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A probabilistic version of the

Frequent Hypercyclicity Criterion

by

Sophie Grivaux (Lille)

Abstract. For a bounded operator T on a separable infinite-dimensional Banach
space X, we give a “random” criterion not involving ergodic theory which implies that T

is frequently hypercyclic: there exists a vector x such that for every non-empty open subset
U of X, the set of integers n such that T

n
x belongs to U , has positive lower density. This

gives a connection between two different methods for obtaining the frequent hypercyclicity
of operators.

1. Introduction. Let X be an infinite-dimensional separable Banach
space, and T ∈ B(X) a bounded operator on X. In this note we will be
concerned with some properties of the linear dynamical system (X, T ). A
much-studied notion in linear dynamics is hypercyclicity: T is said to be
hypercyclic if there exists a vector x (a hypercyclic vector for T ) such that

Orb(x, T ) = {Tnx ; n ≥ 0}

is dense in X. The set of hypercyclic vectors for T is denoted by HC(T ). It is
easy to see that T is hypercyclic if and only if it is topologically transitive, i.e.
for every pair (U, V ) of non-empty open subsets of X, there exists an integer
n such that Tn(U) ∩ V 6= ∅. The set HC(T ) is then a residual subset of X.
We refer the reader to the two surveys [9] and [10] for more on hypercyclicity
and universality properties.

A stronger notion was introduced in [1], that of frequent hypercyclicity:

Definition 1.1. An operator T on X is said to be frequently hypercyclic

when there exists a vector x such that for every non-empty open subset U
of X, the set of integers n such that Tnx belongs to U has positive lower
density. In this case, x is called a frequently hypercyclic vector for T .
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Recall that the lower density of a subset A of N is

dens(A) = lim inf
N→∞

1

N
#{n ≤ N ; n ∈ A}.

This notion of frequent hypercyclicity deeply differs from the classical hy-
percyclicity since it does not feature a “global” property of the open sets
(topological transitivity), but can be studied only on the orbit of a vector. In
particular, no Baire category argument appears in this setting, in contrast
to the classical case, and the set FHC(T ) of frequently hypercyclic vectors
for T is usually not a residual subset of X (see [1] and [6]).

Frequent hypercyclicity is studied in [1] and [3], using two different kinds
of arguments: one of these consists in replacing the Baire category theorem
by a measure-theoretic argument, and building a probability measure m on
the space X with respect to which T defines an ergodic measure-preserving
transformation of X. In this case FHC(T ) is a set of m-measure 1. The other
one, on which we will focus now, is called in [1] the Frequent Hypercyclicity
Criterion. It is patterned after the well known Hypercyclicity Criterion,
which gives a sufficient condition for an operator to be hypercyclic (see for
instance [8], [4]). Despite its somewhat involved aspect, it is usually quite
easy to apply. The Frequent Hypercyclicity Criterion of [1] was improved by
Bonilla and Grosse-Erdmann in [6], and we state here their version in the
Banach space setting:

Theorem 1.2. Suppose that there exist a dense sequence (xl)l≥1 of vec-

tors of X and a map S defined on X such that

(1) for every l ≥ 1, the series
∑

k≥1 T kxl is unconditionally convergent ,

(2) for every l ≥ 1, the series
∑

k≥1 Skxl is unconditionally convergent ,
(3) TS = I.

Then T is frequently hypercyclic.

Recall that a series
∑

yk of vectors of a (real or complex) separable
Banach space X is unconditionally convergent in X if

∑
θkyk is convergent

for every choice of signs θk = ±1.
The study of frequent hypercyclicity which was carried out in [3] and

which repeatedly involved Gaussian random sums led naturally to the follow-
ing question ([3]): can the assumptions of unconditional convergence be re-
placed by assumptions of almost unconditional convergence? In other words,
let (εk)k≥1 be a sequence of independent random Bernoulli variables on a
probability space (Ω,F , P): P(εk = 1) = P(εk = −1) = 1/2. Can we merely
suppose in the criterion above that the random series

∑
k≥1 εk(ω)T kxl and∑

k≥1 εk(ω)Skxl converge almost everywhere? The purpose of this note is to
provide an affirmative answer to this question when X has finite cotype, and
Section 3 below is devoted to the proof of this result. Section 4 is devoted to
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examples. We show in particular how to retrieve the frequent hypercyclicity
of many of the operators involved in [1] and [3] without referring to ergodic
theory.

2. Main result. Let (Ω,F , P) be a probability space, and let (gk)k≥0 be
a sequence of independent real-valued standard Gaussian random variables.
Our main result can be stated as follows:

Theorem 2.1. Let X be an infinite-dimensional real or complex Banach

space, and T ∈ B(X) an operator such that there exist a dense sequence

(xl)l≥1 of vectors of X and a map S defined on X such that

(1) for every l ≥ 1, the series
∑

k≥1 gk(ω)T kxl converges almost every-

where,
(2) for every l ≥ 1, the series

∑
k≥1 gk(ω)Skxl converges almost every-

where,
(3) TS = I.

Then T is frequently hypercyclic.

Note that an operator satisfying the assumptions of Theorem 2.1 is al-
ready hypercyclic (and even mixing, i.e. for every pair (U, V ) of non-empty
open subsets of X, there exists an integer N such that Tn(U) ∩ V 6= ∅) for
every n ≥ N , since it satisfies the Hypercyclicity Criterion: this follows for
instance from the fact that the convergence almost everywhere of a random
series of the form

∑
n gn(ω)zn, zn ∈ X, implies the convergence almost ev-

erywhere of the Bernoulli series
∑

n εn(ω)zn, and so ‖zn‖ tends to 0 as n
tends to infinity.

Another remark concerns the case where the underlying space X is com-
plex. It is much more convenient in this case to consider, instead of the
real-valued independent Gaussian variables gk, a sequence of independent
standard complex-valued Gaussian variables g̃k = 1√

2
(gk + ig′k), where (gk)

and (g′k) are two mutually independent sequences of real-valued Gaussian
variables. It is not difficult to see that the convergence almost everywhere of
a series

∑
gk(ω)yk, where (yk) is a sequence of vectors of X, is equivalent to

the convergence almost everywhere of
∑

g̃k(ω)yk. Indeed, since ‖yk‖ goes to
zero as k goes to infinity, the convergence almost everywhere of

∑
g̃k(ω)yk

implies the convergence almost everywhere of
∑

hk(ω)zk, where h2j = gj ,
h2j+1 = g′j , and z2j = z2j+1 = yj , Now (hk) is a sequence of independent
symmetric random variables (with the same law) and by the contraction
principle (see for instance [13, p. 121]) the series

∑
h2k(ω)z2k =

∑
gk(ω)yk

converges almost everywhere.

Before passing to the proof of Theorem 2.1, we briefly recall some facts
on the geometry of Banach spaces and random sums of vector-valued inde-
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pendent variables. We refer the reader to [7], [12] or [13] for more details. Our
main interests lie in random sums Sn(ω) =

∑n
k=1 χk(ω)xk, where the xk’s

are elements of a Banach space X and (χk)k≥0 is a symmetric sequence of
independent variables on (Ω,F , P). In particular the χk’s can be either inde-
pendent Bernoulli variables εk or independent standard Gaussian variables
gk. An important result concerning these random series is the equivalence
between the following statements:

(a)
∑

k χk(ω)xk converges almost surely,
(b)

∑
k χk(ω)xk converges in Lp(Ω,F , P) for some 1 ≤ p < +∞,

(c)
∑

k χk(ω)xk converges in Lp(Ω,F , P) for every 1 ≤ p < +∞.

Bernoulli random sums are involved in the definition of the geometric
property of cotype: X is of cotype q (q ≥ 2) if there exists a positive constant
C such that for every N ≥ 0 and any vectors x0, . . . , xN of X,

(1)
( N∑

n=0

‖xn‖
q
)1/q

≤ C
\
Ω

∥∥∥
N∑

n=0

εn(ω)xn

∥∥∥ dP(ω).

Thanks to the Kahane inequalities, the quantity on the right-hand side can
be replaced by

Cp

( \
Ω

∥∥∥
N∑

n=0

εn(ω)xn

∥∥∥
p
dP(ω)

)1/p

for every p ≥ 1, Cp being a constant depending only on p. For instance if

µ is a measure on some measure space (Ω̃, B̃), then Lr(µ) has cotype r for
r ≥ 2 and cotype 2 for 1 ≤ r ≤ 2.

For a Banach space X, being of cotype q is equivalent to being of Gaus-

sian cotype q, i.e. (1) holds true with Bernoulli random sums replaced by
Gaussian random sums ([14]). In spaces of non-trivial cotype (i.e. q < +∞),
the convergence almost everywhere of a series

∑
εn(ω)xn is equivalent to

the convergence almost everywhere of the corresponding Gaussian series∑
gn(ω)xn (cf. [14]). This immediately yields the following corollary, which

gives a positive answer to Question 6.6 of [3] in the case where X has non-
trivial cotype:

Corollary 2.2. Let X be a space with non-trivial cotype, and let T ∈
B(X) be an operator such that there exist a dense sequence (xl)l≥1 of vectors

of X and a map S defined on X such that

(1) for every l ≥ 1, the series
∑

k≥1 εk(ω)T kxl converges almost every-

where,
(2) for every l ≥ 1, the series

∑
k≥1 εk(ω)Skxl converges almost every-

where,
(3) TS = I.

Then T is frequently hypercyclic.
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We finally recall some terminology concerning probability measures on
Banach spaces, especially Gaussian measures: if m is a probability measure
on (X,B, m), then m is Gaussian if for every x∗ ∈ X∗, x∗ as a function from
X into R or C has Gaussian distribution. This measure is non-degenerate if
m(U) > 0 for every non-empty open subset of X. If T is a bounded operator
on X, the probability measure m is T -invariant if m(T−1(A)) = m(A) for
every A ∈ B.

3. Proof of the main result. The first tool for the proof of Theorem
2.1 is the following simple proposition, which allows us to derive frequent
hypercyclicity from a mixed assumption of measure theory and hypercyclic-
ity:

Proposition 3.1. Let T be a bounded operator on X, and HC(T ) the

set of its hypercyclic vectors. Suppose that there exists a probability measure

m on X such that m(U) > 0 for every non-empty open subset U of X,
m is T -invariant , and m(HC(T )) = 1. Then T is frequently hypercyclic and

m(FHC(T )) = 1.

Proof. Let U be any non-empty open subset of X. Since m is T -invariant,
Birkhoff’s theorem implies that for m-almost every x in X,

dens{n ≥ 0 ; Tnx ∈ U} = E(1U | I)(x),

where 1U is the characteristic function of the set U and I the σ-algebra
of T -invariant subsets of (X,B, m). What follows is quite classical, but we
recall it here for completeness. By definition of the conditional expectation,\

A

E(1U | I)(x) dm(x) = m(A ∩ U)

for every set A ∈ I. Applying this with A = {x ∈ X ; E(1U | I)(x) = 0},
which is T -invariant, we get m(A∩U) = 0, i.e. E(1U | I)(x) is positive (non-
zero) almost everywhere on U . Moreover, since E(1U | I) is a T -invariant
function, it is positive almost everywhere on the set

⋃
n≥0 T−n(U). Now our

assumption on the hypercyclic vectors comes into play: since

HC(T ) ⊆
⋃

n≥0

T−n(U)

and HC(T ) has measure 1,
⋃

n≥0T−n(U) has measure 1 too, and E(1U |I)(x)
is positive almost everywhere. Taking a countable basis (Up)p≥1 of open sets
in X, it is clear that m-almost every x is frequently hypercyclic for T .

The second step of the proof of Theorem 2.1 is the construction of a
suitable supercyclic vector for T : recall that x is supercyclic for T if the
scaled orbit {λTnx ; n ≥ 0, λ ∈ R/C} is dense in X.
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Lemma 3.2. Under the assumptions of Theorem 2.1, T admits a super-

cyclic vector x such that the two series
∑

n≥0

gn(ω)Tnx and
∑

n≥0

gn(ω)Snx

converge almost everywhere.

It will be convenient for the rest of the proof to write T−nx instead of
Snx for n ≥ 0, so as to be able to write

∑
n∈Z

gn(ω)Tnx, where (gn)n∈Z is a
double-sided sequence of independent standard Gaussian variables, instead
of

∑
n<0 gn(ω)Snx +

∑
n≥0 gn(ω)Tnx. But this does not mean in any way

that T is invertible.

Proof. By Lévy’s inequalities, the quantities

Ml = sup
N,M≥0

\
Ω

∥∥∥
N∑

n=−M

gn(ω)Tnxl

∥∥∥ dP(ω)

are finite for every l ≥ 1. Fix a sequence (al)l≥1 of non-zero complex numbers
such that the series

∑
l≥1 |al|Ml is convergent. We know already that ‖Tnxl‖

and ‖T−nxl‖ tend to zero as n tends to infinity. Using this, it is easy to
construct an increasing sequence (nk)k≥1 of integers such that the vectors

yr =
r∑

l=1

alT
−nlxl

have the following properties:

‖yr − yr−1‖ ≤
1

2r−1
for every r ≥ 2,(2)

∥∥∥∥
1

al
Tnlyr − xl

∥∥∥∥ ≤
1

2l
for every l ≤ r.(3)

Then x = limr→∞ yr =
∑∞

l=1 alT
−nlxl satisfies

∥∥∥∥
1

ar
Tnrx − xr

∥∥∥∥ ≤
1

2r

for every r ≥ 1, and x is a supercyclic vector for T . It remains to prove
that the series

∑
n≥0 gn(ω)Tnx and

∑
n>0 g−n(ω)T−nx converge almost ev-

erywhere: if q ≥ p > 0, then\
Ω

∥∥∥
q∑

n=p

gn(ω)Tnx
∥∥∥ dP(ω) ≤

l0∑

l=1

|al|
\
Ω

∥∥∥
q∑

n=p

gn(ω)Tn−nlx
∥∥∥ dP(ω)

+
∞∑

l=l0+1

|al|
\
Ω

∥∥∥
q∑

n=p

gn(ω)Tn−nlx
∥∥∥ dP(ω).
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By the definition of Ml, the second term in the right-hand bound is less
than

∞∑

l=l0+1

|al|Ml <
ε

2

if l0 is large enough, so there exists an n0 such that for q ≥ p ≥ n0,\
Ω

∥∥∥
q∑

n=p

gn(ω)Tnx
∥∥∥ dP(ω) < ε.

The convergence of the first random series clearly follows, and idem for the
second one.

The following proposition allows us to conclude the proof of Theorem 2.1:

Proposition 3.3. Suppose that T ∈ B(X) has a supercyclic vector x
such that the two series∑

n≥0

gn(ω)Tnx and
∑

n≥0

gn(ω)Snx

converge almost everywhere. Then T admits a non-degenerate invariant

Gaussian measure such that m(HC(T )) = 1.

Proof. If X is a real space, consider the function φ(ω) =
∑

n∈Z
gn(ω)Tnx,

and if X is complex the function φ(ω) =
∑

n∈Z
g̃n(ω)Tnx, where (g̃n) is

a sequence of independent standard complex Gaussian variables. For con-
venience, we will drop the tilde in the complex case and write φ(ω) =∑

n∈Z
gn(ω)Tnx, but it is to be remembered that the Gaussian variables

are real if X is real and complex if X is complex. This function φ is defined
almost everywhere on Ω, which makes it possible to consider the measure
m = φ(P) on (X,B):

m(A) = P({ω ∈ Ω ; φ(ω) ∈ A})

for every A ∈ B. Then m is clearly T -invariant, Gaussian, and its support
is the closed linear span of the vectors Tnx, n ∈ Z, which is the whole space
X, so m is non-degenerate.

Let ε > 0 and a ∈ K, K = R or C, and consider

Ωε,a = {ω ∈ Ω ; there exists a k ≥ 1 such that ‖T kφ(ω) − ax‖ < ε}.

It suffices to show that P(Ωε,a) = 1 for every ε > 0 and a ∈ K. Indeed, if
this is the case, then Ωε,a is contained in the set

{ω ∈ Ω ; there exists a k ≥ 1 such that ‖T kφ(ω) − aT rx‖ < ε‖T r‖}

for every r ≥ 1, so that each one of these sets is of probability 1. If (εp)p≥1

decreases to zero and (aq)q≥1 is a dense sequence of elements of K, then

Ω̃ =
⋂

p,q≥1 Ωεp,aq is a set of probability 1. Hence A = φ−1(Ω̃) is a set of
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m-measure 1, and using the fact that x is supercyclic, it is easy to see that
A consists of hypercyclic vectors for T . The conclusion follows.

Now for r ≥ 1, fix a positive integer Nr such that\
Ω

∥∥∥
∑

|n|>Nr

gn(ω)Tnx
∥∥∥ dP(ω) <

1

4r
,

and let δr > 0 be such that (2Nr +1)δr < 2−r. We denote by D
(r)
−Nr

, . . . , D
(r)
Nr

the following open disks of the complex plane (or of the real line if we are
working in R):

D
(r)
0 = {z ∈ C ; |z − a| · ‖x‖ < δr},

D(r)
n = {z ∈ C ; |z| · ‖Tnx‖ < δr} if 0 < |n| ≤ Nr.

For every ω ∈ Ω, denote by kr(ω) the smallest positive integer such that

(g−Nr−kr(ω), . . . , g−kr(ω), . . . gNr−kr(ω)) ∈ D
(r)
Nr

× · · · × D
(r)
0 × · · · × D

(r)
Nr

if such an integer exists, and kr(ω) = +∞ if not. Clearly kr is finite almost
everywhere. Let Θ = {ω ∈ Ω ; kr(ω) < +∞}. For n ∈ Z, we define the

random variables X
(r)
n on Θ by X

(r)
n (ω) = gn−kr(ω)(ω).

Fact 3.4. For |n| > Nr, the random variables X
(r)
n are independent and

identically distributed , their common law being that of g0 (or gn).

This fact follows easily from the independence of the variables gn. It can
also be seen as a (very simple) instance of the strong Markov property. We
have, for ω ∈ Θ,

T kr(ω)φ(ω) =
∑

n∈Z

gn(ω)Tn+kr(ω)x =
∑

n∈Z

X(r)
n (ω)Tnx,

so that ∥∥∥T kr(ω)φ(ω) −
∑

|n|≤Nr

X(r)
n (ω)Tnx

∥∥∥ =
∥∥∥

∑

|n|>Nr

X(r)
n (ω)Tnx

∥∥∥.

By Fact 3.4,\
Ω

∥∥∥T kr(ω)φ(ω) −
∑

|n|≤Nr

X(r)
n (ω)Tnx

∥∥∥ dP(ω)

=
\
Ω

∥∥∥
∑

|n|>Nr

gn(ω)Tnx
∥∥∥ dP(ω) <

1

4r
.

If

Ar =

{
ω ∈ Θ ;

∥∥∥T kr(ω)φ(ω) −
∑

|n|≤Nr

X(r)
n (ω)Tnx

∥∥∥ ≤
1

2r

}
,
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it follows that P(Ar) ≥ 1 − 2−r. Now for every ω ∈ Θ,
∥∥∥

∑

|n|≤Nr

X(r)
n (ω)Tnx − ax

∥∥∥ =
∥∥∥

∑

|n|≤Nr

gn−kr(ω)(ω)Tnx − ax
∥∥∥

≤ |g−kr(ω) − a| · ‖x‖ +
∑

0<|n|≤Nr

|gn−kr(ω)(ω)| · ‖Tnx‖

< (2Nr + 1)δr <
1

2r
.

Hence if ω is in Ar, then

‖T kr(ω)φ(ω) − ax‖ <
1

2r−1
,

and if r is large enough, then Ar is contained in Ωε,a. It follows that Ωε,a is
a set of probability one, and this finishes the proof.

Combining Propositions 3.1 and 3.3 and Lemma 3.2 proves Theorem 2.1.

4. Applications. The random Frequent Hypercyclicity Criterion of
Theorem 2.1 applies especially well to operators which have a perfectly span-
ning set of eigenvectors associated to unimodular eigenvalues with respect
to the normalized Lebesgue length measure on the unit circle:

Definition 4.1 ([1]). We say that T has a perfectly spanning set of
eigenvectors associated to unimodular eigenvalues with respect to the nor-
malized Lebesgue length measure on the unit circle if for every measurable
subset A of the unit circle T of Lebesgue measure equal to 1,

sp[ker(T − λ) ; λ ∈ A] = X.

Let (Ej)j≥1 be a sequence of σ-measurable eigenvector fields (i.e. σ-
measurable X-valued functions defined on T such that TEj(λ) = λEj(λ)
for every λ ∈ T), with ‖Ej‖∞,T ≤ 1 such that for every λ ∈ T, ker(T − λ) =
sp[Ej(λ) ; j ≥ 1] (for the existence of such eigenvector fields, see [2]). Using
the notation of [1] and [3], we denote again by Kj the operator from L2(T)
into X defined by

Kjf =

2π\
0

f(eiθ)Ej(e
iθ)

dθ

2π
for every f ∈ L2(T),

and by V the unitary operator of multiplication by λ on L2(T). The equality
TKj = KjV implies that for every j ≥ 1 and n ≥ 0,

Tn(Kjf) =

2π\
0

einθf(eiθ)Ej(e
iθ)

dθ

2π
·
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In many cases, the series
∑

n≥0 gn(ω)Tn(Kjf) is convergent for every j ≥ 1
and every smooth (for instance C∞) function f on T. This happens for
instance in the following situations:

• if X has type 2,
• if the Ej ’s are α-Hölderian for some α > 1/2,
• if X = Lp(µ) for some p less than 2, and the Ej ’s are α-Hölderian for

some α > 1/2 − 1/p′, where p′ is the conjugate exponent of p.

For the proof of these statements, see [3], and take into account the fact
that the regularity of the Ej ’s passes over to all the fEj ’s, where f is a C∞

function.

Let now (fr)r≥1 be a sequence of C∞ functions which is dense in L2(T),
and D be the countable set consisting of finite linear combinations of the
vectors Kjfr, j, r ≥ 1, with coefficients in Q + iQ. Order this set D as
a sequence (xl)l≥1: for each l ≥ 1, the series

∑
n≥0 gn(ω)Tnxl is conver-

gent almost everywhere. The map S is defined on the vectors Kjf as being
S(Kjf) = Kj(V

−1f), so that

Sn(Kjf) =

2π\
0

e−inθf(eiθ)Ej(e
iθ)

dθ

2π

and the series
∑

n≥0 gn(ω)Snxl converges almost everywhere as well in the
situations which were mentioned above. Moreover, the fact that the eigen-
vector fields Ej are perfectly spanning with respect to the length measure
implies that D is dense. So all the conditions of Theorem 2.1 are met, and
T is frequently hypercyclic.

This criterion can also be applied to operators which do not have any uni-
modular eigenvector, unlike the Frequent Hypercyclicity Criterion of Theo-
rem 1.2: if T satisfies the unconditional convergence assumptions of this last
theorem, then T is necessarily chaotic (see [6]), so the unimodular eigen-
vectors span a dense subspace of X (see [5]). If T is the “Kalisch-type”
operator on C0(T) of Example 4.2 of [3] (so named because it is a modifi-
cation of an example of Kalisch [11]), then all the series

∑
n≥0 gn(ω)TnKf

and
∑

n≥0 gn(ω)SnKf for f ∈ C∞(T) are convergent almost everywhere,
and Theorem 2.1 applies, while Theorem 1.2 does not.

Thus Theorem 2.1 establishes a connection between the two methods
for frequent hypercyclicity of [1], and shows that in the examples consid-
ered above, we do not need to prove that the operators are ergodic with
respect to a certain invariant Gaussian measure in order to show that they
are frequently hypercyclic. It is true that the proofs do not become fun-
damentally simpler: the main difficulty, namely to prove that the series∑

n≥0 gn(ω)TnKf and
∑

n≥0 gn(ω)SnKf for f ∈ C∞(T) are convergent
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almost everywhere, remains unchanged. But it is to be hoped that this
different method can shed some light on some open questions in frequent
hypercyclicity theory: we recall here one of these questions, mentioned al-
ready in [3]:

Question 4.2. If T has a perfectly spanning set of eigenvectors associ-

ated to unimodular eigenvalues, is T frequently hypercyclic?

The work of [3] seems to suggest that the answer to this question could
be affirmative, but without T necessarily admitting a non-degenerate invari-
ant Gaussian measure with respect to which it would be ergodic. Hence the
possible interest of criteria for frequent hypercyclicity not involving ergod-
icity.
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