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Growth and smooth spectral synthesis

in the Fourier algebras of Lie groups

by

Jean Ludwig (Metz) and Lyudmila Turowska (Göteborg)

Abstract. Let G be a Lie group and A(G) the Fourier algebra of G. We describe
sufficient conditions for complex-valued functions to operate on elements u ∈ A(G) of
certain differentiability classes in terms of the dimension of the group G. Furthermore,
generalizing a result of Kirsch and Müller [Ark. Mat. 18 (1980), 145–155] we prove that
closed subsets E of a smooth m-dimensional submanifold of a Lie group G having a certain
cone property are sets of smooth spectral synthesis. For such sets we give an estimate of
the degree of nilpotency of the quotient algebra IA(E)/JA(E), where IA(E) and JA(E)
are the largest and the smallest closed ideals in A(G) with hull E.

1. Introduction. In this paper we study two questions concerning the
Fourier algebra A(G) of a (noncommutative) Lie group G. The first one
deals with the functional calculus in A(G) and the other with problems of
spectral synthesis in that algebra.

Functional calculus is one of the basic tools in the theory of Banach
algebras and in its applications. In particular, it plays a fundamental role
in some parts of harmonic analysis, where one of the important algebras
is the Fourier algebra A(G) for a locally compact group G. One says that
a complex-valued function ϕ defined on C operates on u ∈ A(G) if the
composition ϕ ◦ u : G → C belongs to A(G). It is known that any analytic
function defined on a neighbourhood of the image of u ∈ A(G) operates on u.
Furthermore H. Helson, J.-P. Kahane, Y. Katznelson and W. Rudin [HKKR]
for the case of G abelian, and then C. Dunkl [D] and D. Rider [Ri] for
infinite compact groups G, showed that exactly the real-analytic functions
ϕ : C → C operate on each element of A(G). Some necessary conditions on
the functions ϕ operating on certain classes of elements of A(G) for abelian
G can be found for example in [Ka]. In order to determine the class [u] of
functions which operate on a given element u of A(G), it is essential to have
control over the growth of the norms ‖eitu‖A(G) for t ∈ R and real functions u
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in A(G). In this paper we study this question for Lie groups. First we give an
estimate of the growth in t of the norms ‖eitu‖A(G) for a connected compact
Lie group and real-valued functions u of a certain differentiability class in
terms of the dimension of G. Our method is a development of the method
given in [Ka] for the one-dimensional torus. For a general Lie group G, we
use a Laplacian and its heat kernel to derive for smooth functions u on G
a similar estimate for ‖eitu‖A(G). This result is slightly rougher than in the
compact case. These estimates allow us to find necessary conditions for a
function ϕ to operate on smooth functions u ∈ A(G).

Section 4 deals with questions of spectral synthesis in A(G) for Lie
groups G. It is well known that for any closed subset E ⊂ G there ex-
ists a largest closed ideal IA(E) and a smallest closed ideal JA(E) with hull
E. We say that E is a set of spectral synthesis if IA(E) = JA(E). If E is
not spectral, it may nevertheless happen that the algebra IA(E)/JA(E) is
nilpotent (see [W], where such sets E are studied). We say that E is a set

of smooth spectral synthesis if IA(E) ∩ D(G) = IA(E), where D(G) is the
set of test functions on G. Generalizing a method in [KM] we show that
closed subsets E of a smooth m-dimensional submanifold of a Lie group G
with a certain cone property are sets of smooth synthesis. Then using Herz’s
arguments [H] we obtain an estimate of the nilpotency degree of the algebra
IA(E)/JA(E).

In the last section we give some applications to linear operator equations
and to Varopoulos algebras.

2. Preliminaries and notations. Let G be a locally compact σ-com-
pact separable group with left Haar measure m = dg. Let Lp(G), p = 1, 2,
denote the space of p-integrable functions with norm ‖ · ‖p and let C(G)
denote the algebra of continuous complex-valued functions on G. The con-
volution algebra L1(G) is an involutive algebra with involution defined by
f∗(s) = ∆−1(s)f(s−1), where ∆ is the modular function of the group. Let
λ : G → B(L2(G)) be the left regular representation given by λ(s)f(g) =
f(s−1g). We denote by VN(G) the von Neumann algebra of G, that is,

VN(G) = spanWOT{λ(g) : g ∈ G} ⊂ B(L2(G)).

The Fourier algebra is the family of functions s 7→ (λ(s)ξ, η) = η ∗ ξ̌,
ξ, η ∈ L2(G), ξ̌(s) = ξ(s−1), s ∈ G, as defined by Eymard in [E]. The Banach
space A(G) can be identified with the predual VN(G)∗ via 〈(λ(s)ξ, η), T 〉 =
(Tξ, η), and thus is a normed algebra with the norm denoted by ‖ · ‖A. It
is known that for u ∈ A(G) there exist ξ, η ∈ L2(G) such that u = ξ ∗ η̌
and ‖u‖A = ‖ξ‖2 · ‖η‖2. The algebra A(G) is a semisimple regular Banach
algebras with spectrum G (see [E]).
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3. Growth in the Fourier algebra of a Lie group and functional

calculus in A(G)

3.1. The compact Lie case. The following description of the dual space
of a connected compact Lie group G has been taken from [Wa]. Let g be
the Lie algebra of G. Then g = z ⊕ g1 with z the centre of g and g1 = [g, g]
a compact Lie algebra. Let 〈 , 〉 be an inner product on g satisfying (1)
〈g1, z〉 = (0) and (2) 〈 , 〉|g1×g1

= −Bg1
(here Bk denotes the Killing form

of a Lie algebra k). Let U(g) be the universal enveloping algebra of g. Let
X1, . . . , Xn be an orthonormal basis of g such that {X1, . . . , Xr} is a basis
of z. Set Ω =

∑
iX

2
i ∈ U(g). Then Ω is independent of the choice of the

orthonormal basis of g and Ω is central in U(g).

Let t be a maximal abelian subalgebra of g1 and let T = exp(t). Let
also λ1, . . . , λr be complex-valued linear forms on z defined by λj(Xi) =
2π(−1)1/2δi,j . Let P be a Weyl chamber of T . Let Λ1, . . . , Λl be defined
by 2Λi(Hαj

)/αj(Hαj
) = δi,j , where α1, . . . , αl are the simple roots relative

to P , and the Hαj
the corresponding vectors in t. To every γ in the dual

space Ĝ of G corresponds a unique element Λγ =
∑

i niλi +
∑

jmjΛj with
the ni integers and the mj nonnegative integers. Set ‖γ‖ = maxi,j{|ni|,mj}.

We know from [Wa, Lemma 5.6.4] (with the notations of that lemma)

that for every γ ∈ Ĝ and πγ ∈ γ,

−πγ(Ω) = (〈Λγ + ̺, Λγ + ̺〉 − 〈̺, ̺〉)IHγ =: c(γ)IHγ ,

where ̺ is half the sum of the positive roots ofG related to the Weyl chamber
of T . Then by [Wa, Lemma 5.6.6], there are positive constants c1, c2 such
that

(3.1) c1‖γ‖2 ≤ c(γ) ≤ c2‖γ‖2

and by [Wa, Lemma 5.6.7], the series

(3.2)
∑

γ∈Ĝ

d(γ)2(1 + ‖γ‖2)−s

converges if s > dim(G)/2. Here d(γ) denotes the dimension of the Hilbert
space Hγ of γ.

Also for a real number a, let [a] be the integer part of a and let d(G)
denote the dimension of the group G.

Theorem 3.1. Let G be a connected compact Lie group and let u = u be

a self-adjoint element of A(G), which is differentiable of class C [d(G)/2]+1.

Then there exists a positive constant C = C(u) such that

(3.3) ‖eitu‖A(G) ≤ C(1 + |t|)d(G)/2, t ∈ R.
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Proof. By (3.1) and (3.2), we know that

(3.4)
∑

γ∈Ĝ

d(γ)2

(1 + c(γ))s
<∞, ∀s > d(G)/2.

Take N ∈ N
∗ and let ĜN = {γ ∈ Ĝ : ‖γ‖ ≤ N}. By the Plancherel theorem,

for all real m > d(G)/4 there exists an L2-function Em on G such that

γ(Em) =
1

(1 + c(γ))m
IHγ , ∀γ ∈ Ĝ.

Then

(3.5) Em ∗ (1 −Ω)mg = g

for every k-times differentiable function g on G, where k = 2m if 2m is an
integer and k = [2m]+1 otherwise. Denote also by FN the element in L2(G)
for which

γ(FN ) =

{
IHγ , ∀γ ∈ ĜN ,

0, otherwise,

and by Em,N the element in L2(G) for which

γ(Em,N ) =

{
γ(Em), ∀γ 6∈ ĜN ,

0, otherwise.

Write now gt for eitu, t ∈ R. Since u ∈ C [d(G)/2]+1, we also have gt ∈
C [d(G)/2]+1. We decompose gt into

gt = at,N + bt,N ,

where at,N and bt,N are defined by

γ(at,N ) =

{
γ(gt), ∀γ ∈ ĜN ,

0, otherwise,
γ(bt,N ) =

{
0, ∀γ ∈ ĜN ,

γ(gt), otherwise.

Then at,N is a C∞-vector and so bt,N = gt − at,N is of class C [d(G)/2]+1. By
the definition of FN , we have

FN ∗ at,N = at,N .

Hence

‖at,N‖A(G) ≤ ‖FN‖2‖at,N‖2 ≤ ‖FN‖2‖gt‖2 ≤ ‖FN‖2‖gt‖L∞(G).

Now, by [Wa, proof of 5.6.7], if we set n = d(G) for simplicity, we have

‖FN‖2
2 =

∑

‖γ‖≤N

d2
γ ≤ c3

N∑

j=0

jn−l−r(2r+l)(2j+1)r+l−1 ≤ c4

N∑

j=0

jn−1 ≤ c5N
n.

Hence, since u is a continuous real-valued function, we have gt = eitu ∈
L∞(G), t ∈ R, and ‖gt‖∞ = 1, and we see that

‖at,N‖A(G) ≤ CNd(G)/2
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for a certain constant C > 0. Now for the norm of the element bt,N we get,
using (3.5) for g = bt,N and m = 1

2([d(G)/2] + 1) (which is easily checked to
be strictly larger than d(G)/4),

Em ∗ (1 −Ω)mbt,N = Em,N ∗ (1 −Ω)mgt

and so

‖bt,N‖A(G) = ‖Em,N ∗ (1 −Ω)mgt‖A(G) ≤ ‖Em,N‖2‖(1 −Ω)mgt‖2.

If m is an integer then, since Ω is a differential operator of order 2, we
have (1 − Ω)mgt = (1 + t2m)eituwt,m for some wt,m ∈ L2(G) such that
‖wt,m‖2 ≤ C1 for all t ∈ R (for some constant C1 > 0). If m is a half integer
k + 1/2 then we use the inequality

(3.6) ‖(1 −Ω)1/2η‖2 ≤
(
‖η‖2

2 +
∑

j

‖Xjη‖2
2

)1/2

for any differentiable η. Indeed, if η is twice differentiable, then

‖(1 −Ω)1/2η‖2
2 = 〈(1 −Ω)η, η〉 = ‖η‖2

2 −
∑

j

〈X2
j η, η〉 = ‖η‖2

2 +
∑

j

‖Xjη‖2
2.

We can now approximate a once differentiable η with respect to the
Sobolev norm ‖η‖S := (‖η‖2

2 +
∑

j ‖Xjη‖2
2)

1/2 by twice differentiable func-

tions to obtain our inequality (3.6). Therefore, for ηt := (1 −Ω)kgt,

‖(1 −Ω)k+1/2gt‖2
2 = ‖(1 −Ω)1/2ηt‖2

2

≤ ‖ηt‖2
2 +

∑

j

‖Xjηt‖2
2

= ‖(1 −Ω)kgt‖2
2 +

∑

j

‖Xj(1 −Ω)kgt‖2
2

= ‖(1 + t2k)eituvt,k‖2
2 + ‖(1 + t2k+1)eituwt,k‖2

2

for some wt,k, vt,k ∈ L2(G) with L2-norms uniformly bounded in t. Hence

‖(1 −Ω)mgt‖2 ≤ C(1 + |t|2m), t ∈ R,

for some new constant C > 0 and for m = k + 1/2.

Therefore we get the following estimate of the A(G)-norm of bt,N : for
t ∈ R,

‖bt,N‖A(G) ≤C1

( ∑

‖γ‖>N

d(γ)2

(1 + c(γ))2m

)1/2

(1 + |t|)2m

≤C2

( ∑

j>N

jn−1 1

(1 + j)4m

)1/2

(1+|t|)2m≤C3
1

N2m−n/2
(1+|t|)2m.
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Hence, if we let N be the smallest integer ≥ |t| we obtain

‖eitu‖A(G) ≤ ‖at,N‖A(G) + ‖bt,N‖A(G)

≤ C

2
(1 + |t|)d(G)/2 +

C

2
(1 + |t|)d(G)/2

for a new constant C > 0.

Remark 3.2. In the case of the one-dimensional torus G = T it is
shown in [Ka] that if u = u 6= const is differentiable of class C2, the esti-
mate (3.3) is sharp, i.e. then ‖einu‖A(T) ≈

√
n. We could also ask for which

class of functions u = u ∈ A(G) on a compact Lie group G we can have
‖eitu‖A(T) ≈ td(G)/2.

3.2. The case of a general nondiscrete Lie group. We now consider a Lie
group G of positive dimension and we let G0 be its connected component.
Choose a basis {X1, . . . , Xn} of the Lie algebra g of G and take again a
Laplacian Ω =

∑n
i=1X

2
i on G. Let furthermore (ht)t>0 be the heat kernel

on G0 associated to Ω (see [VSC] for the definition).

Define the function Em (m ∈ N, m > d(G)/4) on G0 by the formula

(3.7) Em =
1

m!

∞\
0

tm−1e−tht dt.

The function Em is clearly in L1(G0) ⊂ L1(G) and
T
GEm(g) dg = 1, since

‖ht‖1 =
T
GEm(g) dg = 1 for all t > 0.

Furthermore, denoting by λ the left regular representation ofG on L2(G),
we find that λ(Em) is the inverse of the operator (1 −Ω)m. In fact, let

−Ω =

∞\
0

s dPs

be the spectral resolution of −Ω. Then

(1 −Ω)m =

∞\
0

(1 + s)m dPs, λ(ht) = etΩ =

∞\
0

e−ts dPs

by the definition of the heat kernel and

λ(Em) =
1

m!

∞\
0

tm−1e−t
∞\
0

e−ts dPs dt

=
1

m!

∞\
0

∞\
0

tm−1e−(1+s)t dt dPs

=
1

m!

∞\
0

1

(1 + s)m
m! dPs = (1 −Ω)−m.
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This means in particular that

(3.8) Em ∗ (1 −Ω)mf = f

for any f ∈ D(G), the space of compactly supported C∞-functions on G.

For the estimation of the A(G) norm, we must show that the functions
Ěm defined by Ěm(g) := Em(g−1), g ∈ G, are in L2(G) for m > d(G)/4.

Lemma 3.3. There exists a Laplacian Ω on G such that the functions

Ěm are in L2(G) for m > d(G)/4.

Proof. If G0 is not unimodular, let G1 be the kernel of the modular
function∆ inG0. Since∆(exp(tU)) = e−tδ(U), t ∈ R, U ∈ g, where δ : g → R

denotes the trace of ad(U), it follows that G1 is of codimension one in G
and that G is the topological product of R and G1, since now the function δ
is not 0. Let g1 = ker(δ) be the Lie algebra of G1. We choose a basis vector
X = X1 in g \ g1 and vectors X2, . . . , Xn in g1. We can also assume that

(3.9) δ(X) = −1/2, i.e. ∆(exp(sX)) = es/2, s ∈ R.

It is easy to see then that

(3.10) ∆(g) ≤ ed̺(g), g ∈ G,

where ̺(g) denotes the Carnot–Carathéodory distance of g to the origin and
where d is some positive constant (see [VSC]).

Since the linear operators λ(ht), t > 0, are self-adjoint and the functions
ht are real-valued, it follows that

(3.11) ȟt(g) = ht(g
−1) = ∆(g)ht(g)

for every g ∈ G. Hence by (3.7), Ěm = ∆Em. By [VSC, V.4.3 and IX.1.3]
and (3.10), it follows that for some constant C > 0,

(3.12) ∆(g)ht(g) ≤ C
1

td(G)/2
, 0 < t ≤ ε, g ∈ G,

for some constant ε > 0.

Define for t > 0 the function pt on R by

pt(s) :=
\
G1

ht(exp(sX)g1) dg1, s ∈ R.

The functions pt are then of class C∞ and they satisfy the equations

Xjpt(s) =
\
G1

Xjht(exp(sX)g1) dg1

=
\
G1

d

du
ht(exp(−uXj) exp(sX)g1)u=0 dg1
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=
\
G1

d

du
ht(exp(sX) exp(−uAd(exp(−sX))Xj)g1)u=0 dg1

=
\
G1

d

du
ht(exp(sX)g1)u=0 dg1 = 0

for j = 2, . . . , n, and therefore
(
∂

∂s

)2

pt(s) =
\
G1

X2ht(exp(sX)g1) dg1 =
\
G1

Ωht(exp(sX)g1) dg1(3.13)

=
\
G1

∂

∂t
ht(exp(sX)g1) dg1 =

∂

∂t
pt(s).

Hence pt is the heat kernel on R and so pt(s) = (c/
√
t)e−s

2/4t, s ∈ R (for
some c > 0). This shows that

‖∆ht‖1 =
\
G

∆(g)ht(g) dg(3.14)

=
\
R

∆(exp(sX))
\
G1

ht(exp(sX)g1) dg1 ds

=
\
R

es/2pt(s) ds (by 3.9)

=
\
R

es/2c
1√
t
e−s

2/4t ds = c′et/4, t > 0,

for some new c′ > 0.

From the inequalities (3.12) and (3.14) we deduce that for a certain
constant C > 0,

(3.15) ‖∆ht‖2 ≤
√

‖∆ht‖∞
√

‖∆ht‖1 ≤ C
1

td(G)/4
, t ∈ ]0, ε],

and if t > ε, then ∆ht = ∆ht−ε/2 ∗∆hε/2 and so

(3.16) ‖∆ht‖2 = ‖∆ht−ε/2 ∗∆hε/2‖2 ≤ ‖∆ht−ε/2‖1‖∆hε/2‖2 ≤ Det/4.

Hence, for m > d(G)/4,

‖Ěm‖2 = ‖∆Em‖2 =
1

m!

∥∥∥
\
R

tme−t∆ht dt
∥∥∥

2

≤ 1

m!

ε\
0

tm
1

td(G)/4
dt+

1

m!

∞\
ε

tmDe−3t/4 dt <∞.

The unimodular case is similar, but easier.

We can now prove the following theorem.
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Theorem 3.4. Let u = u be a self-adjoint element of A(G) ∩ L2(G)

which is differentiable of class C2([d(G)/4]+1) with bounded partial derivatives

contained in L2(G). Then there exists a positive constant C = C(u) such

that

(3.17) ‖eitu − 1‖A(G) ≤ C(1 + |t|)2[d(G)/4]+2, t ∈ R.

Proof. Let m = [d(G)/4] + 1. As in the proof of Theorem 3.1, we see
that

eitu = Em ∗ (1 −Ω)m(eitu)(3.18)

= Em ∗ (eiut + (1 + |t|2m)eiutwt,m)

= Em ∗
(

1 + itu

(
eitu − 1

itu

)
+ (1 + |t|2m)eiutwt,m

)

= Em ∗ 1+ tEm ∗
(
iu

(
eitu − 1

itu

))
+(1+ |t|2m)Em ∗ (eiutwt,m)

= 1 + (1 + |t|2m)Em ∗ vt,m
for some wt,m, vt,m ∈ L2(G) whose L2(G) norms are bounded by some con-
stant C > 0.

Hence using (3.18), we obtain

‖eitu − 1‖A(G) ≤ (1 + |t|)2m‖Ěm‖2‖vt,m‖2.

Thus we get

‖eitu − 1‖A(G) ≤ C(1 + |t|)2([d(G)/4]+1), t ∈ R,

for some constant C > 0.

Remark 3.5. Let G be a discrete group. Then the Hilbert space l2(g) is
contained in A(G) and for every u ∈ l2(G) we have ‖u‖A(G) = ‖δ ∗u‖A(G) ≤
‖δ‖2‖u‖2 = ‖u‖2 (here δ denotes the identity of l1(G)). Hence if u = u is an
element of l2(G) ⊂ A(G) then

‖eitu − 1‖A(G) ≤ C(1 + |t|), t ∈ R,

for some constant C > 0. Indeed,

‖eitu − 1‖A(G) =

∥∥∥∥itu
(
eitu − 1

itu

)∥∥∥∥
A(G)

≤ (1 + |t|)
∥∥∥∥
eitu − 1

itu

∥∥∥∥
∞

‖u‖2, t ∈ R.

Corollary 3.6.

(a) Let G be a connected compact Lie group. Let u = u be a self-adjoint

element of A(G) which is differentiable of class C [d(G)/2]+1. Then
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every function ϕ of class Cm with m > [d(G)/2] + 1, vanishing at 0,
operates on u.

(b) Let G be a Lie group of positive dimension. Let u = u be a self-

adjoint element of A(G) ∩ L2(G) which is differentiable of class

C2([d(G)/4]+1) with bounded partial derivatives contained in L2(G).
Then every function ϕ of class Cm with m > 2[d(G)/4] + 3, vanish-

ing at 0, operates on u.

Proof. (a) Let u = u ∈ A(G) as in Theorem 3.1. Let ϕ : R → C be of
class Cm withm > d(G)/2+1 such that ϕ(0) = 0. Let ϕ0 be any Cm function
on R with compact support such that ϕ0 = ϕ on the interval [−‖u‖A(G)−1,

‖u‖A(G) + 1]. Then the Fourier transform ϕ̂0(t) =
T
R
ϕ0(x)e

−2iπtx dx, t ∈ R,
of ϕ0 satisfies the inequality

(3.19) |ϕ̂0(t)| ≤
Cϕ0

(1 + |t|)m , t ∈ R,

where Cϕ0
is some constant depending on ϕ0. Therefore by (3.3) the integral

v :=
\
R

ϕ̂0(t)e
i2πtu dt

converges in A(G), hence also in C(G), and so for every s ∈ G, by the
Fourier inversion formula we have

v(s) =
\
R

ϕ̂0(t)e
2iπtu(s) dt = ϕ0(u(s)) = ϕ(u(s)).

Hence ϕ ◦ u = v ∈ A(G). The proof of (b) is similar.

4. Smooth synthesis. Let A be a semisimple, regular, commutative
Banach algebra with XA as spectrum; for any a ∈ A we denote by â ∈
C0(XA) its Gelfand transform. Let also E ⊂ XA be a closed subset. We
then define

IA(E) = {a ∈ A : â−1(0) contains E},
J0
A(E) = {a ∈ A : â−1(0) contains a nbhd of E}, JA(E) = J0

A(E).

It is known that IA(E) and JA(E) are the largest and the smallest closed
ideals with E as hull, i.e., if I is a closed ideal such that {x ∈ XA : f(x) = 0
for all f ∈ I} = E then

JA(E) ⊂ I ⊂ IA(E).

We say that E is a set of spectral synthesis for A if JA(E) = IA(E), and of

weak synthesis if IA(E)d = JA(E) for some integer d (see [W]).

Let A∗ be the dual of A. For a ∈ A we set supp(a) = {x ∈ XA : â(x) 6= 0}
and null(a) = {x ∈ XA : â(x) = 0}. For τ ∈ A∗ and a ∈ A define aτ in A∗
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by aτ(b) = τ(ab) and define the support of τ by

supp(τ) = {x ∈ XA : aτ 6= 0 whenever â(x) 6= 0}.
It is known that supp(τ) consists of all x ∈ XA such that for any neighbour-
hood U of x there exists a ∈ A for which supp(a) ⊂ U and τ(a) 6= 0. Then,
for every closed set E ⊂ XA,

JA(E)⊥ = {τ ∈ A∗ : supp(τ) ⊂ E}
and E is spectral for A if and only if τ(a) = 0 for any a ∈ A and τ ∈ A∗

such that supp(τ) ⊂ E ⊂ null(a).

In what follows we write IA(E) for IA(G)(E) and JA(E) for JA(G)(E).

Let G be a Lie group and let D(G) be the space of all compactly sup-
ported C∞-functions on G. For a closed subset E of G, we denote by JD(E)
the space of all elements of D(G) which vanish on E. Let

B(E) := {λ(µ) : µ a bounded measure on G supported in E}.
Here λ(µ)f = µ ∗ f denotes the convolution of the function f with the

measure µ.

The closure of B(E) is the annihilator of IA(E) in VN(G), where the
closure is taken in the weak∗ topology σ(VN(G), A(G)).

Definition 4.1. The closed subset E of G is said to be of smooth syn-

thesis if JD(E) = IA(E).

Let us remark that in the papers of Müller [M] and Guo [G] the word
“weak” is used instead of “smooth”.

Remark 4.2. Let G be a Lie group and f an element in D(G). Then
by (3.8), for any integer m > d(G)/4 we have f = Em ∗ ǧ, where g =
((1 − Ω)mf )̌ ∈ D(G). Here ǔ(x) := u(x−1) for any function u on G and
x ∈ G. Hence, for t ∈ G, denoting by ̺(t) the right translation by t, we have

̺(t)f(x) = f(xt) =
\
G

Em(u)g(t−1x−1u) du

=
\
G

Em(u)λ(t)g(x−1u) du = Em ∗ (λ(t)g)̌ (x).

This shows that the mapping t 7→ ̺(t)f from G to the Banach space A(G)
is smooth.

Theorem 4.3. Let G be a Lie group of dimension n. Let M be a smooth

submanifold of dimension m < n and let E be a compact subset of M . Then

JD(E)
[m/2]+1

= JA(E).

Proof. It suffices to show that JD(E)[m/2]+1 ⊂ JA(E). Let f ∈ JD(E).
We will use first a procedure given in [H] to estimate the distance between
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f [m/2]+1 and JA(E). For 0 < ε < ‖f‖∞ let

Wε = {x ∈ G : ‖̺(x)f − f‖A(G) < ε}
⊂ Ωε = {x ∈ G : ‖̺(x)f − f‖∞ < ε}.

Since f is a C∞-function with compact support, the mapping g 7→
̺(g)f ∈ A(G) is C∞ by Remark 4.2. Therefore there exist a constant K > 0
and an open neighbourhood W of 0 in the Lie algebra g of G such that

‖̺(exp(X))f − f‖A(G) ≤ K‖X‖
for every X ∈W and some fixed norm ‖ ‖ on g. For ε > 0, let Vε = exp(Bε),
where Bε denotes the ball of radius ε/2K of centre 0 in g. For ε small enough
we have Bε ⊂ W . There exist constants C1 > C2 > 0 such that for every
ε > 0,

C1ε
n > |Vε| > C2ε

n

and Vε ⊂ Wε ⊂ Ωε. In particular, for every x = x0v ∈ EVε, x0 ∈ E, v ∈ Vε,
we have f(x0) = 0 since f ∈ JD(E), and therefore

|f(x)| = |f(x0v)| ≤ |f(x0v) − f(x0)| + |f(x0)|
= |(̺(v)f − f)(x0)| ≤ ‖(̺(v)f − f)‖∞ < ε.

Hence

(4.20) |f [m/2]+1(x)| ≤ ε[m/2]+1.

Take ν = f [m/2]+1 on EVε and ν = 0 elsewhere and let u ∈ L2(G), u ≥ 0,
be such that

T
G u(x) dx = 1 and supp(u) ⊂ Vε. Consider now the function

ϕ(s) = (f [m/2]+1 − ν) ∗ ǔ(s) =
\
G

(f [m/2]+1 − ν)(st)u(t) dt.

Clearly ϕ ∈ A(G), and ϕ(s) = 0 if s · supp(u) ⊂ EVε. Since E ⊂ {s :
s · supp(u) ⊂ EVε} and the set {s : s · supp(u) ⊂ EVε} is open, supp(ϕ) is
disjoint from E and therefore ϕ ∈ JA(E). We have

f [m/2]+1 − ϕ = (f [m/2]+1 − f [m/2]+1 ∗ ǔ) + ν ∗ ǔ.
As supp(u) ⊂ Vε ⊂ Wε, and ‖f [m/2]+1 − ̺(x)f [m/2]+1‖A(G) ≤ Kε for all
x ∈ Wε and some constant K = K(m) > 0 which is independent of ε, it
follows that

‖f [m/2]+1−f [m/2]+1 ∗ ǔ‖A(G) =
∥∥∥
\
G

(f [m/2]+1 − ̺(x)f [m/2]+1)u(x) dx
∥∥∥
A(G)

≤
\
G

‖f [m/2]+1−̺(x)f [m/2]+1‖A(G)u(x) dx≤Kε.

We also have ‖ν ∗ ǔ‖A(G) ≤ ‖ν‖2 ·‖u‖2. As the greatest lower bound for ‖u‖2
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is |Vε|−1/2, we obtain

dist(f [m/2]+1, JA(E)) ≤ ‖f [m/2]+1 − ϕ‖A(G)

≤ Kε+ |Vε|−1/2
( \
EVε

|f [m/2]+1(x)|2 dx
)1/2

≤ Kε+ |Vε|−1/2 sup
x∈EVε

|f [m/2]+1(x)| |EVε|1/2

≤ Kε+
ε−n/2

C
1/2
2

ε[m/2]+1|EVε|1/2.

Let us estimate |EVε|. Since E is compact, we can assume that EVε is
covered by a finite number of charts and hence is contained in one chart,
ψ : U → R

m × R
n−m, such that ψ(M ∩ U) ⊂ R

m × {0}. Furthermore,
there exists a constant C > 0 and a bounded set B in R

m, which do not
depend on ε, and a rectangle Rε of measure Cεn−m in R

n−m such that
ψ((M ∩ U)Vε) ⊂ B × Rε. Since there exists a continuous positive function
F : U → R such that\

U

ϕ(g) dg =
\

ψ(U)

F (x)ϕ(ψ−1(x)) dx, ϕ ∈ Cc(U),

we get, for every small ε,

|EVε| =
\

ψ(EVε)

F (x) dx ≤
\

B×Rε

F (x) dx ≤ C ′εn−m.

Hence, for ε > 0 small enough,

dist(f [m/2]+1, JA(E)) ≤ Kε+ C ′′ε−n/2ε[m/2]+1ε(n−m)/2

= Kε+ C ′′ε[m/2]+1−m/2

for a new constant C ′′ which does not depend on ε. Thus f [m/2]+1 ∈ JA(E).

It now follows from standard arguments that JD(E)[m/2]+1 ⊂ JA(E).

Corollary 4.4. Let E be a compact subset of a smooth m-dimensional

submanifold of the Lie group G. If E is a set of smooth synthesis, then E
is of weak synthesis with IA(E)[m/2]+1 = JA(E).

Definition 4.5.

1. Let G be a group and let Aut(G) be the group of automorphisms of G.
Let t ∈ G and a ∈ Aut(G). We call the mapping G → G, s 7→ a(ts),
an affine transformation of G.

2. Let G be a Lie group. We say that a group A is a group of affine

transformations of G if A is a Lie group which acts smoothly by
affine transformations on G. Smoothly here means that the mapping
A×G→ G, (a, x) 7→ a(x), is smooth.
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Definition 4.6. Let G be a Lie group and let M be a smooth m-
dimensional submanifold of G. We say that a subset E of M has the cone

property if

1. E is closed in G,
2. for every x ∈ E there exists an open neighbourhood Ux of x in G and

a C∞ mapping ψx from an open subset Wx ⊂ R
m containing 0 into

a Lie group of affine transformations Ax on G such that ψx(0) = IG

and there exists an open subset W 0
x in Wx such that

(a) 0 is in the closure of W 0
x ,

(b) for every y ∈ Ux ∩ E, ψx(W
0
x )y is contained in E and open in

M and the mapping W 0
x → ψx(W

0
x )y, t 7→ ψx(t)y, is a diffeomor-

phism.

Remark 4.7. Let B be a Lie group acting continuously by continuous
automorphisms on our Lie group G. Then the group B also acts continuously
by continuous automorphisms on the Fourier algebra A(G), since for any
b ∈ B, the representation λ ◦ b is equivalent to λ.

Theorem 4.8. Let G be a Lie group such that A(G) has an approx-

imate identity , let M be a smooth m-dimensional submanifold of G and

let E ⊂ M be a subset with the cone property. Then E is a set of smooth

synthesis.

Proof. Let T be an element of JD(E)⊥. We must prove that T annihilates
IA(E). Since A(G) has an approximate identity, we can assume that T has
compact support. In order to prove that 〈T, IA(E)〉 = {0}, it suffices to show
that T can be approximated in the weak∗ topology by elements Tν = λ(mν)
of B(E).

We shall show first that for every x ∈ E, there exists an open neigh-
bourhood U0

x of x contained in Ux such that each T ∈ JD(E)⊥ which is
supported in E ∩ U0

x is the weak∗ limit of a sequence {Tν ∈ B(E)}ν . Fix x.
To shorten the notation, we shall omit the index x for neighbourhoods and
mappings.

We can assume that U = Ux is the domain of a chart S : U → R
n for

which

S(M ∩ U) = B × {0Rn−m}
and B is an open subset of R

m. By shrinking W 0 = W 0
x and U if necessary,

we can also assume that there exists an open relatively compact subset O
in B such that S(x) ∈ O× {0Rn−m} and ψ(t)(S−1(O× {0Rn−m})) ⊂M ∩U
for all t ∈W 0

x . For t ∈W 0 = W 0
x let

φ(t) : O → B, (φ(t)(c), 0) := S(ψ(t)(S−1((c, 0)))), t ∈W 0
x , c ∈ O.
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Now assume that T is supported in U ∩E and consider T as a distribution
on G. We transform it into a distribution T̃ on R

m × R
n−m via the diffeo-

morphism S. Since the support of T is contained in U ∩M , the support of T̃
is contained in B ×{0Rn−m} and so by the classical formula of L. Schwartz,
there exist a finite collection of distributions dβ on B (β ∈ N

n−m) such that
for any f ∈ D(G),

〈T, f〉 = 〈T̃ , f ◦ S−1〉 =
∑

β

〈dβ, ∂β2 (f ◦ S−1)(·, 0)〉,

where the partial derivative ∂β2 acts on the variable in R
n−m. It follows from

the properties of T that T̃ vanishes on every function a in D(Rn) which is
zero on R

m × {0Rn−m}. Therefore, by standard arguments (see for instance
[KM]) dβ = 0 for any β 6= 0 and so

〈T, f〉 = 〈T̃ , f ◦ S−1〉 = 〈d0, (f ◦ S−1)(·, 0)〉(4.21)

=
∑

α

\
B

ϕα(r)∂α(f ◦ S−1)(r, 0) dr,

where the ϕα are continuous functions and the partial derivatives ∂α act
only on the variable r ∈ R

m.

Choose a decreasing sequence (Wν)ν of open neighbourhoods of 0 in
W and let W0,ν = W 0 ∩ Wν for all ν. Since 0 is contained in the clo-
sure of W 0 we know that W0,ν 6= ∅ for ν large enough. Let y ∈ O and
let Vy,ν := {φ(t)y : t ∈ W0,ν}. Then Vy,ν is an open subset of B and
the mappings Φy,ν : W0,ν → Vy,ν , t 7→ φ(t)y, are diffeomorphisms by the
condition on ψ. We can assume that there exists an open subset B0 ⊂
O such that S(x) ∈ B0 × {0Rn−m}, for every ν a small open set W1,ν

in W0,ν , and an open neigbourhood Cν0 of 0 in R
m, such that the open

subset Oy,ν := {φ(t)(y) + z : t ∈ W1,ν , y ∈ B0, z ∈ Cν0 } of B is con-
tained in Vy,ν for every ν ∈ N. For z ∈ Cν0 and y ∈ B0 we denote the

open subset {φ(t)(y) + z : t ∈ W1,ν} of Oy,ν by Ozy,ν . Let ̺zy,ν be the
restriction to Ozy,ν of the inverse of the mapping W1,ν → Ozy,ν , t 7→
φ(t)y + z.

Let now βν ∈ C∞
c (W1,ν) such that βν(t) ≥ 0 for all t ∈ W1,ν andT

W1,ν
βν(t) dt = 1. Hence for every f ∈ D(B), y ∈ Bν

0 and z ∈ Cν0 we

have, by the change of variable formula,

(4.22)
\
W 0

ν

βν(t)f(φ(t)(y) + z) dt =
\

Oy,ν

βν(̺
z
y,ν(r))Jac(̺zy,ν)(r)f(r) dr.

Hence, differentiating this equation in z and using again the change of vari-
able formula for the mapping t 7→ φ(t)(y), for every multi-index α ∈ N

m,
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we see that \
W 0

ν

βν(t)∂
αf(φ(t)y) dt =

\
Oy,ν

pα,ν,y(r)f(r) dr(4.23)

=
\
W 0

ν

qα,ν(t, y)f(φ(t)y) dt

for some function pα,ν,y ∈ D(Oy,ν) which is C∞ in y, and some function
qα,ν(·, y) in D(W0,ν) which is also C∞ in y.

Since ψ(t) is affine for every t ∈W0 and the mapping (t, s) 7→ ψ(t)s ∈ G
is continuous (even C∞), it follows that for every u ∈ A(G) the mapping
Wx ∋ t 7→ ψ(t)u, where ψ(t)u(x) := u(ψ(t)x), x ∈ G, is also continuous,
and so uν defined by

uν := βν · u :=
\

W1,ν

βν(t)ψ(t)u dt,

i.e.
uν(g) :=

\
W1,ν

βν(t)u(ψ(t)g) dt, g ∈ G,

is an element of A(G). Furthermore, since the support of βν is contained in
W1,ν and since ψ(0) = I, we have limν→∞ uν = u. This tells us also that the
new elements Tν ∈ VN(G), ν ∈ N, defined by

〈Tν , u〉 := 〈T, uν〉 = 〈T, βν · u〉
converge in the weak∗ topology to T .

Let now U0
x := S−1(B0 ×R

n−m ∩S(Ux)). Then by (4.21) and (4.23), for
f ∈ D(U0

x), we have

〈Tν , f〉 = 〈T, fν〉 =
∑

α

\
B

ϕα(y)∂α(fν ◦ S−1)(y, 0) dy

=
∑

α

\
B

\
W1,ν

ϕα(y)βν(t)∂
α(f ◦ S−1)(φ(t)y, 0) dt dy

=
∑

α

\
B

\
W1,ν

ϕα(y)qα,ν(t, y)(f ◦ S−1)(φ(t)y, 0) dt dy.

This shows that Tν is in fact a measure for every ν. Furthermore if f is zero
on E, then for any y ∈ S(U0

x ∩ E), we have

0 = f(ψ(t)y) = f ◦ S−1(φ(t)(S(y)), 0) for all t ∈W1,ν ,

since ψ(t)y ∈ E for all y ∈ U0
x and t ∈ W1,ν . Hence 〈Tν , f〉 = 0 for all ν.

This implies that 〈T, u〉 = 0 for every u ∈ A(G) which vanishes on E.
Let now T ∈ JD(E)⊥ with compact support. Since suppT ⊂ E, there

exists a finite set L in E such that suppT ⊂ ⋃
x∈L U

0
x . For every x ∈ L, let

ϕx ∈ D(G) ⊂ A(G) be such that supp(ϕx) ⊂ U0
x and

∑
x∈L ϕx = 1 on a



Fourier algebras of Lie groups 155

compact neighbourhood C of suppT . Then ϕxT is in JD(E)⊥ and has its
support in U0

x ∩E for every x ∈ L and T =
∑

x∈L ϕxT . Therefore, by what
we have seen above,

ϕxT = w∗ limλ(mx
ν) with mx

ν ∈ B(E)

and so T = w∗ limν λ(
∑

x∈Lm
x
ν).

The following corollary generalizes the result of Kirsch–Müller in [KM].

Corollary 4.9. Let G be a Lie group and let B be a group of affine

transformations of G. Let ω ⊂ G be a closed m-dimensional B-orbit in G.

Then ω is a set of weak synthesis with IA(ω)[m/2]+1 = JA(ω).

Proof. Let z ∈ ω and let B0 be the stabilizer of z in B. Then ω ≃ B/B0

via the diffeomorphism B/B0 → ω, tB0 7→ t(z) =: tB0 · z. We choose
neighbourhoods M ⊂ L in B/B0 of IG such that L is the domain of a
chart S : L → S(L) ⊂ R

m (for some m ∈ N), b := S(M) is a closed
euclidean ball with centre 0, and S(I mod B0) = 0. We can also suppose that
there exists a smooth section σ : L → B with σ(M)M ⊂ L. Furthermore,
since the mapping t 7→ σ(S−1(t)) mod B0 is regular in a neighbourhood
of 0, we can assume that b is small enough so that the mappings b ∋ t 7→
σ(S−1(t))S−1(u) ∈ B/B0 are regular and hence are diffeomorphisms onto
their images for every u ∈ b. In the chart S : L→ R

m, we can write

(4.24) S(σ(S−1(v)) · S−1(u)) = u+R(u)v + v0(u), v, u ∈ b,

where R(u) is an invertible linear mapping of R
m which depends smoothly

on u and where v0(u) is a vector in R
m which also varies smoothly with u

and is of length o(‖v‖)‖v‖, where ‖ ‖ denotes the euclidean norm on R
m.

Lemma 4.10. The closed subset Ez = σ(S−1(b))(z) of ω has the cone

property.

Proof. Fix a point x = σ(S−1(u))(z) ∈ Ez (u ∈ b). Using (4.24) we
choose a small open cone C ′ in R

m containing 0 in its closure, such that the
radius r of b satisfies

r − ‖u′ + c′‖ ≥ K‖c′‖
for all u′ in an open neighbourhood k of u in b and for all c′ ∈ C ′ (for some
constant K > 0), and C := R(u)−1(C ′) ⊂ b. For c = R(u)−1c′ ∈ C, u′ ∈ k,
we then have

r − ‖S(σ(S−1(c)) · S−1(u′))‖ = r − ‖u′ +R(u′)c+ c0(u
′)‖

≥ r − ‖u′ + c′‖ − ‖R(u′)R(u)−1(c′) − c′‖ − ‖c0(u′)‖
≥ K‖c′‖ − ‖R(u′)R(u)−1(c′) − c′‖ − ‖c0(u′)‖ > 0

for k small enough. This implies by (4.24) that

(4.25) S(σ(S−1(c)) · S−1(u′)) ∈ b
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for all u′ ∈ k and c ∈ C, if we choose k small enough. Let

Vx =: σ(S−1(k)) · z = σ(S−1(k))(z).

Then Vx is an open subset of Ez containing x. Let Ux be any open subset
in G such that Ux ∩ Ez = Vx. Define also

Wx := b, W 0
x := C and ψx(c) := σ(S−1(c)) ∈ B, c ∈Wx.

Then for every y = σ(S−1(u′))(z) ∈ Vx, u
′ ∈ k, by (4.25) we have

ψx(c)(y) = σ(S−1(c))S−1(u′)) · z ∈ σ(S−1(β))z ∈ Ez

for any c ∈ C. This shows that Ez has the cone property.

Since ω is the union of the sets Ez, z ∈ A, and since being of smooth
synthesis is a local property, ω is a set of smooth synthesis and so by Corol-
lary 4.4 it is of weak synthesis with IA(ω)[m/2]+1 = JA(ω), which completes
the proof of Corollary 4.9.

5. Some applications to the Varopoulos algebra V (G) and linear

operator equations. Let C(G) denote the algebra of continuous complex-
valued functions on a compact group G and let

V (G) = C(G) ⊗̂ C(G),

the projective tensor product of C(G). V (G) is the Banach algebra of
complex-valued continuous functions w on G × G which admit represen-
tations

w(s, t) =
∞∑

i=1

ϕi(s)ψi(t)

(w =
∑∞

i=1 ϕi ⊗ ψi) such that
∞∑

i=1

‖ϕi‖∞‖ψi‖∞ <∞

with the norm defined by

‖w‖V = inf
{ ∞∑

i=1

‖ϕi‖∞‖ψi‖∞ : w =

∞∑

i=1

ϕi ⊗ ψi

}
.

V (G) is a semisimple regular commutative Banach algebra with spectrum
G×G. In [V] Varopoulos proved that if G is a compact Abelian group then
the question of spectral synthesis for the Fourier algebra A(G) is closely
related to the one for the algebra V (G). This result was extended in [ST] to
arbitrary compact groups G.

For a closed subset E ⊂ G, put E∗ = {(t, s) : st−1 ∈ E}. Repeating
mainly the arguments in [ST, Theorem 4.6] one also obtains the following
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Proposition 5.1. Let G be a compact group, and E ⊂ G a closed

subset. Assume that IA(E)m = JA(E) for some m ∈ N
∗. Then IV (E∗)m =

JV (E∗).

In [ShT, LT] it was shown that spectral synthesis for A(G) can be applied
to the study of linear operator equations. Below we will see that the results
of Section 4 are also applicable to equations of this type.

Consider the space V∞(G) of all (marginal equivalence classes ([A, ShT])
of) functions w(s, t) that can be written in the form

w(s, t) =

∞∑

n=1

fn(s)gn(t)

with fn ∈ L∞(G,m), gn ∈ L∞(G,m) and

∞∑

n=1

|fn(s)|2 ≤ C, s ∈ G,
∞∑

n=1

|gn(t)|2 ≤ C, t ∈ G.

In tensor notations V∞(G) =L∞(G,m) ⊗̂w∗h
L∞(G,m), the weak∗ Haagerup

tensor product ([BSm]). For w ∈ V∞(G) one defines nullw as the largest
set (up to a marginally null set, see [A, ShT]) where w is zero.

For w∈V∞(G), we denote by∆w the operator T 7→w·T =
∑∞

i=1Mgi
TMfi

on B(L2(G)) (the sum converges in the strong operator topology). For a
linear operator ∆ on B(L2(G)) the ascent, asc∆, of ∆ is the least positive
integer such that ker(∆m) = ker(∆m+1).

Proposition 5.2. Let G be a locally compact group. If IA(E)m=JA(E)
for a closed subset E ⊂ G and m ∈ N

∗ then asc∆w ≤ m for any w ∈ V∞(G)
such that nullw = E∗.

Proof. By [ShT, Proposition 5.1], if wk ·T = 0 for k ∈ N
∗ then supp(T ) ⊂

nullw = E∗ (see [ShT] for the definition of the support of an operator). On
the other hand, under the assumptions of the proposition one can prove,
using arguments similar to those in [LT], that wm·T = 0 for any T supported
in E∗. Thus we have the inclusions

{T : supp(T ) ⊂ E∗} ⊂ ker(∆m
w ) ⊂ ker(∆m+1

w ) ⊂ {T : supp(T ) ⊂ E∗},
giving the statement.
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SE-412 96 Göteborg, Sweden
E-mail: turowska@math.chalmers.se

Received November 20, 2005

Revised version April 27, 2006 (5809)


