to the function fs

defined by fs(z) := f(s + z) to get
∣

∣

∣

∑

n≤x

ann−s
∣

∣

∣
≪ ‖fs‖∞ log x ≪ ‖f‖∞ log x,

which ends the proof of the lemma.

Lemma 1.2. There are numerical constants α, β > 0 such that

N
∑

n=1

|an| ≤ α
√

N e−βλ(N)
∥

∥

∥

N
∑

n=1

ann−s
∥

∥

∥

∞
.

This is Theorem 4.3 in [22]. Recall that λ(N) is as in Theorem 1.2.

Lemma 1.3. Let Nk := 2k, and f(s) =
∑∞

n=1 ann−s ∈ H∞. Then
∑

Nk≤n<Nk+1

|an| ≪
√

Nk e−βλ(Nk)‖f‖∞ log Nk,

where β is as in Lemma 1.2.

Proof. We write fk(s) =
∑Nk+1

n=1 ann−s. Then we have

∑

Nk≤n<Nk+1

|an| ≤
Nk+1
∑

n=1

|an| ≤ α
√

Nk+1 e−βλ(Nk+1)‖fk‖∞ (by Lemma 1.2)
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≪
√

Nk+1 e−βλ(Nk+1)‖f‖∞ log Nk+1 (by Lemma 1.1)

≪
√

Nk e−βλ(Nk)‖f‖∞ log Nk+1 (since
√

Nk+1 =
√

2
√

Nk)

≪
√

Nk e−βλ(Nk)‖f‖∞ log Nk (since log Nk+1 = log 2 + log Nk).

Now the end of the proof of Theorem 1.2 is easy: we may assume that
f(s) =

∑∞
n=1 ann−s ∈ H∞ and ‖f‖∞ ≤ 1. For β as in Lemma 1.2, we have

∞
∑

n=1

µn|an| =
∞
∑

k=0

(

∑

Nk≤n<Nk+1

µn|an|
)

≤
∞
∑

k=0

µNk

(

∑

Nk≤n<Nk+1

|an|
)

≪
∞
∑

k=0

µNk

√

Nk e−βλ(Nk) log Nk ≪
∞
∑

k=0

µNk

√

Nk e−cλ(Nk)

(the logarithmic factor is absorbed in the exponential since c < β), whereas
∞
∑

n=1

µn√
n

e−cλ(n) =

∞
∑

k=0

(

∑

Nk≤n<Nk+1

µn√
n

e−cλ(n)

)

≥
∞
∑

k=0

µNk+1
√

Nk+1

e−cλ(Nk+1)(Nk+1 − Nk)

≫
∞
∑

j=1

µNj

√

Nj e−cλ(Nj),

which proves that
∑∞

n=1 µn|an| < ∞ if
∑∞

n=1 µne−cλ(n)/
√

n < ∞.

Remark 1.1. Observe that µn = 1/
√

n is decreasing and non-square-
summable, and is yet a multiplier from H∞ to ℓ1. This is in marked contrast
with the case of Taylor series: for example, if H∞(D) denotes the space
of analytic functions bounded in the unit disc, it is well known that the
multipliers of H∞(D) to ℓ1 are exactly the square-summable sequences; using
the embedding f ∈ H∞(D) 7→ f(2−s) ∈ H∞, this shows that if (µn)n≥1 ∈
M(H∞, ℓ1), then we must have

∑∞
n=1 |µ2n |2 < ∞, a fact which is already

in Bayart’s thesis ([4]).

We now examine the effect of replacing the space ℓ1 by ℓp, as P. B. Djakov
and M. S. Ramanujan did for Taylor series in [18]. We obtain the following
result, which can be seen as a generalization of Theorem 1.1:

Theorem 1.3. Let p ∈ [1, 2]. Then

1) For every f(s) =
∑∞

n=1 ann−s ∈ H∞,
∑∞

n=1 |ann−σ|p < ∞ if σ ≥
1/p − 1/2 =: σ0.

2) The value σ0 is optimal : if σ < σ0, we can find f ∈ H∞ such that

the sum in 1) is infinite.
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Proof. 1) We may assume that ‖f‖∞ = 1. If Nk = 2k for k ≥ 0, we have

∞
∑

n=1

|ann−σ0 |p =
∞
∑

k=0

(

∑

Nk≤n<Nk+1

|ann−σ0 |p
)

≤
∞
∑

k=0

N−pσ0

k

(

Nk+1
∑

n=1

|an|p
)

.

By Theorem 5.1 of [22],

(

Nk+1
∑

n=1

|an|p
)1/p

≤ αpN
1/p−1/2
k exp(−βpλ(Nk))

∥

∥

∥

Nk+1
∑

n=1

ann−s
∥

∥

∥

∞
,

where αp and βp are positive constants depending on p only, and λ is the
function defined in Theorem 1.2. Using Lemma 1.1, we get

∞
∑

n=1

|ann−σ0 |p ≪p

∞
∑

k=0

N−pσ0

k [N
1−p/2
k (log Nk)

p exp(−pβpλ(Nk))]

=
∞
∑

k=0

(log Nk)
p exp(−pβpλ(Nk)) ≪

∞
∑

k=0

kpe−
√

k < ∞.

2) Let now σ ∈ R be such that
∑∞

n=1 |ann−σ|p < ∞ for every f(s) =
∑∞

n=1 ann−s ∈ H∞. By the closed graph theorem, there exists a constant
Cσ such that for every f(s) =

∑∞
n=1 ann−s ∈ H∞,

(

∞
∑

n=1

|ann−σ|p
)1/p

≤ Cσ‖f‖∞.

So, for every Dirichlet polynomial f(s) =
∑N

n=1 ann−s,

(∗)
(

N
∑

n=1

|an|p
)1/p

≤ CσNσ‖f‖∞.

For n ≥ 2, we shall denote by P+(n) the largest prime divisor of n. We
will need the following lemma:

Lemma 1.4. Let y > 1 and f(s) =
∑N

n=1 ann−s be a Dirichlet poly-

nomial such that an 6= 0 ⇒ P+(n) ≤ y. Let fω(s) =
∑N

n=1 εn(ω)ann−s,
ω ∈ Ω, where the εn’s are independent Rademacher variables on the proba-

bility space Ω. Then, with E denoting expectation, we have

E(‖fω‖∞) ≪
(

N
∑

n=1

|an|2
)1/2√

y log log N.

Proof. Let P (z) =
∑

anzα1

1 · · · zαr
r , with n = pα1

1 · · · pαr
r , pr ≤ y, |zj| = 1,

be the polynomial attached to f by Bohr’s theory, and let Pω(z) =
∑

εn(ω)anzα1

1 · · · zαr
r be the polynomial attached to fω. Then Bohr’s theory

tells us that ‖Pω‖∞ = ‖fω‖∞ for each ω ∈ Ω. Moreover (see [21] or [25]),
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if k is the number of variables zj in P and d = max(α1 + · · · + αr) is its
degree, we have

E(‖Pω‖∞) ≪
(

N
∑

n=1

|an|2
)1/2√

k log d.

Here, 2α1+···+αr ≤ pα1

1 · · · pαr
r ≤ N, so that d ≤ log N/log 2, and if pr is the

largest prime factor of any n such that an 6= 0, we have r ≤ pr ≤ y, so that
k ≤ y. The lemma clearly follows.

Let now ε > 0. Using the preceding lemma with y := N ε, we can choose
a sequence (an)1≤n≤N such that an := 0 if P+(n) > N ε, and an := ±1
otherwise, so as to have

∥

∥

∥

N
∑

n=1

ann−s
∥

∥

∥

∞
≪

√
N
√

N ε log log N = N1/2+ε/2
√

log log N.

Using (∗) for this polynomial, we get

(υN )1/p ≪ N1/2+σ+ε,

where υN is the number of integers n ∈ [1, N ] with P+(n) ≤ N ε. Since there
exists δε > 0 such that υN > δεN ([28]), we get 1/2 + σ + ε ≥ 1/p, that is,
σ ≥ σ0 − ε. This is true for all ε > 0, so σ ≥ σ0, which ends the proof of the
theorem.

We now turn to the subspace H∞
k of H∞ and prove

Theorem 1.4. We have ̺(H∞
k ) = 1/2−1/(2k), and it is attained. More

precisely , for every f(s) =
∑∞

n=1 ann−s ∈ H∞
k ,

∞
∑

n=1

|an|(log n)(k−1)/2

n1/2−1/2k
< ∞.

Proof. First, observe that the case k = 1 is given by Bohr’s inequality
stating that if f(s) =

∑∞
n=1 ann−s ∈ H∞, then

∑

p |ap| ≤ ‖f‖∞ ([25] or

[26], see also Proposition 2.2 below). The value of ̺(H∞
k ) is already known

([10]); we prove that it is attained and even slightly better. Let f(s) =
∑∞

n=1 ann−s ∈ H∞
k with (an)n≥1 finitely supported, i.e. an = 0 for n large.

We first assume that k = 2. We attach to f the function (p and q running
over the prime numbers)

F (z) := a1 +
∑

p

apzp +
∑

p,q : p≤q

apqzpzq,

where z := (zp)p prime runs over the infinite polydisc D
∞ :=

∏

p prime D, with

D := {z ∈ C : |z| ≤ 1}. It follows from Bohr’s theory ([25]) that ‖F‖∞ :=
supD∞ |F | = ‖f‖∞. Bohr’s inequality ([25] or [26]) says that

∑

p |ap| ≤
‖f‖∞, and similarly, since
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∑

p,q : p≤q

apqzpzq =
1

2π

2π\
0

F (eiθz)e−2iθ dθ,

we have
∣

∣

∣

∑

p,q : p≤q

apqzpzq

∣

∣

∣
≤ ‖F‖∞ = ‖f‖∞.

Using a polarization inequality due to L. Harris ([25, p. 50]) we get, if
(wq)q prime runs over the infinite polydisc (the inequality would be obvious
with the constant 2 instead of 3

√
3/4):

∣

∣

∣

∑

p,q : p≤q

apqzpwq

∣

∣

∣
≤ 3

√
3

4
‖f‖∞.

Optimizing with respect to the zp’s, we get

∑

p

∣

∣

∣

∑

q : q≥p

apqwq

∣

∣

∣
≤ 3

√
3

4
‖f‖∞.

We now take for the wq’s independent complex Steinhaus random variables
taking values of modulus 1 with the uniform distribution, integrate with
respect to the wq’s and use the Khinchin inequalities ([27]) to get

(5)
∑

p

(

∑

q : q≥p

|apq|2
)1/2

=:
∑

p

λp ≤ 3
√

3

2
√

π
‖f‖∞.

Similarly,

(6)
∑

q

(

∑

p : p≤q

|apq|2
)1/2

=:
∑

q

µq ≤ 3
√

3

2
√

π
‖f‖∞.

Now, we have to show that

∑

p,q : p≤q

|apq|(log(pq))1/2

(pq)1/4
≪ ‖f‖∞,

since we already know that |a1| ≤ ‖f‖∞ and

∑

p

|ap|(log p)1/2

p1/4
≪
∑

p

|ap| ≤ ‖f‖∞.

Using the Cauchy–Schwarz inequality in the second line below, the fact that

∑

p≤x

p−α ∼
x→∞

x1−α

log x
for 0 < α < 1

(see [28]) in the third line, and (6) for the last inequality, we have
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∑

p,q : p≤q

|apq|(log(pq))1/2

(pq)1/4
≪
∑

q

(log q)1/2

q1/4

(

∑

p : p≤q

|apq|
p1/4

)

≤
∑

q

(log q)1/2

q1/4

(

∑

p : p≤q

|apq|2
)1/2

(

∑

p : p≤q

1

p1/2

)1/2

≪
∑

q

(log q)1/2

q1/4
µq

( √
q

log q

)1/2

=
∑

q

µq ≪ ‖f‖∞.

This settles the case k = 2 for the finitely supported case. We explain how
to conclude in the general case after dealing with the case k ≥ 3.

We now assume that k ≥ 3. If pl is the lth prime number for l ∈ N, we
have

f(s) = a1 +
∑

j1≥1

apj1
p−s

j1
+

∑

j1,j2
1≤j1≤j2

apj1
pj2

(pj1pj2)
−s

+ · · · +
∑

j1,...,jk
1≤j1≤···≤jk

apj1
...pjk

(pj1 · · · pjk
)−s

= g(s) +
∑

j1,...,jk
1≤j1≤···≤jk

apj1
...pjk

(pj1 · · · pjk
)−s,

with g ∈ H∞
k−1. As before we attach to f the function

F (z) := a1 +
∑

j1≥1

apj1
zpj1

+
∑

j1,j2
1≤j1≤j2

apj1
pj2

zpj1
zpj2

+ · · · +
∑

j1,...,jk
1≤j1≤···≤jk

apj1
...pjk

zpj1
· · · zpjk

= G(z) +
∑

j1,...,jk
1≤j1≤···≤jk

apj1
...pjr

zpj1
· · · zpjk

,

where z := (zp)p prime runs over the infinite polydisc D
∞ :=

∏

p prime D, and
G is the function attached to g in the same way. For l ∈ [1, k], we have

∑

j1,...,jl
1≤j1≤···≤jl

apj1
...pjl

zpj1
· · · zpjl

=
1

2π

2π\
0

F (eiθz)e−liθ dθ,

so that

(7)
∣

∣

∣

∑

j1,...,jl
1≤j1≤···≤jl

apj1
...pjl

zpj1
. . . zpjl

∣

∣

∣
≤ ‖F‖∞ := sup

D∞

|F | = ‖f‖∞,
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(the last equality follows from Bohr’s theory [25]) and by immediate induc-
tion we only need to show that

∑

j1,...,jk
1≤j1≤···≤jk

|apj1
...pjk

|(log(pj1 · · · pjk
))kτ

(pj1 · · · pjk
)τ

≪k ‖f‖∞,

with τ := 1/2−1/(2k). Using (7) for l = k and Harris’s polarization inequal-

ity ([25, p. 50]) we get, if (w
(2)
q )q prime, . . . , (w

(k)
q )q prime run over the infinite

polydisc,
∣

∣

∣

∑

j1≥1

zpj1

(

∑

j2,...,jk
j1≤j2≤···≤jk

apj1
pj2

...pjk
w(2)

pj2
· · ·w(k)

pjk

)∣

∣

∣

=
∣

∣

∣

∑

j1,j2...,jk
1≤j1≤j2≤···≤jk

apj1
pj2

...pjk
zpj1

w(2)
pj2

· · ·w(k)
pjk

∣

∣

∣

≤ ck‖f‖∞,

where

ck :=
kk/2(k + 1)(k+1)/2

2kk!
.

Optimizing with respect to the zpj1
’s gives

∑

j1≥1

∣

∣

∣

∑

j2,...,jk
j1≤j2≤···≤jk

apj1
pj2

...pjk
w(2)

pj2
· · ·w(k)

pjk

∣

∣

∣
≤ ck‖f‖∞.

We now take for the w
(l)
q ’s, 2 ≤ l ≤ k, independent complex Steinhaus

random variables taking values of modulus 1 with the uniform distribution,

integrate with respect to the w
(l)
q ’s and use the Khinchin inequalities ([25])

to get
∑

j1≥1

(

∑

j2,...,jk
j1≤j2≤···≤jk

|apj1
pj2

...pjk
|2
)1/2

=:
∑

j1≥1

λ1(pj1) ≤ Ck‖f‖∞,

where Ck is a positive constant depending on k only, which could be taken
equal to ck(2/

√
π)k−1. Hence, if jk is fixed, then

∑

j1,...,jk−1

1≤j1≤···≤jk−1

|apj1
...pjk

|(log(pj1 · · · pjk
))kτ

(pj1 · · · pjk
)τ

≪k
(log pjk

)kτ

pτ
jk

(

∑

j1,...,jk−1

1≤j1≤···≤jk−1

|apj1
...pjk

|
(pj1 · · · pjk−1

)τ

)
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≤ (log pjk
)kτ

pτ
jk

(

∑

j1,...,jk−1

1≤j1≤···≤jk

|apj1
···pjk

|2

(pj1 · · · pjk−1
)2τ

)1/2

×
(

∑

j1,...,jk−1

1≤j1≤···≤jk

1

(pj1 · · · pjk−1
)2τ

)1/2

≤ (log pjk
)kτ

pτ
jk

λk(pjk
)
([

∑

p : p≤pjk

p−2τ
]k−1)1/2

≪k
(log pjk

)kτ

pτ
jk

λk(pjk
)

([

p1−2τ
jk

log pjk

]k−1)1/2

,

which is λk(pjk
) since τ = 1/2 − 1/(2k). Finally,

∑

j1,...,jk
1≤j1≤···≤jk

|apj1
...pjk

|(log(pj1 · · · pjk
))kτ

(pj1 · · · pjk
)τ

≪k

∑

jk≥1

λk(pjk
) ≤ Ck‖f‖∞,

which settles the case k ≥ 3 for the finitely supported case.

Let now f(s) =
∑∞

n=1 ann−s ∈ H∞
k . We use Bohr’s theorem which

states that for ε > 0 the series
∑∞

n=1 ann−εn−s is uniformly convergent
in C+ ([11], [4] or [5]), so that we can find an Nε > ε−1 such that

‖∑∞
n=Nε+1 ann−εn−s‖∞≤ε, and therefore ‖∑Nε

n=1 ann−εn−s‖∞≤‖f‖∞+ε.
Let N be an integer and ε > 0 be such that Nε ≥ N . The finitely supported
case gives

N
∑

n=1

|ann−ε|(log n)kτ

nτ
≤

Nε
∑

n=1

|ann−ε|(log n)kτ

nτ
≤ Ak(‖f‖∞ + ε),

where Ak is a positive constant depending on k only, and letting ε → 0 we
get

N
∑

n=1

|an|(log n)kτ

nτ
≤ Ak‖f‖∞.

This holds for every integer N , so

∞
∑

n=1

|an|(log n)kτ

nτ
≤ Ak‖f‖∞,

which ends the proof of Theorem 1.4.

We end this section with a result similar to Theorem 1.3 for the space H∞
k :
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Theorem 1.5. Let p ∈ [1, 2]. Then:

1) For every f(s) =
∑∞

n=1 ann−s ∈ H∞
k ,
∑∞

n=1 |ann−σ|p < ∞ if σ ≥
max(1/p − 1/2 − 1/(2k), 0) =: σ0.

2) The value σ0 is optimal : if σ < σ0, we can find f ∈ H∞
k such that

the sum in 1) is infinite.

We do not give the proof of this result, which will appear in the second
author’s thesis.

2. The isometric Bohr abscissa. We begin with a lemma, analogous
to a lemma of F. W. Wiener for Taylor series ([24]), and which will play
an important role. Indeed, F. W. Wiener gave one of the simplest proofs of
Bohr’s inequality (1) (see [12]), observing that if f(z) =

∑∞
n=0 anzn ∈ H∞

with ‖f‖∞ = 1, then

∀n ≥ 1, |an| ≤ 1 − |a0|2.
We now give two different proofs of the following lemma, the first one
operator-theoretic and an adaptation of the proof of [24], the second one
more analytic.

Lemma 2.1. Let f(s) =
∑∞

n=1 ann−s ∈ H∞ with ‖f‖∞ = 1. Then

∀n ≥ 2, |an| ≤ 1 − |a1|2.
First proof of Lemma 2.1. Let H2 be the Hilbert space of Dirichlet series

f(s) =
∑∞

n=1 ann−s with square-summable coefficients: ‖f‖2
2 :=

∑∞
n=1 |an|2

< ∞. It is known ([4] or [5]) that the n−s, n ≥ 1, form an orthonormal
basis of H2 (obvious) and that H∞ is isometrically equal to the space of
multipliers of H2 (non-obvious) in the sense that

f ∈ H2, g ∈ H∞ ⇒ fg ∈ H2, and moreover ‖g‖∞ = sup
‖f‖2≤1

‖fg‖2

(and conversely: if fg ∈ H2 for each f ∈ H2, then g ∈ H∞).

Now, fix q ≥ 2, let P be the orthogonal projection of H2 onto M :=
span(1, q−s), and T : M → M be defined by T (h) = P (fh). We have ‖T‖ ≤
‖f‖∞ ≤ 1, and T (1) = P (f) = a1 + aqq

−s, T (q−s) = P (q−sf) = a1q
−s, so

that the matrix of T in the orthonormal basis (1, q−s) is
(

a1 0

aq a1

)

.

Now, it is well known ([24]) that such a matrix defines a contraction of M
if and only if |a1|2 + |aq| ≤ 1, which proves the lemma.

Second proof of Lemma 2.1. We prove the following stronger result:
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Proposition 2.1. Let f(s) =
∑∞

n=1 ann−s ∈ H∞ with ‖f‖∞ = 1. Then

∀k ≥ 1,
(

∑

n≥2,Ω(n)=k

|an|2
)1/2

≤ 1 − |a1|2.

Proof. We first show that we can assume an = 0 for large n. In fact, if
N0 ≥ 1 and ε > 0, it follows from Bohr’s theorem ([11], [4] or [5]) that the
series

∑∞
n=1 ann−εn−s is uniformly convergent in C+, so that we can find

an N = N(ε) > N0 such that ‖
∑∞

n=N+1 ann−εn−s‖∞ ≤ ε, and therefore

‖∑N
n=1 ann−εn−s‖∞ ≤ 1+ε. If the finitely supported case has been settled,

we get
(

∑

2≤n≤N0, Ω(n)=k

|an|2
n2ε

)1/2

≤
(

∑

2≤n≤N,Ω(n)=k

|an|2
n2ε

)1/2

≤ (1 + ε)(1 − |a1|2).

This is true for all ε, so by letting ε → 0 we obtain
(

∑

2≤n≤N0, Ω(n)=k

|an|2
)1/2

≤ 1 − |a1|2.

Since this is true for all N0 ≥ 1, this ends the proof of the lemma.

For a finitely supported sequence (an)1≤n≤N , let r ≥ 1 be such that
the prime factors of every n ∈ [1, N ] are in the set {p1, . . . , pr} of the r
first prime numbers. Using Bohr’s theory, we pass to the polynomial of r
variables attached to f :

F (z1, . . . , zr) :=
∑

α∈Nr

cαzα1

1 · · · zαr
r ,

with cα := an if n = pα1

1 · · · pαr
r ∈ [1, N ] and cα := 0 otherwise, so that

F (p−s
1 , · · · , p−s

r ) = f(s). Boas and Khavinson showed in [9] that for every
k ≥ 1 we have

(

∑

|α|=k

|cα|2
)1/2

≤ 1 − |c0|2 = 1 − |a1|2,

where |α| = α1 + · · · + αr. This ends the proof since
∑

|α|=k

|cα|2 =
∑

n≥2, Ω(n)=k

|an|2.

Observe now the following consequence of the method of the second
proof:

Proposition 2.2. If f(s) =
∑∞

n=1 ann−s ∈ H∞ with ‖f‖∞ = 1, then
∑

p

|ap| ≤ 1 − |a1|2.
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Proof. As before, we can assume without loss of generality that an = 0
for n large. For a finitely supported sequence (an)n≥1, we use Bohr’s point
of view, passing to

F (z) := a1 +
∞
∑

k=1

fk(z),

where fk(z) :=
∑

Ω(n)=k anzα(n), and where n = pα1

1 · · · pαr
r is the expansion

of n into prime factors and zα(n) := zα1

1 · · · zαr
r if z = (z1, z2, . . . ). Fix z

in the unit infinite-dimensional polydisc (supj≥1 |zj| ≤ 1), and consider, for
w ∈ D,

g(w) := F (wz) = a1 +
∞
∑

k=1

fk(z)wk.

Then, by Bohr’s theory ([25]), we have ‖g‖∞ ≤ ‖F‖∞ = ‖f‖∞ = 1, and by
Wiener’s result ([24]), we have |fk(z)| ≤ 1 − |a1|2 for k ≥ 1.

For k = 1, this gives |∑p apzp| ≤ 1 − |a1|2. Optimizing with respect to
z = (zp)p prime, we get the result, which can be viewed as an improvement
of Bohr’s inequality:

∑

p |ap| ≤ ‖f‖∞ ([25] or [26]).

Remark 2.1. Note that the inequalities (5) and (6) of the proof of
Theorem 1.4 can be improved with the same method: if ‖f‖∞ = 1, then

(8)

∑

p

(

∑

q : q≥p

|apq|2
)1/2

≤ 3
√

3

2
√

π
(1 − |a1|2),

∑

q

(

∑

p : p≤q

|apq|2
)1/2

≤ 3
√

3

2
√

π
(1 − |a1|2).

We shall use this improvement in the proof of Theorem 2.1, our next result.

Theorem 2.1.

1) ̺1(H∞
1 ) = 0.

2) ̺1(H∞
2 ) ≤ σ0, where σ0 is the root of the equation

21−σ +
3
√

3√
π

√

F (4σ) = 1,

where F is the function defined by F (s) :=
∑

p p−s. Moreover , 1.5903
< σ0 < 1.5904.

3) ̺1(H∞) ≤ σ1, where σ1 is the root of the equation

2−σ +
3
√

3

2
√

π

√

F (4σ) +
∑

n>1, Ω(n)≥3

n−σ =
1

2
,

where F is defined as in 2). Moreover ,

̺1(H∞) ≥ log 3/log 2 = 1.5850 . . .
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and 1.8153 < σ1 < 1.8154. So if f(s) =
∑∞

n=1 ann−s ∈ H∞, then
∑∞

n=1 |an|n−2 ≤ ‖f‖∞.

Proof. 1) This is simply a reformulation of Bohr’s inequality
∑

p |ap|
≤ ‖f‖∞.

2) Let

f(s) = a1 +
∑

p

app
−s +

∑

p,q : p≤q

apq(pq)−s ∈ H∞
2 ,

with ‖f‖∞ = 1. By an inequality of R. Blei ([8]), improving an inequality of
Littlewood, we have
(

∑

p,q : p≤q

|apq|4/3
)3/4

≤
[

∑

p

(

∑

q : q≥p

|apq|2
)1/2]1/2[∑

q

(

∑

p : p≤q

|apq|2
)1/2]1/2

.

It follows, using (8) of Remark 2.1, that

(

∑

p,q : p≤q

|apq|4/3
)3/4

≤ 3
√

3

2
√

π
(1 − |a1|2).

So, using Hölder’s inequality and Proposition 2.2 we obtain

∞
∑

n=1

|an|
nσ

≤ |a1| +
∑

p

|ap|
2σ

+
(

∑

p,q : p≤q

|apq|4/3
)3/4

(

∑

p,q : p≤q

1

(pq)4σ

)1/4

≤ |a1| +
1 − |a1|2

2σ
+

3
√

3

2
√

π
(1 − |a1|2)

√

F (4σ),

which is less than 1 if 21−σ + 2 · 3
√

3 ·
√

F (4σ)/(2
√

π) ≤ 1, that is, σ ≥ σ0,
which ends the proof of 2).

3) First let σ0 < log 3/log 2. Then 2−σ0 > 1/3, and by Bohr’s result we
know that there exists a power series f(z) =

∑∞
n=0 anzn with |f(z)| ≤ 1

for z ∈ D and
∑∞

n=0 |an|(2−σ0)n > 1. Let F (s) := f(2−s) =
∑∞

n=0 an(2n)−s.
Then F ∈ H∞, ‖F‖∞ ≤ 1, and yet

∞
∑

n=0

|an|(2n)−σ0 =

∞
∑

n=0

|an|(2−σ0)n > 1.

This shows that σ0 is not an admissible abscissa and proves that ̺1(H∞) ≥
log 3/log 2.

Let now f(s) =
∑∞

n=1 ann−s ∈ H∞ with ‖f‖∞ = 1, and let σ > 0. Then
by 2) we know that

∑

n≥1, Ω(n)≤2

|an|
nσ

≤ |a1| +
1 − |a1|2

2σ
+

3
√

3

2
√

π
(1 − |a1|2)

√

F (4σ).
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So, using Lemma 2.1, we get
∞
∑

n=1

|an|
nσ

≤ |a1| +
1 − |a1|2

2σ
+

3
√

3

2
√

π
(1 − |a1|2)

√

F (4σ)

+ (1 − |a1|2)
(

∑

n>1, Ω(n)≥3

n−σ
)

,

which is less than 1 if 2−σ +3
√

3 ·
√

F (4σ)/(2
√

π)+
∑

n>1, Ω(n)≥3 n−σ ≤ 1/2,
that is, σ ≥ σ1. This ends the proof of the theorem.

Remark 2.2. A result similar to 3) of Theorem 2.1 was proved for power
series in [3], where the authors make use of the function G(r) :=

∑

p rp

(Lemma 2.1, p. 609).

We now examine the effect of taking a1 = 0, or of replacing |a1| by |a1|2.
Proposition 2.3.

1) Let f(s) =
∑∞

n=2 ann−s ∈ H∞. Then, if σ2 := ̺/2, where ζ(̺) = 2
(ζ being Riemann’s zeta function), we have

∑∞
n=2 |an|n−σ2 ≤ ‖f‖∞.

Moreover , 1.7286 < ̺ < 1.7287 and 0.8643 < σ2 < 0.86435.
2) If

∑∞
n=2 |bn|n−σ ≤ ‖g‖∞ for all g(s) =

∑∞
n=2 bnn−s ∈ H∞, then

σ ≥ 1/2.

Proof. 1) The Cauchy–Schwarz inequality gives
∞
∑

n=2

|an|
nσ

≤
(

∞
∑

n=2

|an|2
)1/2(

∞
∑

n=2

n−2σ
)1/2

= ‖f‖2(ζ(2σ) − 1)1/2 ≤ ‖f‖∞(ζ(2σ) − 1)1/2 ≤ ‖f‖∞
if ζ(2σ) − 1 = 1, i.e. if 2σ = ̺.

2) Let f(z) =
∑∞

n=1 anzn be such that |f(z)| ≤ 1 if z ∈ D, and
∞
∑

n=1

|an|/(
√

2)n = ‖f‖∞ = 1

(e.g. f(z) = z(1/
√

2 − z)/(1 − z/
√

2)). Let

F (s) := f(2−s) =
∞
∑

n=1

an(2n)−s,

and let σ0 be defined by 2−σ0 = 1/
√

2, i.e. σ0 = 1/2. We see that ‖F‖∞ ≤ 1
and

∑∞
n=1 |an|(2n)−σ0 =

∑∞
n=1 |an|/(

√
2)n = 1, so that we cannot go below

1/2 with σ.

Proposition 2.4. Let f(s) =
∑∞

n=1 ann−s ∈ H∞ with ‖f‖∞ = 1. Then

|a1|2 +
∞
∑

n=2

|an|n−̺ ≤ 1,

where ̺ is as in Proposition 2.3.
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Proof. Using Lemma 2.1, we have

|a1|2 +
∞
∑

n=2

|an|n−̺ ≤ |a1|2 + (1 − |a1|2)
∞
∑

n=2

n−̺

= |a1|2 + (1 − |a1|2)(ζ(̺) − 1)

= |a1|2 + (1 − |a1|2) = 1.
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for power series, Izv. Vyssh. Uchebn. Zaved. Mat. 2002, no. 10, 3–7 (in Russian).

[3] L. Aizenberg and A. Vidras, On the Bohr radius for two classes of holomorphic
functions, Siberian Math. J. 45 (2004), 606–617.
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[6] C. Bénéteau, A. Dahlner and D. Khavinson, Remarks on the Bohr phenomenon,
Comput. Methods Function Theory 4 (2004), 1–19.
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[23] D. Li et H. Queffélec, Introduction à l’étude des espaces de Banach : analyse et
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