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Variations on Bochner–Riesz multipliers in the plane

by

Daniele Debertol (Pisa)

Abstract. We consider the multiplier mµ defined for ξ ∈ R
2 by

mµ(ξ)
.
=

(
1 − ξ2

1 − ξ2
2

1 − ξ1

)µ

1D(ξ),

D denoting the open unit disk in R
2. Given p ∈ ]1,∞[, we show that the optimal range of

µ’s for which mµ is a Fourier multiplier on Lp is the same as for Bochner–Riesz means. The
key ingredient is a lemma about some modifications of Bochner–Riesz means inside convex
regions with smooth boundary and non-vanishing curvature, providing a more flexible
version of a result by Iosevich et al. [Publ. Mat. 46 (2002)]. As an application, we show
that the same characterization also holds true for the multiplier pµ(ξ)

.
= (ξ2 − ξ2

1)µ
+ξ
−µ
2 .

Finally, we briefly discuss the n-dimensional analogue of these results.

1. Introduction. Let us consider the two-parameter family of functions
given by

m(ν,µ)(ξ)
.
= (1 − ξ1)

ν−µ(1 − |ξ|2)µ
+.

For a fixed ν 6= 0, a complete characterization of the range of µ’s such that
m(ν,µ) belongs to Mp, the space of Fourier multipliers on Lp(R2), was given
in [5]. In particular, for strictly positive ν and 2 < p < ∞, it was shown
there that

(1.1) m(ν,µ) ∈Mp ⇔ µ > max{1/2 − 2/p, 0}.

In this paper we remove the restriction on ν. That is, since for ν < 0 the
function m(ν,µ) is clearly unbounded, we prove that (1.1) continues to hold
when ν = 0. Therefore, we shall only have to deal with m(0,µ) and we change
the notation accordingly, letting mµ

.
= m(0,µ),

mµ(ξ) = (1 − ξ1)
−µ(1 − |ξ|2)µ

+.

First of all, note that mµ has a discontinuity at (1, 0), so that it cannot be
an L1 multiplier for any choice of µ. Therefore, with this (trivial) exception,
(1.1) shows in fact that the more singular mµ exhibits the same (p, µ) re-
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gion of boundedness of the classical Bochner–Riesz means on the disk (see
e.g. [3]).

Further, mµ can actually be thought of as a model case of Bochner–Riesz
means with an additional singularity, for the factor (1 − ξ1)

δφ(ξ1), with δ
strictly positive and φ any compactly supported and sufficiently smooth
function, is an L1 multiplier.

In particular, this means that the case ν = 0 entails the one with ν > 0,
up to L1 results.

Thus, necessary conditions essentially being the same as the ones in [5],
we shall mainly concentrate on the “if” implication of (1.1). The approach
we use here relies on the idea that there is some kind of non-isotropic homo-
geneity underlying mµ, best reflected by the behaviour of the closely related

multiplier pµ(ξ)
.
=

(
ξ2 − ξ21

)µ

+
ξ−µ
2 . These considerations have already been

taken up in [5], where some evidence supported by [2] also suggested it was
quite natural to conjecture that at least (1.1) is the correct answer for the
“model case” pµ.

In point of fact, the strategy we adopt is the following: first, we apply
the slicing lemma of [8], which clearly has a flavour of homogeneity (but see
also the formulation given in [1]), to mµ. Since mµ has sufficient Lipschitz
regularity, this has the effect of reducing the problem to the uniform estimate
of a multiplier norm for these slices, whose main point is to make the worst
singularity at (1, 0) become harmless. After some preparation, Lemma 1.1
below will finally allow us to conclude.

Lemma 1.1. Let E be a convex symmetric body with non-empty interior

and non-vanishing curvature, and g a smooth, first-order defining function

for its boundary. Quantitatively , assume that

(1) the curvature k of ∂E is bounded below away from zero, k ≥ A1 > 0;
(2) g ∈ C∞

c (R2) is a concave function in a neighbourhood of E such that

∂E = E ∩ {g ≡ 0} and |∇g| ≥ A2 > 0 on ∂E;

(3) the spectral norm of the Hessian of g is bounded on E,

max{|λ| : λ an eigenvalue of Hg} ≤ A3.

Further , let µ > 0 and 4 ≤ p ≤ ∞. Then ‖gµ1E‖Mp
is finite if and only if

µ > 1/2 − 2/p, and in this case it only depends on the Aj’s, on a Schwartz

seminorm of g and on µ.

We remark that the core of Lemma 1.1 is the deep result [7, 1.1], which
however does not apply directly in our situation. The version provided here
extends both [7, 1.1] and [9, Thm. 1] under the additional assumption of non-
vanishing curvature of E. Moreover, in order to prove uniform estimates, we
need an explicit control over the geometric constants that occur in the proof.
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Note also that an n-dimensional analogue is available for Lemma 1.1,
whose conclusion is once more deduced from [7, 1.1].

In the last part of the paper, we give an application of Theorem 2.1 to
the case of pµ, showing that (1.1) was indeed the right guess, and we look
for a partial generalization of the above pattern to the n-dimensional setting
of the same problem.

Finally, I want to express my deep gratitude to Tony Carbery and Ful-
vio Ricci for the stimulating conversations they shared with me on these
subjects.

2. Main result. Our goal is to prove the next theorem. When µ = 0,
note that of course Fefferman’s result [6] applies.

Theorem 2.1. Let 1 ≤ p ≤ ∞, µ > 0. Then mµ is an Lp(R2) multiplier

if and only if p ∈ ]1,∞[ and µ > max{|2/p− 1| − 1/2, 0}.

Proof. According to the previous remarks, the operator with multiplier
mµ can never be bounded if p = 1, for any µ. The remaining necessary con-
ditions have to hold because of [5, 2.1], so that by duality and interpolation
we are only left with showing the positive part of (1.1) when p ≥ 4. To this
end, we need to quote a lemma which is a special case of Corollary 2.ii in [8].
But first, we have to introduce some notation.

Let us define a family of anisotropic dilations by

t · (ξ1, ξ2)
.
= (t ξ1, t

2ξ2), t > 0,

and let φ be any C∞ bump function whose support is a shell adapted to
these dilations.

Also, denote by Λα the usual non-homogeneous Lipschitz space of order
α > 0, and for a function m finally let

m(t)(ξ)
.
= m(t · ξ).

Lemma 2.2 ([8, Cor. 2]). Assume that m satisfies

(a) supt>0 ‖φm(t)‖Mq
<∞ for some finite q > 2,

(b) supt>0 ‖φm(t)‖Λα
<∞ for some α > 0.

Then m ∈Mp for those p such that |1/p− 1/2| < 1/2 − 1/q.

Actually, in order to apply Lemma 2.2, it is more convenient to com-
pose mµ with an affine transformation moving its singularity to the origin.
Since multiplier norms are invariant under such changes of coordinates, the
conclusion of Theorem 2.1 is unaffected.

Therefore, we consider the function

gµ(ξ)
.
= (2ξ2 − ξ22 − ξ21)

µ
+ξ

−µ
2 ,
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which also exhibits a nicer behaviour under the selected family of dilations.
Indeed, note that

gµ(t · ξ) = (2ξ2 − t2ξ22 − ξ21)
µ
+ξ

−µ
2 .

In particular, φ gµ(t ·) 6≡ 0 only for small t.

Now, let us start by showing that gµ satisfies part (b) of the hypothesis
of the lemma. A first trivial observation is that, since we may assume that t
is bounded above, there exist C∞ functions χ and ϑ, compactly supported
in the open upper half-plane and on the real line respectively, such that

(2.1) φ(ξ)gµ(t · ξ) = ((ϑ(y) yµ
+) ◦ ((2ξ2 − t2ξ22 − ξ21)χ(ξ)))φ(ξ)χ(ξ)ξ−µ

2 .

Further, it is easy to see that:

(i) ‖fg‖Λα
≤ ‖f‖Λα

‖g‖Λα
;

(ii) ‖f ◦ g‖Λα
≤ ‖f‖Λα

(1 + ‖g‖α
C1), 0 < α < 1.

In particular, (i) allows us to assume µ < 1.

Moreover, the C1 norms of χ(ξ)(2ξ2 − t2ξ22 − ξ21) are uniformly bounded
for t small, and the factor φ(ξ)χ(ξ) ξ−µ

2 is smooth and compactly supported.

Since ϑ(y)yµ
+ belongs to Λ2,∞

µ+1/2(R), by (4.12) in [5], and Λµ(R) contains

the latter space (see e.g. [10]), the claim follows by applying (i) and (ii) to
(2.1).

Therefore, it only remains to show that gµ satisfies part (a) of the lemma.
The condition in (1.1) being defined by a strict inequality, we may let q

.
= p.

As before, we can get rid of the singular factor ξ−µ
2 , which in fact is no

longer so once it is coupled with χ, for it boils down to a Schwartz function.
In the end, we are done if we can prove the uniform estimate

(2.2) sup
t≤C

‖φ(ξ)χ(ξ)(2ξ2 − t2ξ22 − ξ21)
µ
+‖Mp

<∞.

In view of Lemma 1.1, still to be proven, we can assume that C is as close
to zero as we wish. In this case, we can further decompose χ as χ1 +χ2 +χ3,
in such a way that χ1 + χ3 is an even function of ξ1, χ1 is supported in a
right half-plane, and the factor 2ξ2 − t2ξ22 − ξ21 is bounded below away from
zero independently of t on the support of χ2. Consequently,

‖φ(ξ)χ(ξ)(2ξ2 − t2ξ22 − ξ21)
µ
+‖Mp

≤ ‖φ‖M1
(2‖χ1(ξ)(2ξ2 − t2ξ22 − ξ21)

µ
+‖Mp

+ ‖χ2(ξ)(2ξ2 − t2ξ22 − ξ21)
µ‖M1

),

and the second summand is bounded uniformly in t, if t≪ 1, for so are the
Schwartz seminorms of every order of χ2(ξ)(2ξ2−t

2ξ22−ξ
2
1)

µ, by construction.

Therefore, (2.2) is established as soon as we prove

(2.3) sup
t≪1

‖χ1(ξ)(2ξ2 − t2ξ22 − ξ21)
µ
+‖Mp

<∞.
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Note that (2.3) closely resembles the kind of Bochner–Riesz means studied
in [9], for instance. Actually, the next step consists in replacing the “global”
factor 2ξ2 − t

2ξ22 − ξ
2
1 in (2.3) with a better localized one. More precisely, we

aim at producing functions ηt ∈ C∞
c (R2) for which

(2.4) χ1(ξ)(2ξ2 − t2ξ22 − ξ21) = χ1(ξ)ηt(ξ),

with the additional property that, after a suitable affine transformation, the
bounded connected component Et of {ηt ≥ 0} satisfies the hypotheses of
Lemma 1.1 uniformly in t.

Apart from the technicalities, what we do simply consists in replacing
the portions of the ellipses {2ξ2− t

2ξ22 −ξ
2
1 ≡ 0} inside suppχ1 with a family

of convex sets whose curvature and diameter are better behaved, and in
particular, uniformly bounded for t small.

That this is indeed possible can be shown as follows. Let first ψ, β be
two smooth functions on R, respectively supported in [−a,∞[ and [−2b, 2b]
for some strictly positive a, b, which will only depend on χ1, such that
{ψ, ψ(−·)} is a partition of unity and β ≡ 1 on [−b, b]. In addition, take a
rigid motion Rt of the plane for which Rt({2ξ2−t

2ξ22−ξ
2
1 ≡ 0}∩suppχ1) may

be expressed as the graph (γ(s), s) of a smooth function γ with γ(0) = 2a,
γ′(0) = 0. Then, if J denotes the reflection with respect to the origin,
Jξ

.
= −ξ, we can let

ηt(R
−1
t ξ)

.
= ψ(ξ1)β(ξ2)(2ξ2 − t2ξ22 − ξ21)(R

−1
t ξ)

+ ψ(−ξ1)β(ξ2)(2ξ2 − t2ξ22 − ξ21)(R
−1
t Jξ).

Since the hypotheses of Lemma 1.1 are invariant under rotations and trans-
lations, and the Hessian of ηt is negative definite where ηt is strictly positive,
the claim is established.

Thus, by (2.4) we obtain

‖χ1(ξ)(2ξ2 − t2ξ22 − ξ21)
µ
+‖Mp

≤ ‖χ1‖M1
‖ηµ

t 1Et
‖Mp

,

so that (2.3) and hence Theorem 2.1 are finally established once we prove
Lemma 1.1, which we do now:

Proof of Lemma 1.1. Let h denote the symmetric part of g, h(ξ)
.
=

(g(ξ) + g(−ξ))/2. By the mean value theorem, the absolute value of either
∂1g or ∂2g is bounded below by A2/2 on each ball of radius smaller than
A2/(8A3) centred at ξ ∈ ∂E. In particular, we find

|∂ig(ξ)| + |∂ig(−ξ)| = |∂ih(ξ) − ∂ih(−ξ)| ≤ 2A3|ξ|,

i = 1, 2, and therefore the minimum distance from ∂E to the origin is
bounded below by A2/(4A3). Note also that the diameter of E is not greater
than 4/A1, by convexity. Further, for ξ ∈ ∂E we have
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g(0) = h(0) =

0\
−1

ξ · ∇h(sξ) ds,

and hence, by the arbitrariness of ξ we obtain

2 g(0) ≥ |ξ| |∇h(−ξ)| |{s ∈ [−1, 0] : ξ · ∇h(sξ) ≥ ξ · ∇h(−ξ)/2}|,

and we may conclude that g(0) too is bounded below in terms of A2 and A3.
Thus, by concavity of g and a Taylor expansion with integral remainder we
have

(2.5) ξ · ∇g(−ξ) = g(0) −

1\
0

1\
0

s tξHg(−suξ)ξ du ds ≥ g(0)

for ξ on ∂E.
Now, let ̺ denote the Minkowski functional for E, that is, ̺ is homoge-

neous of degree 1 with respect to isotropic dilations and ̺ ≡ 1 on ∂E. By
Dini’s theorem, ̺ is smooth away from the origin, and

∇̺(ξ) = ∇g(ξ)/(ξ · ∇g(ξ))

on ∂E. Moreover, (2.5) implies that Schwartz seminorms of ̺ over compact
subsets of E \ {0} are controlled by Schwartz seminorms of g and by the
Aj ’s. Finally, letting ξ0

.
= ξ/̺(ξ), we arrive at

(2.6) |1 − ̺(ξ)| = |ξ − ξ0|/|ξ0| < 1/2

for ξ in U
.
= {ξ : d(ξ, ∂E) < A2/(8A3)}.

Now, since E is bounded, we may take a partition of unity β1, . . . , βN

of the circle in such a way that each βi is obtained by composing β1 with a
rotation and that their number N is bounded above by the Aj ’s. Let

β̃i(ξ)
.
= βi(ξ/|ξ|), ξ 6= 0;

then, for any i, at least one of ψ1(ξ)
.
= (ξ1, ̺(ξ)) and ψ2(ξ)

.
= (̺(ξ), ξ2) is a

coordinate patch on the support of β̃i, and in each case the corresponding
jacobian is bounded above and below by the Aj ’s and ‖g‖C1 . Let us work,
for instance, with ψ1 (the case of ψ2 may be treated similarly), and define
g̃
.
= g ◦ψ−1

1 . If we freeze ξ1, then a second-order Taylor expansion of g̃(ξ1, ·)
centred at ̺ = 1 gives us

g̃(ξ1, ̺) = (1 − ̺)
(
−∂̺g̃(ξ1, 1) + (1 − ̺)

1\
0

1\
0

s∂̺̺g̃(ξ1, 1 − su(1 − ̺)) du ds
)
,

and going back to the ξ = (ξ1, ξ2) variables yields

g(ξ) = (1 − ̺(ξ))
(
−ψ−1

1 (ξ1, 1) · ∇g(ψ−1
1 (ξ1, 1))(2.7)

+ (1 − ̺(ξ))

1\
0

1\
0

s ∂̺̺g̃(ξ1, 1 − su(1 − ̺(ξ))) du ds
)

= (1 − ̺(ξ)) gi(ξ).
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By (2.5), we can therefore select ε > 0 so small, only depending on Aj ’s
and on a suitable Schwartz seminorm of g, that ∂E +B(0, ε) ⊂ U and that
the factor gi in (2.7) be a strictly positive (and smooth) function bounded
below by the same quantities.

Now we are almost done: take a bump function ϕ0 ∈ C∞
c (R) whose

support is contained in [1− ε, 1+ ε], and let ϕ
.
= ϕ0 ◦̺. Then (1−ϕ)gµ1E is

a Schwartz function whose M1 norm merely depends on ε and on the other
desired constants, and we are left with

ϕgµ1E =
N∑

i=1

ϕ(1 − ̺)µ
+g

µ
i β̃i.

By this decomposition, it is finally easy to conclude that gµ1E is an Mp

multiplier if and only if (1 − ̺)µ
+ is, and therefore we can apply [7, 1.1].

Moreover, by examining their proof carefully, one can see that in the case of
non-vanishing curvature the multiplier norm of (1−̺)µ

+ depends exclusively
on the Aj ’s.

As a consequence of (2.3), the proof of Theorem 2.1 is also complete.

Note that when µ = 0, the proof of [6] can effortlessly be adapted in
order to obtain the following version of Lemma 1.1:

Remark 2.3. If E is a convex body with C2 boundary and non-vanish-
ing curvature, then 1E belongs to Mp if and only if p = 2.

Remark 2.4. The same characterizations of Theorem 2.1 and Remark
2.3 also hold for the multiplier pµ introduced before, according to whether
µ is strictly positive or µ = 0.

Indeed, positive results can be deduced by Theorem 2.1 via the same
argument used in [5]; for negative ones, p 6= 1 comes by discontinuity of the
multiplier, as before, and otherwise we can apply Remark 2.3 and Lemma 1.1
to a convex symmetric body sharing with the parabola a piece of boundary
away from the origin.

Finally, a few words about a possible way to generalize these results to
an n-dimensional setting.

In fact, thinking of the way multipliers of the formmµ first arose in [4, 5],
it seems natural to ask the same questions for the two families of multipliers
on R

n,
m(n)

µ (ξ)
.
= (1 − ξ1)

−µ(1 − ξ21 − · · · − ξ2n)µ
+

and
p(n)

µ (ξ)
.
= (ξn − ξ21 − · · · − ξ2n−1)

µ
+ξ

−µ
n .

Of course, what we obtain for n ≥ 3 is far from the full strength of the
2-dimensional characterization:
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Remark 2.5. Let n ≥ 3, p > 2. Then a necessary condition for m
(n)
µ to

be a Fourier multiplier on Lp(Rn) is that

(2.8) µ > max{n(1/2 − 1/p) − 1/2, 0}.

If p ≥ 4, condition (2.8) is also sufficient. In both cases, the same conclusion

holds for p
(n)
µ .

As a matter of fact, most of the proof of Theorem 2.1 can actually go
unchanged towards obtaining Remark 2.5.

Indeed, both Lemma 2.2 and Lemma 1.1 are n-dimensional by nature
(see again [8, Cor. 2] and [7, 1.1], respectively). However, the conclusion of
Lemma 1.1 which we may draw from Theorem 1.1 in [7] is now much weaker
than before: this is so because condition (2.8), which is necessary for every
p > 2, is still only sufficient for p ≥ 4, independently of n.

Since the critical exponent for [7, 1.1] is p = 2n/(n− 1), which is strictly
smaller than 4 as soon as n > 2, a corresponding gap is left open in Re-
mark 2.5.
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