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The space of maximal Fourier multipliers as a dual space
by

Naonito ToMiTA (Osaka)

Abstract. Figa-Talamanca characterized the space of Fourier multipliers as the dual
space of a certain Banach space. In this paper, we characterize the space of maximal
Fourier multipliers as a dual space.

1. Introduction. Let S(R™) and &’(R™) be the Schwartz spaces of all
rapidly decreasing smooth functions and tempered distributions, respec-
tively. The space My,(R™) of Fourier multipliers consists of all m € L>(R")
such that T}, is bounded on LP(R™), where T}, is defined by T}, f = F~! [mf]
for f € S(R™). We define the norm on M,(R") by [|m|/as, = sup || T f|| e,
where the supremum is taken over all f € S(R™) such that || f||L» = 1. Let
Co(R™) be the space of all continuous functions such that lim, . f(z) = 0.
For 1 <p< oo, p' is the conjugate exponent of p (that is, 1/p+ 1/p’ = 1).
Let Z and N be the sets of all integers and positive integers, respectively.
The space A,(R™) consists of all f € Cp(R™) which can be written
as f = Ylenfi* gi in L2(R"), where {fitien,{gitien C S(R") and
Yien Ifilleellgill Ly < 0o. Then the norm || f[|4, is the infimum of the last
sums over all representations of f.

In [6], Figa-Talamanca proved that M,(R") = A,(R"™)*, where A,(R")*
is the dual space of A,(R"™) (see also Larsen [10]). Berkson, Paluszynski
and Weiss applied Figa-Talamanca’s result to wavelet theory [2] (for other

applications, see Asmar, Berkson and Gillespie [1] and Figa-Talamanca and
Gaudry [7]).

Maximal functions generated by Fourier multipliers were studied by, for
example, Christ, Grafakos, Honzik and Seeger [3], Dappa and Trebels [4]
and Kenig and Tomas [9]. For m € L*°(R"™), the dyadic maximal Fourier
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multiplier operator M, is defined by

~

My f(z) = sup [T 21 f(2)] = sup |F = m(27) f]()]

Jj€
for f € S(R™) ([3], [4]). We denote by max My,(R") the space of all m €

L>°(R"™) such that M, is bounded on LP(R™). We define the norm on
max My,(R"™) by
1772l mas a1, = sup{[[ M f| v = £ € SR™), [[fllzr = 1}
Then max M,(R") is a Banach space (Proposition 3.1). The purpose of this
paper is to characterize max M,(R™) as the dual space of a certain normed
space. The space A,(R") consists of all f € Co(R™) which can be written as
i€N jEL

where {fi}ien, {9 tienjez C SR™) and > oD ez | fill zellgill o < 0.
Note that, if the last condition is satisfied, then >, N> iz fi * 9i;(277)
€ Co(R™) and 3 e | fill e {95} jezll Lo (gn g1 (z)) < o0, where the norm
||{9j}j€Z||Lp’(Rn,el(z)) is, by definition, {SRn(E]’eZ |g;()])P dz}'/7". We de-
fine the norm on A,(R") by

1411, = i { D2 1lloell{i el g oy = £ = D2 D Ji* (20}
ieN ieN jeZ
Then ZP(R") is a normed space (Proposition 3.2). Also, A,(R") is con-
tinuously embedded in A,(R™). For m € max M,(R"), we define a linear
functional ¢,, on A,(R"™) by

(1) () =D Trinfi % 9i,5(0)

ieN jeZ
for f = > iendjez fi * gij(27) € ZP(R”). We note that the right hand
side of (1) is independent of the representation of f (Lemma 3.6). Our main
result is the following.

THEOREM 1. Let 1 < p < co. If m € max Mp(R"), then @, € Ay(R™)*

and ||90m||(gp)* = ||m||max n1, . Conversely, if ¢ € Ap(R"™)*, then there erists

m € max My,(R™) such that ¢ = . In this sense, max Mpy(R™) = Ap(R™)*.

2. Preliminaries. We define the Fourier transform F f and the inverse
Fourier transform F~!f of f € S(R") by

1
(2m)"

FFE) =F©) = | e f(2)dz, F'f(x)=

R"

| e e (&) de.

R
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We also define the Fourier transform Fu and the inverse Fourier transform
F~lu of u € S'(R™) by

(Fu, o) = (u, F),  (Flu,9p) = (u, F~ 1) for all ¥ € S(R™).

Note that, if v is an appropriate function, then (u, 1) = {3, u(z)i(x) dz. For
u € §'(R™) and ¢ € S(R™), the convolution u * v is defined by u * ¢ (z) =
(u, 7p1)), where T,1)(y) = (y — z) and ¥(y) = (—y). As usual, for a
function ¢ on R™ and t > 0, we write i¢(x) = t~"(x/t).

The Hardy—Littlewood maximal operator M is defined by

1
—sup ——— — )| d

for all locally integrable functions f on R™, where B(0,r) is the ball of
radius r centered at the origin and |B(0,r)| denotes the Lebesgue measure
of B(0,r). The following lemma appears as [5, Proposition 2.7].

LEMMA 2.1. Let ¥ be a function on R™ which is dominated by a non-
negative, radial, decreasing (as a function on (0,00)) and integrable func-
tion. Then there exists a constant C' > 0 such that

jgg!(zﬂt*f)(w)\ < CMf(x)

for all locally integrable functions f.

3. Proofs. Throughout the rest of the paper, we always assume 1 <
p < 0.

PROPOSITION 3.1. max M,(R") is a Banach space.

Proof. We first check that || - ||max az, is @ norm. Since ||-[laz, < [|-[lmax s,
and || - [[zee < || - |lag, ([8, p. 217]), it follows that if ||m|maxns, = O then
m = 0. Let m,mi, my € max M,(R") and o € C. Then My, f = |a|Mp, f
and Moy, +my [ < My, | + My, f give HamHmapr = |af HmHmapr and
||77’L1 + m2||mapr < ||m1||mapr + ||m2||mapr-

We next check that max M,(R") is complete. Let {m;} C max M,(R")
be a Cauchy sequence. Since M,(R") is complete, and || - [|a7, < || - ||mapr7
we see that there exists m € Mp(R™) such that m; — m in M,(R") a
k — oo. From || - |z < || - [|as, it follows that mj; — m in L>®(R") a
k — oo. Hence, my — m in S’'(R™) as k — oo. Since my(27-) — m(2J ) in
S'(R") as k — oo for all j € Z, we see that T,, 25y f(x) — T2 f(z) as
k — oo for all f € S(R™), x € R™ and j € Z. This gives

Toni23)f (@) = Tnaay f(2)] = T (T, 90y f(2) = Ty (20 F (2)]
= Uminf [T, (21 f(2) = Ty, (20 f ()| < U inf My, i, f(2),

myr



194 N. Tomita

80 My, —mf < liminfy oo My, —m,, f- On the other hand, since {my} is a
Cauchy sequence, for any € > 0 there exists N € N such that

Hmk - mk’HmaxMP = Sup HMmk—mk/fHLp <é
for all k, k" > N, where the supremum is taken over all f € S(R™) such that
|l fllz» = 1. Therefore, by Fatou’s lemma, we get

[ My —m fll e < [liminf M, —m,, fllze < HBminf || My, —m,, fllzer < e
k! —o0 k! —o0
for all k > N and f € S(R™) such that || f||z» = 1. The proof is complete. m

PROPOSITION 3.2. EP(R") is a normed space.

Proof. We only prove that, if f € ZP(R") and Hngp =0, then f = 0. We
note that S(R™) C max M,(R"). Indeed, from Lemma 2.1, for ¢ € S(R™)
we have My f(x) < CM f(x), where M is the Hardy-Littlewood maxi-
mal operator (see Section 2). Since M is bounded on LP(R"™) ([5, Theo-
rem 2.5]), we see that M, is bounded on LP(R"). Let f € EP(R”) and
Ifllz, = 0. For e >0, we can find {f;},{g-;} C S(R") such that f =
D ieN ZjeZ Jei * geij(27) in L(R™), > icn ”fa,iHLP”{ga,i,j}j||Lp’(Rn7gl(Z))
<eand ) N illzellgeijll < 0o. Since f € Co(R™), it is enough
to prove that (f,1) = 0 for all ¥ € S(R™). Let ¢ € S(R™). Since

ZZ S fsz*gsz,] 2 1’)1#(.%‘)6[]}

ieN jEZ Rn

- ZZ S ( S fsl —)Geij(Y) dy)"‘ﬁza‘(&:) dx

€N jEZR™ Rn

= Z Z S Yaj * fav,z Y)9e,ii (y) dy = ZZ S $(29°) fa i(Y) 92,5 (y) dy,

1€N jEZ R™ 1€EN jEZ R™

we see that

Ql)>| < Z S qujfgz Z ’gE,’L,] |dy

i€N R™ jez
<D MGl o H 9o Yl Lo (1 2
iEN
,'J}J'HLP'(R",Zl(Z)) < 9l max az, €-
i€EN

Hence, the arbitrariness of ¢ gives (f, 1) = 0. The proof is complete. =
The following lemma appears as [8, (1.2)].

LEMMA 3.3. If m € My(R"), then ||[¢ * m|a, < [[9]p1l|mla, for all
P € S(R").
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LEMMA 3.4. If m € My(R™), then |[ym|r, < [|[F 10| 1l|mlla, for all
Y € S(R™).

Proof. Use the fact that Ty, f = [F 1] « T, f. w

LEMMA 3.5. Let m € Mp(R"™). If {fitien, {9itienjez C S(R") sat-
Zsfy Zz‘eN ZjeZ ”fi”Lp”gi,jHLp’ < oo and Zz’eN Zjez fl * gi,j(QJ') =0

L>*(R™), then
SN T fi+ 913(0) =0

ieN jez
Proof. Let m € M,(R"™) and ¢ be a C*°(R")-function such that ¢(§) =1
if [§] <1, 9(§) = 0if [§] > 2. Also, let ¢ be a radial C°°(R")-function such
that ¢ (&) = 0if [§] > 1 and (g, ¥(&) d€ = 1. Then we set g(.) = t(e-)[¢)e xm)]
for € > 0, where 1, = e "(-/¢). Since ¢, * [1h(e-) f] — f in S(R") as ¢ — 0
for all f € S(R™), we see that
@) Ty iy f+900) = (F o) F3) = <w<s->[is ), FFx g(202))
= (m, Ff§(27)]) = T(aiy f x9(0)  ase—0
for all f,g € S(R") and j € Z. Since ||[m(t-)|[n, = ||m||ag, for all £ > 0, by
Lemmas 3.3 and 3.4, we also have
lo) (27 )Iag, = llellar, < IF (e )l o1 de * mlla,
< NF el el lmlag, = 17 Dl bl o,
This gives

(3) Ty @0 * 9O < UF Bl pallll s mllag, [Lf 1l e llgl]

for all f,g € S(]R”) and j € Z. Let {fi}ien, {9i}ienjez C S(R™) satisfy

ZZ‘GN ZjeZ ||fi||LP||gi,j||Lp’ < oo and ZiEN ZjeZ fi*gi,j(Qj') = 0in L>(R").
By (2) and (3), we get

TQ(E)(2j~)fi * 9i,j(0) — m(2j-)fi *g;;(0) ase—0
and
Ty, @9 Fi * 965 O] < IF 10l 1 [0 o lmdlag, 1 fill o llgi 1 v

for each ¢ € N and j € Z. Hence, by the Lebesgue dominated convergence
theorem, we get

hmzz 0(e)(27- )fz*gz,j ) :ZZTm(QJ)fZ*gl,J(O)

e—0 ¢ -
€N jEZ 1€N jEZ

Since F o) € L'(R™) and 2i<n 2ljj<n fi gij(27-) — 0 in L®(R") as
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N — 00, we see that

ZZT (29- fz*gz,J = hm Z Z S .7'— Qg) )fi*giyj(ij)dx

ieN jeZ. <N |jI<NRn
= RUF o))( (;V;Nfl*gw (2 ) =0

This completes the proof. m

LEMMA 3.6. Let m € Mp(R™). Then we can define a linear functional
pm on Ap(R™) by (1).

Proof. To define ,,, we need to show that, if {fl-(l)}, {fi@)}, {gi(,lj)}a {97,(2])}
C SR satisty Tien Syez 11 12105 rr Tien Siea 172 121985 1o
< 0o and Yien X jez ff”*gf?( ) = Sien Ljen £+l (27) in L=(R),

then
ZZ m(27:) )i & gw ZZ m(27- )f * gw)(O)

€N jEZ 1€EN jEZ

To do this, we define {f i, {10 }]}z c S(R”) by {f“” Vi = {fl” 2,
D2 and (0P = el =9 A (=as ), ).

Then we have

3 3
SOST1E eellgS

€N jeZ
1 2
=SS e lg e + S0 ST e lg e < o0
1€EN jEZ 1€N jEZ
3 2
ZZf Leg @) = 30N gl (@) = 30N i w27 =0,
i€N jEZ 1€N jEZ 1€EN jeZ

Hence, by Lemma 3.5, we get

ZZTm(Qj')fi( *gw ZZT 21t *gl‘(?j)(o)

€N jEZ 1€N jEZ
3 3
=22 T 1Y #4030 =0,
ieN jeZ
Thus, the values ),y Z]Ez m(23-).fi * gi,;(0) are independent of the repre-
sentations of f. In the same way, we can prove the linearity of ¢,,. =

We are now ready to prove Theorem 1 given in the introduction.

Proof of Theorem 1. We first prove that, if m € maxM,(R"), then
om € Ap(R™)" and [|m|lmaxrr, = [l@mll 4,)-- Let m € max My(R"). By
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Lemma 3.6, we see that ¢, is a linear functional on KP(R”), Let f =
> ieN ZjeZ fi*gij(27-) € Ap(R™). Since

lem (DI <D 0§ D 1Ty file)gij(—a)| da

iENR"” jE€Z
< S I fill o903 o e 12
1€N
< Il ty 3 163l 14915 11l o 2 2y

1€N
taking the infimum over all the representations of f, we have | (f)] <
HmHmaXMprng, S0 m € Ap(R™)* and H‘!’mH(jp)* < ||m]|max a1, To prove
H‘PmH(ﬁp)* > ||m||lmax a1, , we use the duality LPI(R", N Z))* = LP(R™, £°(Z))
([12, Proposition, 2.11.1]), that is,
[mlmax a1, = sup [{Tn2i) fFjezll Lo @n e (2))
= sup’ S ZTm(Qj_)f(x)gj(x) dx|,
R" jEZ
where the supremum is taken over all f € S(R™) and finitely supported
sequences {g;}jez C S(R™) such that ||f||zr = ||{gj}jez||Lp/(Rn7£1(Z)) =1

For e > 0, we can find f. € S(R™) and a finitely supported sequence {g. ;} C
S(R™) such that || fellLr = ||{9€,j}j||Lp’ Rn,01(Z)) = 1 and

Irallmass, = < | § 2 T fol@)ge (@) da
R” jEZ

Since {g,;} C S(R") is a finitely supported sequence, we have . 7 fe *

ggv,j(Qj‘) € Ap(R") and || ZjeZ fa*gé/,j@j')ﬂg < Hfa”LP”{ggv,j}jHLp’ R 01(Z))"
» ( (2))
Hence, we get

|m”mapr < 2. fa gaj dCC €
( )
R” JEZ

| Ty fe #0250 = (3 fe w0y 20)) 42
JEL Jez

> L), e < leml s, +e
JEZL Ap

< H‘PmH(ﬁp)*

Hence, the arbitrariness of ¢ gives ||cpm||(gp)* > ||m||max M, -

We next prove that, if ¢ € ZP(R”)*, then there exists m € max My (R")
such that ¢ = ¢,,. We note that, if f,g € S(R") and j € Z, then fxg(27) €
Ap(R") and |[f #g(27)|| 5 < [Ifllzrllgll - For f € S(R") and j € Z, we can
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define a linear functional ngj) on the dense subspace S(R™) of L? (R") by
Lgcj)(g) = p(f*g(27")) for g € S(R™). Since

L9 (@) = e + 9@ NI < lell x -1 + 9@z, < el 1ol
for all g € S(R™), it follows that Lgcj s LY (R™)* and its norm satisfies
LD zrye < 12l [1fllr- Since LV (R™)* = LP(R™), we can find b €
LP(R™) such that |2 Lo = | LY ). and

Lgcj)(g) = S hgcj)(m)g(m) dx for all g € S(R").
R7

We define a linear operator T from S(R"™) to LP(R™) by T;f = (hgcj))v.
Then we have

1T e = NBP) o = LDl gorye < Nl g, 1l

for all f € S(R™). That is, T} is bounded on LP(R"). Since 7, f * g(2/-) =
f *7.9(27-), the equations

p(rof *9(27)) = L9 (9) = | Tylmafl(w)g(—y) dy

R
and ' '
o(f *7eg(2) = LY (12g) = | T3 () [reg)(—v) dy
Rn
give Tj 7, = 7, Tj. Since T is bounded on LP(R™) and commutes with

translations, by [11, Chapter 1, Theorem 3.16], we can find m; € L*(R")
such that Tp,, = Tj. We next show that m; = mg(27-) for all j € Z. Since
f*g(27:) = [fa-i * 9(27)](2%), the equations
o(f +g(27)) = LY (g) = | T, f(2)g(~2) dz
Rn
and

ol[fas * g(27))(2)) = LY (9(27))

=\ oo foms (@)g(—2 ) da = | Ty 20 f () 9(—) dae
R™ Rn

give m; = mo(27-). We write m = mg. Then we have

(4) o(f % 9(27) = | T f (@) g(—2) dw = Tp00 f * 9(0)

R
for all f,g € S(R") and j € Z. To show m € max M,(R"), we define a space
S by S={{gj}jez C S(R") : {g;}jez is a finitely supported sequence}. We

note that, if f € S(R") and {g;}jez € S, then >,y f * g;(27) € A,(R™)
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and [|Yyen f + 95Nz, < 1120185l o sy For f € SCRY), we
can define a linear functional Ly on the dense subspace S of LY (R, (Y(Z))
by Li({gj};) = @(Zjez f[*g;(27-)) for {g;}jez € S. From the boundedness

of ¢, it follows that
Ly {gd ) < el e | D2 £+ 95|
JEZL P

{95}l 1 (e 012

for all {g;}jez € S, so that Ly € LP' (R ¢ (Z))* and HLf”Lp’(Rn,el(Z))* <
lell 5,y I fllze- By the duality LY (R™, (1(Z))* = LP(R” (°(Z)), we can find

{hj}jez € LP(R", £2°(Z)) such that [[{h;};ll e e (z)) = 1 Lgl 1 (R™ 01(Z))*
and

Li({g;};) = S Zh xz)dx for all {g;}; €S.
R™ jEZ

Now, (4) and
o(f % 9(2°) = Li({05509}5) = | hjo()g(x) du
]Rn
give T, 9i0.)f = hj, for all jo € Z, where §;;, = 1 if j = jo and d;;, = 0 if
j # jo. So, we get
M flle = [{Tm2sy £ 351 Lo @n oo zy) = {75 }ill 2o @ oo (2)
= Lsll 1w R (Z)) S ||90H(Ap)*HfHLP‘

That is, m € max M,(R"). Finally, we prove ¢, = ¢. Let f € S(R") and
{9;}; C S;(R”) satisfy || f]|L» ZjeZ llgjll»» < oo. We note that NZjEZf %
9j(27:) € Ap(R™). Since 3,y [+ 9j(277) = Xojep [ * 95(27+) in Ap(R™) as

N — o0, using the continuity and linearity of ¢ and (4), we have

(5) @(DoSrgi2) = lim 37 o(fg(20)

JEZ 7SN

= lim T, (24 f*g] ):ZTm(2j~)f*gj(0)'

N—o0 -
l7I<N JEL

Let f = ey Xjenf * 9;(27) € Ap(R"), where {f;},{gij}i; C S(R")
satisfy > ey Zjez [ fill el gijll Lo < 00. Since

Y MFilleolHgii il oo n gy < D D Wfillwllgil o < oo,

€N €N jeZ

we see that 3, N D ez f xg;(29) — fin EP(R") as N — oo. Hence, from
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the continuity and linearity of ¢ and (5), we get

p(f) = lim > ‘P(Zfi * gz‘,j(Qj')>

i<N  jEZ

= lim > 0> Ty fi+i(0) = em(f)-

i<N jEZ
The proof is complete.
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