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A Gaussian bound for convolutions of functions

on locally compact groups

by

Nick Dungey (Sydney)

Abstract. We give new and general sufficient conditions for a Gaussian upper bound
on the convolutions Km+n ∗Km+n−1 ∗ · · · ∗Km+1 of a suitable sequence K1, K2, K3, . . . of
complex-valued functions on a unimodular, compactly generated locally compact group.
As applications, we obtain Gaussian bounds for convolutions of suitable probability den-
sities, and for convolutions of small perturbations of densities.

1. Introduction. Let K1, K2, K3, . . . be a sequence of functions on a
unimodular locally compact group G. The first main result of this paper
gives very general sufficient conditions for a Gaussian upper bound on the
convolved functions

Km+n ∗ Km+n−1 ∗ · · · ∗ Km+1

for all m ∈ N0 = {0, 1, 2, . . .} and n ∈ N = {1, 2, 3, . . .}, where ∗ denotes
convolution of functions on G. Examples where this result applies are dis-
cussed.

The problem of obtaining Gaussian estimates has been well studied in the
important case of time homogeneous random walks, that is, in case Kn = K
is independent of n and is a probability density on G. For example, see
[8, 10, 3] for results when K = Kn is a symmetric density (symmetry means
that K(g) = K(g−1) for all g ∈ G). More recently, Gaussian estimates for
non-symmetric “centered” densities on groups of polynomial growth were
obtained by Alexopoulos [1, 2]; see also [11, 6]. For relevant background
material concerning random walks and diffusions on groups, see [12].

In the present paper, we move outside the random walk case and treat
“time-inhomogeneous” convolutions of possibly complex-valued functions.
This requires new effort since many of the previous methods for obtaining
Gaussian estimates (for example, in [8, 1, 2]) do not obviously extend to the
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time-inhomogeneous case, nor to functions with negative or complex values.
Our present method is based on some “convolution Nash inequalities” for
unimodular groups recently introduced in [4, 5]; in those papers, the inequal-
ities were used to study the time-homogeneous case, that is, convolutions of
a fixed complex-valued function K. We mention also the paper [7], where
Gaussian estimates for complex heat kernels on Lie groups were obtained
by quite different methods.

In Section 2 below we prove our main theorem giving Gaussian esti-
mates, under some abstract assumptions including certain L2 estimates for
quadratic forms associated with Kn. As a byproduct of the proof, under
weaker assumptions we obtain an L∞ estimate for convolutions.

In Section 3 we consider some examples where the main theorem can be
applied. We first consider the case of probability densities, and show how
to recover and extend previously known results of, for example, [8, 1, 2].
Then we obtain new results for functions which are suitable perturbations
of probability densities.

2. The main theorems. In what follows, G will be a unimodular lo-
cally compact group with Haar measure dg. We consider the spaces Lp :=
Lp(G; dg), 1 ≤ p ≤ ∞, of complex-valued measurable functions, and use the
notation ‖T‖p→q for the norm of a bounded linear operator T : Lp → Lq.

Let L = LG be the left regular representation of G, so that (L(g)f)(h) =
f(g−1h), g, h ∈ G, for a function f : G → C. Define also the difference
operators ∂g := L(g) − I, g ∈ G, where I denotes the identity operator
on functions. For a locally integrable function f : G → C we define the
convolution operator L(f) by setting

(L(f)f1)(g) = (f ∗ f1)(g) =
\
G

dh f(h)f1(h
−1g)

for suitable functions f1 : G → C; this makes sense at least when f1 is
continuous and compactly supported, so that L(f) has domain dense in Lp

for 1 ≤ p < ∞.

We shall assume that G is compactly generated, and fix a relatively com-
pact, open neighborhood U of the identity e of G which is symmetric (U =
U−1) and generates G. Thus G =

⋃∞
n=1 Un where Un := {g1 · · · gn : g1, . . . , gn

∈ U}. Define the modulus ̺ = ̺U : G → N by

̺(g) = inf{n ∈ N : g ∈ Un}, g ∈ G.

This has the basic properties that ̺(g) = ̺(g−1) and ̺(gh) ≤ ̺(g)+̺(h) for
all g, h ∈ G. Let V (r) be the dg-measure of the ball B(r) := {g ∈ G : ̺(g)
≤ r} for all r ≥ 1. The multiplication operators Uλ, λ ∈ R, are defined by

Uλf := eλ̺f
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for suitable f : G → C. For measurable f : G → C, we also define Γ2(f) ∈
[0,∞] by

Γ2(f) =
( \

G

dg
\
U

du |(∂uf)(g)|2
)1/2

=
( \

U

du ‖∂uf‖2
2

)1/2
.

We will need the standard estimate (cf. [12, Proposition VII.3.2]) that

(1) ‖∂gf‖2 ≤ cU̺(g)Γ2(f) for all g ∈ G and f ∈ L2,

where cU is a constant depending only on G, dg and U .
Let (Kn)n∈N be a sequence of complex-valued measurable functions on G.

Set

Tnf := Kn ∗ f = L(Kn)f, Tn,λf := UλTnU−λf,

and define associated quadratic forms Qn,λ by

Qn,λ(f) := ‖f‖2
2 − ‖Tn,λf‖2

2 for n ∈ N, λ ∈ R and f ∈ L2.

We can now state our main theorem.

Theorem 2.1. Suppose that the functions (Kn)n∈N satisfy the following

Assumptions (I)–(III).

(I) There exist c, b > 0 such that

|Kn(g)| ≤ ce−b̺(g)2 for all n ∈ N and g ∈ G.

(II) There are c, ω > 0 such that

Qn,λ(f) ≥ c−1Γ2(f)2−ωλ2‖f‖2
2 for all n ∈ N, |λ| ≤ 1 and f ∈L2.

(III) There exist a, D > 0 such that V (r) ≥ arD for all r ≥ 1.

Then there are constants c′, b′ > 0, depending only on G, dg, U and on the

constants c, b, ω, a, D in Assumptions (I)–(III), such that

|(Km+n ∗ Km+n−1 ∗ · · · ∗ Km+1)(g)| ≤ c′n−D/2e−b′̺(g)2/n

for all m ∈ N0 = {0, 1, 2, . . .}, n ∈ N and g ∈ G.

We remark that Assumption (II) of Theorem 2.1 implies that the opera-
tors Tn = L(Kn) are contractions in L2. But for complex-valued Kn, the Tn

need not be contractions in L1 (or in L∞), which is the main obstruction to
applying standard arguments for densities (for example, see [8, Section 2])
in the complex case.

Theorem 2.1 should be compared with [4, Theorem 2.3] where Gaussian
estimates for convolution powers of a fixed complex-valued function K were
obtained. The hypotheses in [4] are different, however, and do not seem to
adapt easily to the time-inhomogeneous case.

We proceed with the proof of Theorem 2.1, which requires several lem-
mas.
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Lemma 2.2. There exists k > 0 such that

‖Tn,λ‖2→2 ≤ ekλ2

for all n ∈ N, λ ∈ R.

Therefore,

‖Tm+n,λ · · ·Tm+1,λ‖2→2 ≤ ekλ2n for all m ∈ N0, n ∈ N and λ ∈ R.

Proof. The second statement of the lemma follows immediately from
the first statement. To prove the first statement, we observe from Assump-
tion (II) of Theorem 2.1 that

‖f‖2
2 − ‖Tn,λf‖2

2 ≥ −ωλ2‖f‖2
2 for all f ∈ L2 and |λ| ≤ 1.

Therefore, ‖Tn,λf‖2
2 ≤ (1 + ωλ2)‖f‖2

2 and

‖Tn,λ‖2→2 ≤ (1 + ωλ2)1/2 ≤ 1 + ωλ2 ≤ eωλ2

whenever |λ| ≤ 1.

When |λ| ≥ 1, a similar bound follows by an elementary integration of the
Gaussian bound of Assumption (I); we omit the standard details (one uses

the fact that
T
G dg e−δ̺(g)2 is finite for any δ > 0).

Lemma 2.3. There exist c, k > 0 such that

‖UλKn‖2 ≤ cekλ2

for all n ∈ N and λ ≥ 0.

Proof. This also follows by integration of the bound of Assumption (I).

In the next lemma, which gives a “weighted convolution Nash inequal-
ity”, we assume that w : G → (0,∞) is any Borel measurable function such
that w(g) = w(g−1), g ∈ G, and such that w, 1/w are locally bounded. For
convenience, we also denote by w the operator of pointwise multiplication
f 7→ wf .

Lemma 2.4 ([4]). Let w be as above. For r > 0 write ‖w‖∞,r = sup{w(g) :
g ∈ G, ̺(g) ≤ r}. If f is a locally integrable function on G and wf ∈ L2,
then

‖wf‖2 ≤ sup
g∈G, ̺(g)≤r

‖w∂gf‖2 + ‖w‖∞,rV (r)−1/2‖w−1L(f)w‖2→2

for all r > 0 (here, the right side is permitted to be infinite).

Proof. This is contained in [4, Lemma 2.2].

Proposition 2.5. There exist constants c, k > 1 such that

‖Uλf‖2
2 ≤ cr2{Qn,λ(Uλf) + kλ2‖Uλf‖2

2} + cr−D(‖U−λL(f)Uλ‖2→2)
2

for all r ≥ 1, λ ≥ 0, n ∈ N and locally integrable f such that Uλf ∈ L2.

Proof. Since ck > 1, the desired inequality holds trivially whenever
λr ≥ 1. Thus, in the rest of the proof we may assume that λ ≥ 0 and
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r ≥ 1 satisfy λr ≤ 1; note that then λ ≤ 1. Setting w = eλ̺, squaring the
inequality of Lemma 2.4 and applying Assumption (III) gives

‖Uλf‖2
2 ≤ c sup

g∈G, ̺(g)≤r
‖Uλ∂gf‖

2
2 + cr−D(‖U−λL(f)Uλ‖2→2)

2

whenever r ≥ 1 and λr ≤ 1. Therefore, to complete the proof it suffices to
establish an inequality of the form

(2) ‖Uλ∂gf‖
2
2 ≤ c̺(g)2{Qn,λ(Uλf) + kλ2ec̺(g)λ‖Uλf‖2

2}

for all g ∈ G, 0 ≤ λ ≤ 1 and n ∈ N. To do this, observe the identity

Uλ∂gf = ∂gUλf − [1 − e−λ∂g̺]L(g)Uλf.

From (1) and Assumption (II),

‖∂gUλf‖2
2 ≤ c̺(g)2Γ2(Uλf)2 ≤ c′̺(g)2{Qn,λ(Uλf) + c′′λ2‖Uλf‖2

2}

for all 0 ≤ λ ≤ 1. Also, since |1− es| ≤ |s|e|s| for s ∈ R, and ‖∂g̺‖∞ ≤ ̺(g),
we find that

‖[1 − e−λ∂g̺]L(g)Uλf‖2 ≤ ‖1 − e−λ∂g̺‖∞‖Uλf‖2 ≤ λ̺(g)eλ̺(g)‖Uλf‖2

for all λ ≥ 0. Then (2) follows.

To continue the proof of Theorem 2.1, let us fix k > 1 large enough so
that the estimates of Lemmas 2.2, 2.3 and Proposition 2.5 hold for this k.
Put

Pm,n := Km+n ∗ · · · ∗ Km+1, Jm,λ(n) := e−2kλ2n‖UλPm,n‖
2
2

for all m ∈ N0, n ∈ N and λ ≥ 0. We claim that the function n 7→ Jm,λ(n)
is non-increasing in n; indeed, since

UλPm,n+1 = Uλ(Km+n+1 ∗ Pm,n) = Tm+n+1,λ(UλPm,n)

we know by Lemma 2.2 that

Jm,λ(n + 1) = e−2kλ2(n+1)‖Tm+n+1,λ(UλPm,n)‖2
2

≤ e−2kλ2n‖UλPm,n‖
2
2 = Jm,λ(n)

for all m ∈ N0, n ∈ N and λ ≥ 0. Moreover, Lemma 2.3 implies that
sup{Jm,λ(1) : m ∈ N0, λ ≥ 0} ≤ c0 for some constant c0 > 0. Hence

(3) sup{Jm,λ(n) : m ∈ N0, n ∈ N, λ ≥ 0} ≤ c0,

since Jm,λ(n) is non-increasing in n.
Next, suppose 0 ≤ λ ≤ 1 and in Proposition 2.5 set

f = e−kλ2nPm,n.

Observe that ‖Uλf‖2
2 = Jm,λ(n), that

‖U−λL(f)Uλ‖2→2 = e−kλ2n‖U−λTm+n · · ·Tm+1Uλ‖2→2

= e−kλ2n‖Tm+n,−λ · · ·Tm+1,−λ‖2→2 ≤ 1
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by Lemma 2.2, and that

Qm+n+1,λ(Uλf) + kλ2‖Uλf‖2
2

= e−2kλ2n‖UλPm,n‖
2
2 − e−2kλ2n‖UλPm,n+1‖

2
2 + kλ2e−2kλ2n‖UλPm,n‖

2
2

≤ e2kλ2

[e−2kλ2n‖UλPm,n‖
2
2 − e−2kλ2(n+1)‖UλPm,n+1‖

2
2]

≤ e2k[Jm,λ(n) − Jm,λ(n + 1)]

where the last step used that λ ≤ 1. Thus Proposition 2.5 shows for some
c > 0 that

Jm,λ(n) ≤ cr2[Jm,λ(n) − Jm,λ(n + 1)] + cr−D,

which implies, since Jm,λ(n + 1) ≤ Jm,λ(n), that

(4) Jm,λ(n + 1) ≤ cr2[Jm,λ(n) − Jm,λ(n + 1)] + cr−D

for all r ≥ 1, 0 ≤ λ ≤ 1, m ∈ N0 and n ∈ N. In this inequality, we may
assume that c is large enough that 2c ≥ c0 where c0 is as in (3). Then
choosing r in (4) so that cr−D = 2−1Jm,λ(n + 1), we have r ≥ 1, and (4)
yields an estimate

(5) Jm,λ(n + 1)1+(2/D) ≤ c′[Jm,λ(n) − Jm,λ(n + 1)]

for all m ∈ N0, n ∈ N and 0 ≤ λ ≤ 1.

The following lemma now allows us to estimate Jm,λ(n). The lemma is
not new (see for example [12, Lemma VI.3.5]), but we give a proof for the
sake of completeness.

Lemma 2.6. Let c0, c1, D > 0, and let (γ(n))n∈N be a sequence of non-

negative real numbers satisfying γ(1) ≤ c0 and

γ(n + 1)1+(2/D) ≤ c1(γ(n) − γ(n + 1)) for all n ∈ N.

Then there exists a constant c2 > 0, depending only on c0, c1, D, such that

γ(n) ≤ c2n
−D/2 for all n ∈ N.

Proof. Let c2 be large enough that c2 > c0; we will choose c2 more
precisely later. If the desired estimate of the lemma did not hold, then for
some n ∈ N we must have

(6) γ(n) ≤ c2n
−D/2, γ(n + 1) > c2(n + 1)−D/2.

We would then have

γ(n) − γ(n + 1) ≤ c2(n
−D/2 − (n + 1)−D/2) ≤ c2c(D)(n + 1)−(D/2)−1

where c(D) > 0 is a constant depending only on D. The hypothesis then
implies that

γ(n + 1)1+(2/D) ≤ c1c2c(D)(n + 1)−(D/2)−1
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or equivalently,

γ(n + 1) ≤ (c1c2c(D))D/(D+2)(n + 1)−D/2.

Now fixing c2 > c0 large enough so that

(c1c2c(D))D/(D+2) < c2,

we see that the last estimate contradicts (6). The lemma follows.

From (3), (5) and Lemma 2.6 we infer an estimate

Jm,λ(n) ≤ cn−D/2

or, in other words,

(7) ‖UλPm,n‖2 ≤ c′n−D/4ekλ2n

for all m ∈ N0, n ∈ N and 0 ≤ λ ≤ 1. When λ ≥ 1, it follows from (3) that

‖UλPm,n‖2 ≤ c
1/2
0 ekλ2n ≤ c

1/2
0 e−ne(k+1)λ2n.

We conclude that for some k > 0, an estimate of form (7) holds for all
m ∈ N0, n ∈ N and λ ≥ 0.

The desired Gaussian bound of Theorem 2.1 is a standard consequence
of (7). In fact, from the convolution identity

Pm,n = Pm+n1,n2
∗ Pm,n1

where n = n1 + n2, we easily deduce a bound

eλ̺(g)|Pm,n(g)| ≤
\
G

dh eλ̺(h)|Pm+n1,n2
(h)|eλ̺(h−1g)|Pm,n1

(h−1g)|

≤ ‖UλPm+n1,n2
‖2‖UλPm,n1

‖2 ≤ cn−D/2ekλ2n

for all g ∈ G, m ∈ N0, n ∈ {2, 3, 4, . . .} and λ ≥ 0. Choosing λ to be a small
constant multiple of ̺(g)/n ends the proof of Theorem 2.1.

The following corollary of Theorem 2.1 gives an alternative form of As-
sumption (II) which is often more convenient in practice (for examples, see
Section 3).

Corollary 2.7. Suppose (Kn)n∈N satisfy Assumptions (I) and (III) of

Theorem 2.1 and the following assumption.

(II)′ There exists c ≥ 1 with

Qn,0(f) ≥ c−1Γ2(f)2,

and there exists ε0 > 0 such that

(8) |Qn,λ(f) − Qn,0(f)| ≤ εΓ2(f)2 + c(ε)λ2‖f‖2
2

for all ε ∈ (0, ε0], |λ| ≤ 1 and f ∈ L2, where c(ε) > 0 may depend

on ε.

Then Assumption (II) of Theorem 2.1 holds, and hence the conclusion of

Theorem 2.1 holds.
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Proof. Assumption (II)′ implies that

|Qn,λ(f) − Qn,0(f)| ≤ cεQn,0(f) + c(ε)λ2‖f‖2
2

for all |λ| ≤ 1 and f ∈ L2. Hence, fixing an ε ∈ (0, ε0] small enough that
cε ≤ 2−1, we have

Qn,λ(f) ≥ Qn,0(f) − |Qn,λ(f) − Qn,0(f)|

≥ 2−1Qn,0(f) − c′λ2‖f‖2
2 ≥ 2−1c−1Γ2(f)2 − c′λ2‖f‖2

2,

which establishes Assumption (II).

To conclude this section, we describe a uniform L∞ estimate for convo-
lutions under weaker hypotheses than Theorem 2.1. This result is related to
estimates of [5] for convolution powers of a fixed complex-valued function
K; it also generalizes well known results for probability densities (see [12,
p. 88] and references therein).

Theorem 2.8. Let (Kn)n∈N be a sequence of complex-valued measurable

functions on G satisfying the following assumptions.

(I) ‖Kn‖2 ≤ c for all n ∈ N.

(II) Qn,0(f) ≥ c−1Γ2(f)2 for all n ∈ N and f ∈ L2.

(III) There exist a, D > 0 such that V (r) ≥ arD for all r ≥ 1.

Then there exist c′, c′′ > 0 (depending only on G, dg, U , c, a, D) such that

‖Km+n ∗ · · · ∗ Km+1‖2 ≤ c′n−D/4 for all m ∈ N0, n ∈ N,

and

‖Km+n ∗ · · · ∗ Km+1‖∞ ≤ c′′n−D/2 for all m ∈ N0, n ∈ {2, 3, 4, . . .}.

Proof. This is just a simpler version of the proof of Theorem 2.1, and we
shall leave details to the reader. Observe that the estimates of Lemma 2.2,
Lemma 2.3 and Proposition 2.5 go through in case λ = 0. Then one may
derive the following difference inequality for the quantity Jm(n) := ‖Pm,n‖

2
2:

Jm(n + 1)1+(2/D) ≤ c[Jm(n) − Jm(n + 1)]

for all m ∈ N0 and n ∈ N. Thus Lemma 2.6 can be applied.

3. Examples. In this section, we continue the notations of Section 2
and describe examples where Theorems 2.1 or 2.8 apply.

Let G be a unimodular, compactly generated locally compact group.
Throughout the section we shall assume that G satisfies the volume bound
V (r) ≥ arD, r ≥ 1, for some D > 0. Given F : G → C we define F̃ (g) :=

F (g−1) for g ∈ G, and say that F is symmetric in case F = F̃ .

Example (i). Let (Kn)n∈N be probability densities on G, that is, 0 ≤
Kn ∈ L1 and

T
G Kn = 1. Suppose also that Kn is symmetric, that Assump-
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tion (I) of Theorem 2.1 holds, and finally that

(9) inf{Kn(g) : g ∈ U ′, n ∈ N} > 0

where U ′ ⊆ G is some relatively compact, open, symmetric (U ′ = (U ′)−1)
generating neighborhood of e.

We claim that Assumption (II)′ of Corollary 2.7 holds, and hence the
Gaussian estimate of Theorem 2.1 applies. To verify Assumption (II)′ re-
quires some work. We begin with

Lemma 3.1. One has

f − F ∗ f = 2−1
\
G

dg F (g)∂g−1∂gf

for all f ∈ L2 and all symmetric F ∈ L1 satisfying
T
G F = 1. Also,

‖f‖2
2 − ‖F ∗ f‖2

2 = 2−1
\
G

dg (F̃ ∗ F )(g)‖∂gf‖
2
2

for all f ∈ L2 and all real-valued F ∈ L1 satisfying
T
G F = 1.

Proof. The first statement of the lemma is obtained by a straightforward
calculation. To prove the second statement, observe that the symmetric

function F ′ := F̃ ∗ F satisfies
T
G F ′ = 1 and

‖f‖2
2 − ‖F ∗ f‖2

2 = (f − F ′ ∗ f, f) = 2−1
\
G

dg F ′(g)(∂g−1∂gf, f).

The lemma follows.

From the second part of Lemma 3.1 and (9), we deduce an inequality

Qn,0(f) = ‖f‖2
2 − ‖Kn ∗ f‖2

2 ≥ c−1
\

U ′

du ‖∂uf‖2
2.

It follows that Qn,0(f) ≥ (c′)−1Γ2(f)2, by a version of (1) with the neigh-
borhood U ′ replacing U .

To verify Assumption (II)′, it remains to prove an estimate (8). To do
this, first consider the quadratic forms Rn,λ defined by

Rn,λ(f) := ((I − Tn,λ)f, f) for n ∈ N and λ ∈ R.

The next lemma uses standard ideas and could be extracted, for example,
from [8, 6], but for the sake of completeness we sketch a proof.

Lemma 3.2. For each ε > 0 there exists c(ε) > 0 such that

|Rn,λ(f) − Rn,0(f)| ≤ εΓ2(f)2 + c(ε)λ2‖f‖2
2

for all n ∈ N, |λ| ≤ 1 and f ∈ L2.

Proof. By Lemma 3.1 and symmetry of Kn, we find that

Rn,λ(f) − Rn,0(f) = 2−1
\
G

dg Kn(g)([Uλ∂g−1∂gU−λ − ∂g−1∂g]f, f).
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But applying the identity Uλ∂gU−λ = ∂g − [1 − e−λ∂g̺]L(g) and using (1)
and ‖1 − e−λ∂g̺‖∞ ≤ |λ|̺(g)e|λ|̺(g) (compare the proof of Proposition 2.5),
one may show that

|([Uλ∂g∂hU−λ − ∂g∂h]f, f)| = |(Uλ∂hU−λf, U−λ∂g−1Uλf) − (∂hf, ∂g−1f)|

≤ cec(̺(g)+̺(h))(|λ|2‖f‖2
2 + |λ| ‖f‖2Γ2(f))

for all |λ| ≤ 1, g, h ∈ G and f ∈ L2. The lemma follows easily.

We can relate Rn,λ and Qn,λ by observing that

Qn,0(f) − Qn,λ(f) = ‖Tn,λf‖2
2 − ‖Tnf‖2

2

= (Tnf, (Tn,λ − Tn)f) + ((Tn,λ − Tn)f, Tnf)

+ ((Tn,λ − Tn)f, (Tn,λ − Tn)f)

= 2Re((Tn,λ − Tn)f, Tnf) + ‖(Tn,λ − Tn)f‖2
2

= 2Re{Rn,0(f) − Rn,λ(f)} + ‖(Tn,λ − Tn)f‖2
2

− 2Re((Tn,λ − Tn)f, (I − Tn)f).

Then (8) follows from Lemma 3.2 and from the estimates

(10) ‖(I − Tn)f‖2 ≤ cΓ2(f), ‖(Tn − Tn,λ)f‖2 ≤ c|λ| ‖f‖2

for all n ∈ N, f ∈ L2 and |λ| ≤ 1. Estimates (10) are easily proved even for
non-symmetric densities: first observe that

(I − Tn)f =
\
G

dg Kn(g)(f − L(g)f) = −
\
G

dg Kn(g)∂gf

and apply (1) and Assumption (I), and secondly, write

(Tn − Tn,λ)f =
\
G

dg Kn(g)(L(g)− UλL(g)U−λ)f

=
\
G

dg Kn(g)[1 − e−λ∂g̺]L(g)f

in order to deduce the second estimate of (10).

Example (ii). To generalize Example (i), let (Kn)n∈N be compactly
supported densities on G which are not necessarily symmetric, but which
are centered in the following sense.

Consider the projection π0 : G → G/G0, where G0 := [G, G] is the clo-
sure in G of the commutator subgroup [G, G]. Now G/G0 is a compactly
generated locally compact abelian group, so by a standard theorem ([9, The-
orem II.9.8]) it is isomorphic with R

v × Z
w ×A where v, w ∈ N0 and A is a

compact abelian group. One says that Kn is centered if\
G

dg Kn(g)π
(j)
0 (g) = 0
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for all j ∈ {1, . . . , v+w}, where π
(j)
0 : G → R are the components in R

v×Z
w

of the mapping π0 : G → R
v×Z

w×A. (This definition generalizes the special
cases where G is a Lie group or a discrete group, studied in [1, 2, 11, 6].)

Assume that the Kn are centered and have uniform compact support in
the sense that Kn ≤ cχW for all n ∈ N and some fixed compact set W ⊆ G.
Suppose moreover that (9) holds.

We claim that Assumption (II)′ of Corollary 2.7 holds, and hence the
Gaussian estimate of Theorem 2.1 applies. This Gaussian estimate extends
results of Alexopoulos [1, 2] to time-inhomogeneous random walks. Note that
the methods of [1, 2] are completely different, being based on homogenization
theory, and do not appear to work in the time-inhomogeneous case.

The proof of Assumption (II)′ follows the arguments of Example (i),
with the exception that the proof of the estimate of Lemma 3.2 is now
more difficult. See [6] (especially Section 4) for proof of this estimate in
the case where G is discrete; the general case requires more effort and the
details will appear elsewhere. The essential idea is that if Kn is centered
then I − Tn is a second-order difference operator with no first-order terms;
more precisely, I − Tn is expressible as a linear combination of monomial
difference operators, with each monomial having the form

∂g1
. . . ∂gs

for some s ≥ 2 and g1, . . . , gs ∈ G (for a proof of this assertion when G
is discrete, see [6]). Given this result, one may reason as in the proof of
Lemma 3.2. We omit further details.

Example (iii). This is an example for Theorem 2.8. Let (Kn)n∈N be
densities satisfying ‖Kn‖2 ≤ c for all n and satisfying (9); no assumption
of symmetry or centeredness is required. Then Assumption (II) of Theo-
rem 2.8 holds (this follows from (9) and Lemma 3.1), so that the conclusion
of Theorem 2.8 applies.

The result of Example (iii) was proved by different methods in [12, Chap-
ter VII].

In the remaining two examples, we derive apparently new estimates for
convolutions of perturbations of densities. Example (iv) extends the uniform
estimate of Example (iii) to perturbations, while Example (v) extends the
Gaussian estimate of Example (i).

Example (iv). Let (Kn)n∈N ⊆ L1 ∩ L2 be densities satisfying the same
assumptions as in Example (iii). Suppose (Mn)n∈N are real-valued functions
on G with Mn ∈ L1 ∩L2,

T
G Mn = 0, and ‖Mn‖2 ≤ c for all n ∈ N. Suppose

also that

(11)
\
G

dg Kn(g)̺(g)2 +
\
G

dg |Mn(g)|̺(g)2 ≤ c for all n ∈ N.
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Define perturbations of the Kn by setting

Kτ
n := Kn + τMn for all τ ∈ R.

The Kτ
n might take negative values, so are not densities in general. We have

Theorem 3.3. There is an s0 > 0 such that

‖Kτn

m+n ∗ · · · ∗ Kτ1

m+1‖∞ ≤ cn−D/2

for all m ∈ N0, n ∈ {2, 3, 4, . . .} and τ1, . . . , τn ∈ R satisfying |τj | < s0 for

all j.

Proof. First note that ‖Kτ
n‖2 ≤ c′ for all n ∈ N and all τ ∈ R with

|τ | ≤ 1. Next, since
T
G Kτ

n = 1 it follows from the second statement of
Lemma 3.1 that

‖f‖2
2 − ‖Kτ

n ∗ f‖2
2 = 2−1

\
G

dg (K̃n ∗ Kn)(g)‖∂gf‖
2
2

+ 2−1τ
\
G

dg ((K̃n ∗ Mn)(g) + (M̃n ∗ Kn)(g))‖∂gf‖
2
2

+ 2−1τ2
\
G

dg (M̃n ∗ Mn)(g)‖∂gf‖
2
2.

On the right side, the first term is estimated below by c−1Γ2(f)2, while from
(1) and (11) one easily sees that the remaining terms have absolute value
less than c′|τ |Γ2(f)2 for all |τ | ≤ 1. Hence we may choose s0 ∈ (0, 1) small
enough that

‖f‖2
2 − ‖Kτ

n ∗ f‖2
2 ≥ (c′′)−1Γ2(f)2 for all |τ | < s0 and n ∈ N.

Theorem 3.3 then follows from Theorem 2.8.

Example (v). Let (Kn)n∈N be symmetric densities satisfying the same
assumptions as in Example (i). Let (Mn)n∈N ⊆ L1 ∩ L∞ be symmetric
real-valued functions with

T
G Mn = 0 and satisfying an estimate |Mn(g)| ≤

ce−b̺(g)2 for all n ∈ N and g ∈ G. Setting Kτ
n = Kn + τMn for τ ∈ R, we

have

Theorem 3.4. There is an s0 > 0 such that an estimate

|(Kτn

m+n ∗ · · · ∗ Kτ1

m+1)(g)| ≤ c′n−D/2e−b′̺(g)2/n

holds for all m ∈ N0, n ∈ N and τ1, . . . , τn ∈ R satisfying |τj | < s0 for all j.

Proof. Let Qτ
n,λ, λ ∈ R, denote the quadratic forms associated with

Kτ
n. According to the proof of Theorem 3.3, for some s0 ∈ (0, 1) we have

Qτ
n,0(f) ≥ c−1Γ2(f)2 for all |τ | < s0 and n ∈ N. Moreover, using

T
G Kτ

n = 1
and symmetry of Kτ

n, one may show in the same way as in Example (i) that

|Qτ
n,λ(f) − Qτ

n,0(f)| ≤ εΓ2(f)2 + c(ε)λ2‖f‖2
2



A Gaussian bound for convolutions 213

uniformly for all |τ | ≤ 1, ε > 0, n ∈ N and |λ| ≤ 1. Then, by the proof of
Corollary 2.7, the assumptions of Theorem 2.1 hold uniformly for |τ | < s0,
so that it suffices to apply Theorem 2.1.
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