L^1 representation of Riesz spaces

by

BAHRI TURAN (Ankara)

Abstract. Let E be a Riesz space. By defining the spaces L_E^1 and L_E^∞ of E, we prove that the center $Z(L_E^1)$ of L_E^1 is L_E^∞ and show that the injectivity of the Arens homomorphism $m: Z(E)'' \to Z(E^\sim)$ is equivalent to the equality $L_E^1 = Z(E)'$. Finally, we also give some representation of an order continuous Banach lattice E with a weak unit and of the order dual E^\sim of E in L_E^1 which are different from the representations appearing in the literature.

1. Introduction. An ordered vector space E is called a *Riesz space* (or a vector lattice) if $\sup\{x, y\} = x \lor y$ (or $\inf\{x, y\} = x \land y$) exists in E for all $x, y \in E$. Sets of the form $[x, y] = \{z \in E : x \le z \le y\}$ are called order intervals or simply intervals. A subset A of E is said to be order bounded if A is included in some order interval.

A linear map T, between E and L, is said to be order bounded whenever T maps order bounded sets into order bounded sets. Order bounded linear maps between E and L will be denoted by $L_{\rm b}(E, L)$. We denote by $L_{\rm b}(E)$ the order bounded operators from E into itself and by E^{\sim} the order bounded functionals on E. Furthermore, $E_{\rm n}^{\sim}$ will denote the order continuous members of E^{\sim} . The space E^{\sim} is called the order dual of E. The norm dual of a Banach lattice E coincides with its order dual [3, p. 176].

A mapping $\pi \in L_{\rm b}(E)$ is called an *orthomorphism* if $x \perp y$ (i.e. $|x| \wedge |y| = 0$) implies $\pi x \perp y$. The set of orthomorphisms of E will be denoted by $\operatorname{Orth}(E)$. The principal order ideal generated by the identity operator I in $\operatorname{Orth}(E)$ is called the *ideal center* of E and is denoted by Z(E) (i.e. $Z(E) = \{\pi \in L_{\rm b}(E) : |\pi| \leq \lambda I \text{ for some } \lambda \in \mathbb{R}_+\}$).

If E is a uniformly complete Riesz space, then Z(E) becomes a Banach lattice with respect to the *I*-uniform norm $||\pi|| = \inf\{\lambda : |\pi| \le \lambda I, \lambda \in \mathbb{R}_+\}$. In particular, if E is a Banach lattice, the Z(E) is a Banach lat-

²⁰⁰⁰ Mathematics Subject Classification: 47B65, 46A40, 47B60.

Key words and phrases: Riesz space, Banach lattice, order continuous norm, center of Riesz space.

tice. Moreover, every operator norm coincides with the *I*-uniform norm on Z(E). The space Z(E) is an abstract AM-space and Z(E)' is an abstract AL-space. Moreover, Z(E)' has order continuous norm.

Let A be a Riesz algebra (lattice ordered algebra), i.e., A is a Riesz space which is simultaneously an associative algebra with the additional property that $a, b \in A_+$ implies that $ab \in A_+$. An *f*-algebra A is a Riesz algebra which satisfies the extra requirement that $a \perp b$ implies $ac \perp b = ca \perp b$ for all $c \in A_+$. Every Archimedean *f*-algebra is commutative. Orth(E) and Z(E) are *f*-algebras under pointwise order and composition of operators.

Throughout, E^{\sim} will be assumed to separate the points of E. This assumption implies that E is Archimedean.

Let us also recall that $(A^{\sim})_{n}^{\sim}$, the order continuous part of the order bidual $A^{\sim\sim}$, of an *f*-algebra *A* can be made an *f*-algebra, extending the product in *A*, whenever *A* has separating order dual. This is done as follows:

(1)
$$A \times A^{\sim} \to A^{\sim},$$

$$(a, f) \mapsto f \cdot a: \qquad f \cdot a(b) = f(a \cdot b) \quad \text{for } b \in A,$$

$$\overset{\sim}{)_{n}} \times A^{\sim} \to A^{\sim},$$

(2)
$$(A^{\sim})_{n}^{\sim} \times A^{\sim} \to A$$

$$(F,f) \mapsto F \cdot f: \quad F \cdot f(a) = F(f \cdot a) \quad \text{for } a \in A,$$
$$(A^{\sim})_{n}^{\sim} \times (A^{\sim})_{n}^{\sim} \to (A^{\sim})_{n}^{\sim},$$

$$(F,G) \mapsto F \cdot G : F \cdot G(f) = F(G \cdot f) \text{ for } f \in A^{\sim}.$$

Then $(A^{\sim})_{n}^{\sim}$ is an *f*-algebra with the multiplication defined in step (3) (see [7]).

If $(A^{\sim})_{n}^{\sim}$ is an *f*-algebra with identity then the mapping $v : (A^{\sim})_{n}^{\sim} \to \operatorname{Orth}(A^{\sim})$ defined as $F \mapsto v_{F}$ where $v_{F}(f) = F \cdot f$ for each $f \in A^{\sim}$ is an algebra isomorphism and a Riesz isomorphism [7].

Given the bilinear map $Z(E) \times E \to E$ defined by $(\pi, x) \mapsto \pi x$, consider its Arens extensions

(4)
$$E \times E^{\sim} \to Z(E)',$$

(5)
$$(x, f) \mapsto \mu_{x,f} : \qquad \mu_{x,f}(\pi) = f(\pi x) \quad \text{for } \pi \in Z(E)$$

(5)
$$Z(E)'' \times E^{\sim} \to E^{\sim},$$

(F, f) $\mapsto F \bullet f : \quad F \bullet f(x) = F(\mu_{x,f}) \quad \text{for } x \in E.$

The maps defined in (4) and (5) are bipositive. (5) makes it possible to define a linear map $m: Z(E)'' \to Z(E^{\sim})$ where $m(F)(f) = F \bullet f$; it is called *the Arens homomorphism*. If *E* is a Riesz space with topologically full center then the bilinear map $E \times E^{\sim} \to Z(E)'$ is a bilattice homomorphism and *m* is a unital algebra homomorphism and an order continuous surjective Riesz homomorphism [4, 5].

(3)

In all undefined terminology we will adhere to [3, 8, 9, 10, 12].

2. L^1 and L^{∞} spaces. We define the L^1 and L^{∞} spaces of a Riesz space *E*. Let *A* be an algebra and *E* be an *A*-module, and let A^* , E^* be their algebraic duals. Then a bilinear map can be defined by

$$\otimes : E \times E^* \to A^*,$$

(x, f) $\mapsto x \otimes f : \quad x \otimes f(a) = f(a \cdot x) \quad \text{for } a \in A.$

In general the image of this bilinear map may not be a linear space. For this reason, the linear space generated by the image of \otimes has been taken as the A-tensor product of E and E^* . But the image of the bilinear map given in step (4) is a linear space as can be seen from the following lemma.

LEMMA 1. Let E be a Riesz space and $B = \{\mu_{x,f} : x \in E, f \in E^{\sim}\}$. Then B is an order ideal in Z(E)'.

Proof. Let
$$f, g \in E^{\sim}, x, y \in E$$
 and $\mu = \mu_{x,f} + \mu_{y,g}$. Then

$$0 \le \mu^+ \le |\mu_{x,f} + \mu_{y,g}| \le \mu_{|x|,|f|} + \mu_{|y|,|g|} \le \mu_{|x|+|y|,|f|+|g|}.$$

Similarly, $0 \leq \mu^- \leq \mu_{|x|+|y|,|f|+|g|}$. Set h = |f| + |g| and z = |x| + |y|; then $0 \leq \mu^+ \leq \mu_{z,h}$ and $0 \leq \mu^- \leq \mu_{z,h}$. Since $0 \leq \mu^+ \leq \mu_{z,h}$ and Z(E)'is Dedekind complete there exists $\pi \in Z(Z(E)')$ with $\pi(\mu_{z,h}) = \mu^+$ [3, Theorem 8.15]. By the algebra and Riesz isomorphism v which is defined earlier, one has the equality Z(E)'' = Z(Z(E)'). It implies that $v_H = \pi$ for some $H \in Z(E)''$. For any two elements π_1, π_2 in Z(E) we obtain

$$\mu_{x,f} \cdot \pi_1(\pi_2) = \mu_{x,f}(\pi_1 \cdot \pi_2) = f(\pi_2 \pi_1 x) = \mu_{\pi_1 x,f}(\pi_2).$$

On the other hand, for this H one can easily calculate that $H \cdot \mu_{x,f} = \mu_{x,H \bullet f}$ and so

$$\pi(\mu_{z,h}) = v_H(\mu_{z,h}) = H \cdot \mu_{z,h} = \mu_{z,H \bullet h} = \mu^+$$

Following the same argument, we see that $\mu^- = \mu_{z,S \bullet h}$ for $S \in Z(E)''$. By using these equalities, we have

$$\mu = \mu^{+} - \mu^{-} = \mu_{z,H\bullet h} - \mu_{z,S\bullet h} = \mu_{z,(H-S)\bullet h},$$

which implies that the sum of two elements in B is again an element of B. As a consequence B is a subspace of Z(E)'. Using the same technique one can easily see that B is also an order ideal in Z(E)'.

Let E be a Riesz space. Then $Z(E)' = Z(E)^{\sim}$ is a Banach lattice with respect to operator norm. Since B is an order ideal in Z(E)', it is well known that the $\sigma(Z(E)', Z(E)'')$ closure of B coincides with the norm closure of B. As Z(E)' has order continuous norm, the closure of B is a band in Z(E)'[12, Corollary 106.3]. The L^1 and L^{∞} spaces of a C(K)-module E were defined and studied in [2]. Now we will give similar definitions for a Riesz space E. DEFINITION 1. Let E be a Riesz space.

- (a) The $\sigma(Z(E)', Z(E)'')$ -closure of B is called the L^1 space of E and is denoted by L_E^1 .
- (b) The order dual of L_E^1 is called the L^{∞} space of E and is denoted by L_E^{∞} .

It follows from this definition that L_E^1 is an abstract AL space and hence L_E^∞ is an abstract AM space. Moreover, L_E^1 has order continuous norm.

It is well known that if (X, Σ, μ) is a σ -finite measure space and $E = L^p(\mu)$ with $0 then <math>Z(E) = L^{\infty}(\mu)$. We now prove a similar result for L^1_E .

THEOREM 1. If E is a Riesz space then $Z(L_E^1) = L_E^\infty$.

Proof. We wish to define a map $u: L_E^{\infty} = (L_E^1)' \to Z(L_E^1)$ by $u_F(\mu) = F * \mu$ for each $F \in L_E^{\infty}$, $\mu \in L_E^1$ where $F * \mu(\pi) = F(\mu \cdot \pi)$, $\mu \cdot \pi(s) = \mu(\pi s)$ for all $\pi, s \in Z(E)$. We shall show that u is a Riesz isomorphism.

Let $\mu = \mu_{x,f} \in B$ for some $x \in E, f \in E^{\sim}$ and $\pi \in Z(E)$. We obtain

$$\mu_{x,f} \cdot \pi(s) = \mu_{x,f}(\pi s) = f(\pi s x) = f(s\pi x) = \mu_{\pi x,f}(s)$$

for each $s \in Z(E)$. Take a positive element μ in L_E^1 . There exists a net $\{\mu_{\alpha}\} \subseteq B$ such that $0 \leq \mu_{\alpha} \uparrow \mu$. Since $\mu_{\alpha} \cdot \pi \uparrow \mu \cdot \pi$ for each $\pi \in Z(E)_+$ and L_E^1 is a band, it follows that $\mu \cdot \pi \in L_E^1$. It is easy to see that u_F is a positive operator for F positive in L_E^∞ , and $F * (\lambda \mu_1 + \mu_2) = \lambda F * \mu_1 + F * \mu_2$ for all $\lambda \in \mathbb{R}, \, \mu_1, \mu_2 \in L_E^1$. This implies that $u_F \in L_b(L_E^1)$ for each $F \in L_E^\infty$. Now let $F \in L_E^\infty$ and P be the band projection of L_E^1 . Note that $F \circ P \in Z(E)''$ and $v_{F \circ P} \in Z(Z(E)')$. Since L_E^1 is a band and $v_{F \circ P}|_{L_E^1} = u_F$, we see that $u_F \in Z(L_E^1)$. Thus the image of L_E^∞ under u is included in $Z(L_E^1)$. It is routine to check that u is a positive operator.

If $u_F = 0$ for some $F \in L_E^{\infty}$, then

$$u_F(\mu_{x,f})(I) = F * \mu_{x,f}(I) = F(\mu_{x,f} \cdot I) = F(\mu_{x,f}) = 0$$

for each $\mu_{x,f} \in B$. By this fact and the order continuity of F, $F(\mu) = 0$ for each $\mu \in L_E^1$. Hence u is a one-to-one operator.

On the other hand, since $v : Z(E)'' \to Z(Z(E)')$ is surjective there exists $G \in Z(E)''$ such that $v_G = P$, the band projection considered above. Set $H = G|_{L_E^1}$. For each $\mu \in L_E^1$, we have $u_H(\mu) = H * \mu = P(\mu) = \mu$, which shows that $u_H = I$. Now let $s \in Z(L_E^1)$ and \tilde{s} be adjoint to s. Then $\tilde{s}(H) \in L_E^\infty$. Observe that

$$\widetilde{s}(H) * \mu(\pi) = \widetilde{s}(H)(\mu \cdot \pi) = H(s(\mu \cdot \pi)) = H(s(\mu) \cdot \pi) = H * s(\mu)(\pi)$$

for all $\mu \in L^1_E$ and $\pi \in Z(E)$. Hence $u_{\tilde{s}(H)}(\mu) = \tilde{s}(H) * \mu = s(\mu)$. This shows that u is surjective.

Clearly, u^{-1} is a positive operator. Applying Theorem 7.3 of [3] we see that u is a Riesz isomorphism.

In the following theorem we characterize the injectivity of the Arens homomorphism in the case of $L_E^1 = Z(E)'$.

THEOREM 2. Let E be a Riesz space. Then the Arens homomorphism $m: Z(E)'' \to Z(E^{\sim})$ is injective if and only if $L^1_E = Z(E)'$.

Proof. Assume that $L_E^1 = Z(E)'$ and m(F) = 0. Then $0 = m(F)(f)(x) = F(\mu_{x,f})$ for each $x \in E$, $f \in E^{\sim}$. The order continuity of F implies that $F(\mu) = 0$ for each $\mu \in L_E^1 = Z(E)'$. This shows that m is injective.

Conversely, suppose that m is injective. Let $R : Z(E)' \to (L_E^1)^d$ be the band projection. Since Z(E)'' = Z(Z(E)'), there exists $G \in Z(E)''$ such that $v_G = R$. For all $x \in E$, $f \in E^{\sim}$ we have

$$v_G(\mu_{x,f}) = G \cdot \mu_{x,f} = R(\mu_{x,f}) = 0$$

 \mathbf{so}

$$G \cdot \mu_{x,f}(I) = G(\mu_{x,f} \cdot I) = G(\mu_{x,f}) = m(G)(f)(x) = 0.$$

It follows that G = 0, as *m* is injective. Hence R = 0. Since $Z(E)' = L_E^1 \oplus (L_E^1)^d$ and R = 0 one sees that $Z(E)' = L_E^1$, which completes the proof.

We now give two examples related to the characterization of L_E^1 .

EXAMPLE 1.

- (a) Let $E = l^1$, the absolutely summable sequences. Then $E^{\sim} = l^{\infty}$ (the bounded sequences) and $Z(E) = Z(E^{\sim}) = l^{\infty}$. On the other hand, $Z(E)'' = (l^{\infty})''$ and m is the band projection of $(l^{\infty})''$ onto l^{∞} . Then m is not one-to-one. Therefore $L_E^1 \neq Z(E)'$.
- (b) Let K be a compact Hausdorff space and E = C(K). Then Z(E) = C(K) and $Z(E^{\sim}) = C(K)''$. Also m is the identity map of C(K)''. Hence $L_E^1 = Z(E)'$.

These examples show that, in general, $L_E^1 \neq Z(E)'$. We are now in a position to characterize L_E^1 in Z(E)'. First we introduce the weak operator topology on Z(E), denoted by wo, corresponding to the dual pair $\langle E, E^{\sim} \rangle$. A net $\{\pi_{\alpha}\}$ converges to π with respect to the wo-topology if and only if $f(\pi_{\alpha}x) \to f(\pi x)$ for each $x \in E$ and $f \in E^{\sim}$. We are now ready to state the following theorem.

THEOREM 3. Let E be a Banach lattice and (Z(E), wo)' be the set of continuous functionals on (Z(E), wo). Then (Z(E), wo)' = B.

Proof. Clearly, B is a subset of (Z(E), wo)'. Conversely, let μ be a functional on Z(E) which is continuous in the wo-topology. By Theorem 4 in [6] there exist $x_1, \ldots, x_n \in E$ and $f_1, \ldots, f_n \in E'$ such that $\mu = \sum_{i=1}^n \mu_{x_i, f_i}$. This completes the proof.

From the above theorem and Lemma 1 one can deduce the following corollary.

COROLLARY 1. Let E be a Banach lattice. Then (Z(E), wo)' is an order ideal in Z(E)' and the closure of (Z(E), wo)' is equal to L_E^1 .

If E is an order continuous Banach lattice which has a weak unit, then there exists an AL space S such that E is an order dense Riesz subspace of S. In this case E^{\sim} is also an order dense ideal in S [1, Theorem 2.1; 10, Theorem 2.7.8; 8, Theorem 1.b.14]. Now we shall give different representation theorems for order continuous Banach lattices with a weak unit. This representation clearly exhibits the relation between E, E' and Z(E)'.

THEOREM 4. Let E be an order continuous Banach lattice which has a weak unit. Then E^{\sim} is order isomorphic to an order dense ideal in L_E^1 .

Proof. Let e > 0 be a weak unit. Define a map $\Phi_e : E^{\sim} \to L_E^1$ such that $\Phi_e(f) = \mu_{e,f}$ for each $f \in E^{\sim}$. It is easy to see that Φ_e is a positive operator. Let $\Phi_e(f) = 0$. Then $\Phi_e(f)(\pi) = \mu_{e,f}(\pi) = f(\pi e) = 0$ for each $\pi \in Z(E)$. If $x \in I_e$ (where I_e is the principal ideal generated by e), then there exists $\pi \in Z(E)$ such that $\pi e = x$ by Lemma 2.7 in [11]. This implies that $f(\pi e) = f(x) = 0$. Take an arbitrary positive element in $B_e = E$ (where B_e is the principal band generated by e). Since I_e is order dense in B_e , there exists an upward directed net $\{x_\alpha\}$ in I_e such that $0 \leq x_\alpha \uparrow x$. The order continuity of f implies that f(x) = 0. This shows that Φ_e is injective. Now let $f \in E^{\sim}$ and $\mu_{e,f} \geq 0$ in L_E^1 . Using the above technique for each $0 \leq x \in B_e = E$ we see that $f(x) \geq 0$. Thus $\Phi_e^{-1} : \Phi_e(E^{\sim}) \to E^{\sim}$ is positive. Applying Theorem 7.3 of [3] one can deduce that $\Phi_e : E^{\sim} \to \Phi_e(E^{\sim})$ is a Riesz isomorphism. The order ideality of $\Phi_e(E^{\sim})$ in L_E^1 follows from the technique used in Lemma 1.

Finally, we claim that $\Phi_e(E^{\sim})$ is order dense in L^1_E . To see this, let D be the band generated by $\Phi_e(E^{\sim})$ in L^1_E . If we show $B \subseteq D$, then the proof will be completed. For $0 \leq x \in E$ and $0 \leq f \in E^{\sim}$ take an element $\mu_{x,f}$ in B. If $x \in I_e$, then there exists $\pi \in Z(E)$ such that $\pi e = x$. For $s \in Z(E)$ the equality

$$\mu_{x,f}(s) = \mu_{\pi e,f}(s) = f(\pi s e) = \widetilde{\pi}(f)(s e) = \mu_{e,\widetilde{\pi}(f)}(s)$$

shows that $\mu_{x,f}$ belongs to D. If we take an arbitrary $0 \le x \in B_e = E$, then there exists an upward directed net $\{x_\alpha\}$ in I_e such that $0 \le x_\alpha \uparrow x$. Since fis order continuous and positive, we have $f(\pi x_\alpha) \uparrow f(\pi x)$ for each positive π in Z(E) and so $\mu_{x_{\alpha},f}(\pi) \uparrow \mu_{x,f}(\pi)$. As $\mu_{x_{\alpha},f} \in D$ and D is a band in L^{1}_{E} we see that $\mu_{x,f} \in D$. It is routine to check that $\mu_{x,f} \in D$ for all x and f.

THEOREM 5. Let E be an order continuous Banach lattice which has a weak unit. Then E is order isomorphic to an order dense Riesz subspace of L_E^1 .

Proof. By Proposition 1.b.15 in [8] there exists $0 < h \in E^{\sim}$ such that h(|x|) = 0 implies that x = 0. Define $\Phi_h : E \to L_E^1$ by $\Phi_h(x) = \mu_{x,h}$. Clearly, Φ_h is a positive operator and since E has an order continuous norm, E is Dedekind complete. By Lemma 1 in [5], Φ_h is a Riesz homomorphism and hence $\Phi_h(E^{\sim})$ is a Riesz subspace of L_E^1 . To show the injectivity of Φ_h let $\Phi_h(x) = 0$. Then we have $\Phi_h(x)(\pi) = \mu_{x,h}(\pi) = h(\pi x) = 0$ for each $\pi \in Z(E)$. As $|x| \in I_x$, there exists $\pi \in Z(E)$ such that $\pi x = |x|$ and it follows that $h(|x|) = h(\pi x) = 0$. By the properties of h we deduce that Φ_h is injective.

Let D be the band generated by $\Phi_h(E)$ in L_E^1 . It is sufficient to show that $B \subseteq D$. To do this for $0 \leq x \in E$ and $0 \leq f \in E^{\sim}$ take an element $\mu_{x,f}$ in B. If $f \in I_h$, then there exists $s \in Z(E^{\sim})$ such that s(h) = f. On the other hand, Proposition 2 in [5] shows the equality $Z(E) = Z(E^{\sim})$. Thus, there exists $\pi \in Z(E)$ such that $\tilde{\pi} = s$. For each $t \in Z(E)$ we have

$$\mu_{x,f}(t) = \mu_{x,sh}(t) = \mu_{x,\tilde{\pi}h}(t) = \tilde{\pi}(h)(tx) = h(\pi tx) = \mu_{\pi x,h}(t),$$

which shows that $\mu_{x,f} \in D$. If we take $f \in B_h$, then there exists an upward directed net $\{f_\alpha\}$ in I_h such that $0 \leq f_\alpha \uparrow f$. By a simple observation we find that $\mu_{x,f_\alpha} \uparrow \mu_{x,f}$. As D is a band and $\mu_{x,f_\alpha} \in D$, we have $\mu_{x,f} \in D$. By Theorem 2.4.9 in [10], h is a weak unit of E^\sim , and hence $\mu_{x,f} \in D$ for each $0 \leq f \in E^\sim$. It is routine to calculate that $\mu_{x,f}$ belongs to D for all f and x. The proof of the theorem is now complete.

COROLLARY 2. Under the hypothesis of Theorem 5 we have

$$Z(E) = Z(E^{\sim}) = Z(L_E^1) = L_E^{\infty}.$$

Proof. The equalities $Z(E^{\sim}) = Z(E)$ and $Z(L_E^1) = L_E^{\infty}$ hold by Proposition 2 in [5] and Theorem 1. Now we show $Z(E^{\sim}) = Z(L_E^1)$. Since E^{\sim} is an order ideal in L_E^1 , for all $\pi \in Z(L_E^1)$ we have $\pi(E^{\sim}) \subseteq E^{\sim}$. Thus it makes sense to consider $\pi|_{E^{\sim}}$ for all $\pi \in Z(L_E^1)$, and one has $\pi|_{E^{\sim}} \in Z(E^{\sim})$. Define $r : Z(L_E^1) \to Z(E^{\sim})$ by $r(\pi) = \pi|_{E^{\sim}}$. It is clear that r is a positive operator. If $\pi_1, \pi_2 \in Z(L_E^1)$ and $\pi_1|_{E^{\sim}} = \pi_2|_{E^{\sim}}$, then by Corollary 140.6(ii) in [12], $\pi_1 = \pi_2$. Hence r is injective. Dedekind completeness of L_E^1 ensures that each operator $0 \leq \pi \in Z(E^{\sim})$ has a unique extension $\widehat{\pi}(\mu) = \sup\{\pi(f) : 0 \leq f \leq \mu, f \in E^{\sim}\}$ in the ideal center of the band generated by E^{\sim} in L_E^1 . Thus r is surjective and r^{-1} is positive. This shows that r is a Riesz isomorphism.

B. Turan

References

- Y. A. Abramovich, C. D. Aliprantis and W. R. Zame, A representation theorem for Riesz spaces and its applications to economics, Econom. Theory 5 (1995), 527–535.
- [2] Y. A. Abramovich, E. L. Arenson and A. K. Kitover, Banach C(K)-modules and Operators Preserving Disjointness, Pitman Res. Notes in Math. Ser. 277, Longman, Harlow, and Wiley, New York, 1992.
- [3] C. D. Aliprantis and O. Burkinshaw, *Positive Operators*, Academic Press, London, 1985.
- [4] Ş. Alpay and B. Turan, On f-modules, Rev. Roumaine Math. Pures Appl. 40 (1995), 233–241.
- [5] —, —, On the commutant of the ideal centre, Note Mat. 18 (1998), 63–69.
- [6] N. Dunford and J. Schwartz, *Linear Operators. Part I: General Theory*, Wiley-Interscience, New York, 1988.
- C. B. Huijsmans and B. de Pagter, The order bidual of lattice ordered algebras, J. Funct. Anal. 59 (1984), 41–64.
- [8] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II, Springer, Berlin, 1979.
- [9] W. A. J. Luxemburg and A. C. Zaanen, *Riesz Spaces I*, North-Holland, Amsterdam, 1971.
- [10] P. Meyer-Nieberg, Banach Lattices, Springer, Berlin, 1991.
- [11] B. Turan, On ideal operators, Positivity 7 (2003), 141–148.
- [12] A. C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam, 1983.

Department of Mathematics Faculty of Arts and Science Gazi University Teknikokullar 06500 Ankara, Turkey E-mail: bturan@gazi.edu.tr

> Received June 21, 2005 Revised version June 29, 2006 (5679)

68