ε-Kronecker and I_{0} sets in abelian groups, IV: interpolation by non-negative measures

by
Colin C. Graham (Vancouver) and Kathryn E. Hare (Waterloo)

Abstract

A subset E of a discrete abelian group is a "Fatou-Zygmund interpolation set" ($F Z I_{0}$ set) if every bounded Hermitian function on E is the restriction of the Fou-rier-Stieltjes transform of a discrete, non-negative measure.

We show that every infinite subset of a discrete abelian group contains an $F Z I_{0}$ set of the same cardinality (if the group is torsion free, a stronger interpolation property holds) and that ε-Kronecker sets are $F Z I_{0}$ (with that stronger interpolation property).

1. Introduction and summary of results. In this paper we continue $[6,7,10]$, where we studied I_{0} and ε-Kronecker sets (definitions are below) in discrete abelian groups Γ, with compact dual groups G. In particular, in [7], we showed that many I_{0} sets (including ε-Kronecker and Hadamard sets) had the property that every bounded function on them could be interpolated by the Fourier-Stieltjes transform of a discrete measure with arbitrarily small support.

In this paper we address the interpolation issue, but now ask that the interpolating measures be real or non-negative. Our main results show that such interpolation sets are plentiful, as is well known to be the case for other interpolation sets such as Sidon and I_{0} sets.

1.1. Definitions and main results

Definition 1. A function φ on a subset $E \subset \Gamma$ is $\operatorname{Hermitian}$ if $\varphi(\chi)=$ $\overline{\varphi\left(\chi^{-1}\right)}$ for all $\chi \in E$ with $\chi^{-1} \in E$.

Definition 2. Let $\varepsilon>0$. A set $E \subset \Gamma$ is:
(1) asymmetric if $\gamma \in E \cap E^{-1}$ implies $\gamma=\gamma^{-1}$, antisymmetric if $E \cap$ $E^{-1}=\emptyset$, and symmetric if $E=E^{-1} ;$

[^0](2) Sidon (resp. I_{0}) if every bounded function φ on E is the restriction of a Fourier-Stieltjes transform of a measure (resp. of a discrete measure) [19, 14];
(3) ε-Kronecker if for every function $\varphi: E \rightarrow \mathbb{T}$, there exists $x \in G$ such that $|\langle\chi, x\rangle-\varphi(\chi)|<\varepsilon$ for all $\chi \in E\left({ }^{1}\right)$;
(4) $R I_{0}$ (resp. $F Z I_{0}$) if every bounded Hermitian function φ on E is the restriction of a Fourier-Stieltjes transform of a real (resp. nonnegative real), discrete measure.

In each case but the first, we append " (U) " to the definition if the interpolating measures can be taken to be concentrated on the set $U \subset G$.

Definition 3. E is $F Z I_{0}(U)$ for all open U with bounded constants $\left(^{2}\right)$ if there is a constant K such that for each open U there is a finite set Δ such that for each bounded $\varphi: E \backslash \Delta \rightarrow \mathbb{C}$ there is a non-negative, discrete measure μ concentrated on U such that $\widehat{\mu}=\varphi$ on $E \backslash \Delta$ and $\|\mu\| \leq K$. We make analogous definitions for a set to be " $I_{0}(U)$ (or $R I_{0}(U)$) with bounded constants".

Item (4) of Definition 2 is new (but not unanticipatable), and it is with these classes of sets and their relations to the other classes that this paper is concerned.

Clearly $I_{0}(U)$ sets are $\operatorname{Sidon}(U)$ (the converse is shown to be not true in [17]), $F Z I_{0}(U)$ sets are $R I_{0}(U)$, and any asymmetric $R I_{0}(U)$ set is $I_{0}(U)$. Less trivially, we show here that a set E is $R I_{0}(U)$ if and only if $E \cup E^{-1}$ is $I_{0}(U)$, and hence there are I_{0} sets that are not $R I_{0}$ (see Thm. 2.5 and Example 2.8). The class of $F Z I_{0}$ sets is smaller again, as the singleton $\{\mathbf{0}\} \subset \mathbb{Z}$ is $R I_{0}$ but not $F Z I_{0}$. However, we do not know if E being $R I_{0}$ and the identity not in E implies E is $F Z I_{0}$. We also do not know if there are any non-trivial sets that are $I_{0}(U)$ with bounded constants that are not $F Z I_{0}$. Sidon sets in the dual of a connected group are $\operatorname{Sidon}(U)[3]$; such interpolation can also be done with non-negative measures (see Florek [1] who improves upon previous results and gives a Sidon set version of our $F Z I_{0}(U)$ results $)$.

The main contributions of this paper improve upon the previous existence theorem for I_{0} sets $[13,15]$, and are:
(1) Every infinite discrete abelian group Γ contains an $F Z I_{0}(U)$ set with bounded constants and of cardinality $\# \Gamma$ (Theorem 4.1).

[^1](2) Every infinite subset E of the discrete abelian group Γ contains an $F Z I_{0}$ set of the same cardinality as E (Theorem 4.4).
(3) If the dual G is connected (i.e., Γ is torsion free), then every infinite subset $E \subset \Gamma$ contains an $F Z I_{0}(U)$ set with bounded constants of the same cardinality (Theorem 4.6). (Connectedness cannot be dispensed with here; see Remark 4.5.)
The first sets of these types were the Hadamard sets $E=\left\{n_{j}\right\} \subset \mathbb{N}$, where $\inf n_{j+1} / n_{j} \geq q>1$. Hadamard sets with ratio q are known to be ε Kronecker for $\varepsilon>\left|1-e^{i \pi /(q-1)}\right|\left(\left[15\right.\right.$, Lem. 2.4(1)]) and $I_{0}(U)$ with bounded constants $\left({ }^{3}\right)$. Similar arguments can be used to show that they are $F Z I_{0}(U)$ with bounded constants. More generally, in Theorem 3.1 we prove that ε Kronecker sets are $F Z I_{0}(U)$ with bounded constants if $\varepsilon<\sqrt{2}$ and this fact is used in obtaining our main results.

The terminology $F Z$ (for Fatou-Zygmund set) was adapted from [16] where it was used to denote sets with the property that every bounded function on the set can be interpolated by a non-negative (but not necessarily discrete) measure. Examples include asymmetric Sidon sets in duals of connected groups [3]. The notion " $I_{0}(U)$ with bounded constants" appears in [7], where it gives some insight into why some sets are $I_{0}(U)$.

For non-abelian versions of our results, see [8]. For further characterizations of and union results for $R I_{0}$ and $F Z I_{0}$ sets, see [9].

2. Preliminaries

2.1. Notation. For a compact abelian group G, G_{d} denotes the corresponding group with the discrete topology. The Bohr compactification of Γ is denoted by $\bar{\Gamma}$. If $E \subset \Gamma, \bar{E}$ denotes the closure of E in $\bar{\Gamma}$. Our groups are written multiplicatively, except for \mathbb{Z} and \mathbb{R}, and $\mathbf{1}=\mathbf{1}_{\Gamma}$ denotes the identity of Γ except for \mathbb{Z}, \mathbb{R}, where $\mathbf{0}$ is used. We write $B\left(\ell^{\infty}(E)\right)$ for the unit ball of $\ell^{\infty}(E)$. We write $M_{\mathrm{d}}(U)$ for the discrete measures concentrated on $U \subseteq G$ and we let

$$
D(N, U)=\left\{\sum_{j=1}^{N} a_{j} \delta_{x_{j}}:\left|a_{j}\right| \leq 1, x_{j} \in U, 1 \leq j \leq N\right\}
$$

A superscript r or + on a space of measures refers to the real (respectively, positive) measures in that subset.

We have the following variation of a result in [7, Prop. 2.2].
Proposition 2.1. Let G be a compact group, U a σ-compact subset of G and $E \subset \Gamma$. The following are equivalent:

[^2](1) E is $R I_{0}(U)$ (resp. $F Z I_{0}(U)$).
(2) There is a constant N such that for all Hermitian $\varphi \in B\left(\ell^{\infty}(E)\right)$ there exists $\mu \in M_{\mathrm{d}}^{\mathrm{r}}(U)$ (resp. $M_{\mathrm{d}}^{+}(U)$) with $\|\mu\| \leq N$ and $\widehat{\mu}(\gamma)=$ $\varphi(\gamma)$ for all $\gamma \in E$.
(3) There exist $0<\varepsilon<1$ (equivalently, for every $0<\varepsilon<1$) and integer N such that for all Hermitian $\varphi \in B\left(\ell^{\infty}(E)\right)$ there exists $\mu \in M_{\mathrm{d}}^{\mathrm{r}}(U)\left(\right.$ resp. $\left.M_{\mathrm{d}}^{+}(U)\right)$ with $\|\mu\|_{M(G)} \leq N$ and $|\widehat{\mu}(\gamma)-\varphi(\gamma)|<\varepsilon$ for all $\gamma \in E$.
(4) There exists $0<\varepsilon<1$ (equivalently, for all $0<\varepsilon<1$) and N such that for all Hermitian $\phi \in B\left(l^{\infty}(E)\right)$ there is some $\mu \in D^{\mathrm{r}}(N, U)$ (resp. $\left.D^{+}(N, U)\right)$ with $|\widehat{\mu}(\gamma)-\phi(\gamma)|<\varepsilon$ for all $\gamma \in E$.
(5) There exists $0<\varepsilon<1$ (equivalently, for all $0<\varepsilon<1$) such that for all Hermitian $\varphi \in B\left(\ell^{\infty}(E)\right)$ there exists $\mu \in M_{\mathrm{d}}^{\mathrm{r}}(U)\left(\right.$ resp. $\left.M_{\mathrm{d}}^{+}(U)\right)$ with $|\widehat{\mu}(\gamma)-\varphi(\gamma)|<\varepsilon$ for all $\gamma \in E$.
Proof. $(2) \Rightarrow(1) \Rightarrow(5)$ and $(4) \Rightarrow(3)$ are trivial. The implication $(3) \Rightarrow(2)$ is an iteration argument which is essentially shown in [7]. A finite iteration argument shows the equivalences of "there exists" and "for all" in (3)-(5). We remark that for $R I_{0}(U)$ sets, the implication $(1) \Rightarrow(2)$ is a standard application of the open mapping theorem. It remains only to show $(5) \Rightarrow(4)$. We give the proof for the $F Z I_{0}(U)$ case.

There is no loss of generality in assuming E is asymmetric since a Hermitian function has a unique Hermitian extension from E to $E \cup E^{-1}$.

As U is σ-compact we can write $U=\bigcup_{n=1}^{\infty} V_{n}$, where V_{n} are compact, nested sets. Let $\mathbb{D}_{\gamma}=[-1,1]$ if $\gamma=\gamma^{-1}$ and $\mathbb{D}_{\gamma}=\{t \in \mathbb{C}:|t| \leq 1\}$ if $\gamma \neq \gamma^{-1}$. Let $\mathbb{D}_{E}=\prod_{\gamma \in E} \mathbb{D}_{\gamma}$. Set

$$
W_{n, k}=\left\{\phi \in \mathbb{D}_{E}: \exists \mu \in D^{+}\left(n, V_{k}\right) \text { with }|\widehat{\mu}(\gamma)-\phi(\gamma)| \leq \varepsilon / 2 \forall \gamma \in E\right\} .
$$

Given $\mu=\sum_{j=1}^{n} a_{j} \delta_{x_{j}}$ with $x_{j} \in U$, there exists k such that $x_{j} \in V_{k}$ for all $j=1, \ldots, n$. Hence

$$
D^{+}(n, U)=\bigcup_{k=1}^{\infty} D^{+}\left(n, V_{k}\right) .
$$

Using (5) with suitably small $\varepsilon>0$, we have $\bigcup_{n, k} W_{n, k}=\mathbb{D}_{E}$.
The closure of V_{k} ensures that $W_{n, k}$ is closed and hence the Baire category theorem implies that some $W_{n, k}$ has non-empty interior. If we let $W_{n}=\bigcup_{k} W_{n, k}$, it follows that some W_{n} has non-empty interior and therefore there is a finite set $F \subseteq E$ and a point $\left(z_{1}, \ldots, z_{|F|}\right)$ such that $\left(z_{1}, \ldots, z_{|F|}\right) \times$ $\mathbb{D}_{E \backslash F} \subseteq W_{n}$.

Consider the subset S of $l^{\infty}(E)$ consisting of the Hermitian elements which vanish off F. As F is finite, S is a finite-dimensional, real subspace. Take a basis of S, say e_{1}, \ldots, e_{l}, where $e_{j} \in B\left(l^{\infty}(E)\right)$. Since all norms are
comparable on a finite-dimensional space, there is some $c>0$ such that

$$
\left\|\sum b_{j} e_{j}\right\|_{l \infty} \geq c \sum\left|b_{j}\right| .
$$

Each $\pm e_{j}$ is Hermitian, so again by (5) we can obtain $\mu_{j}, \nu_{j} \in M_{\mathrm{d}}^{+}(U)$ such that

$$
\left|\widehat{\mu}_{j}(\gamma)-e_{j}(\gamma)\right|<c \varepsilon / 4 n, \quad\left|\widehat{\nu}_{j}(\gamma)-\left(-e_{j}\right)(\gamma)\right|<c \varepsilon / 4 n
$$

for all $\gamma \in E$. By taking suitably large partial sums we can assume there exists some m such that $\mu_{j}, \nu_{j} \in D^{+}(m, U)$ for all j.

Let $\phi \in B\left(l^{\infty}(E)\right)$ be Hermitian. Since ϕ coincides on $E \backslash F$ with an element of W_{n}, we can find $\mu \in D^{+}(n, U)$ such that $|\widehat{\mu}(\gamma)-\phi(\gamma)| \leq \varepsilon / 2$ for all $\gamma \in E \backslash F$. As μ is a positive measure and E is asymmetric, $\left.(\phi-\widehat{\mu})\right|_{F}$ (extended by 0 off F) belongs to S and therefore equals $\sum b_{j} e_{j}$ for some b_{j} real. Write $b_{j}=b_{j}^{+}-b_{j}^{-}$where $b_{j}^{ \pm} \geq 0$. Notice

$$
c \sum\left|b_{j}\right| \leq\left\|\left.(\phi-\widehat{\mu})\right|_{F}\right\|_{l^{\infty}} \leq 1+\|\mu\|_{M(U)} \leq 2 n
$$

For $\gamma \in E$,

$$
\begin{aligned}
\mid \phi-\widehat{\mu} & -\left(\sum\left(b_{j}^{+} \widehat{\mu}_{j}+b_{j}^{-} \widehat{\nu}_{j}\right)\right)(\gamma) \mid \\
& =|(\phi-\widehat{\mu})| E \backslash F+\sum\left(b_{j}^{+}\left(e_{j}-\widehat{\mu}_{j}\right)+b_{j}^{-}\left(-e_{j}-\widehat{\nu}_{j}\right)\right) \mid \\
& \leq \sup _{\gamma \in E \backslash F}|(\phi-\widehat{\mu})(\gamma)|+\sup _{\gamma \in E}\left|\left(\sum\left(b_{j}^{+}\left(e_{j}-\widehat{\mu}_{j}\right)+b_{j}^{-}\left(-e_{j}-\widehat{\nu}_{j}\right)\right)\right)(\gamma)\right| \\
& \leq \frac{\varepsilon}{2}+\frac{c \varepsilon}{4 n} \sum\left|b_{j}\right| \leq \varepsilon .
\end{aligned}
$$

Finally, we note that

$$
\mu+\sum b_{j}^{+} \mu_{j}+\sum b_{j}^{-} \nu_{j} \in D^{+}(N, U)
$$

with $N=n+m \operatorname{dim} F$, and as N is independent of the choice of ϕ this completes the proof.

REmark 2.2. A similar Baire category theorem argument will show that $E \subseteq \Gamma$ is $I_{0}(U)$ if there exists some $\varepsilon>0$ such that for every bounded ϕ on E there is a discrete measure μ, concentrated on U, such that $|\widehat{\mu}(\gamma)-\varphi(\gamma)|<\varepsilon$ for all $\gamma \in E$. This improves [7] where it was shown that such a set E is $I_{0}\left(U^{2}\right)$.

Remark 2.3. Proposition 2.1(3) implies that ε-Kronecker sets with $\varepsilon<1$ are $F Z I_{0}$. We will show in Theorem 3.1 that this is true whenever $\varepsilon<\sqrt{2}$ and that such sets are even $F Z I_{0}(U)$ with bounded constants.

It is a classical result that I_{0} sets are characterized by having the property that ± 1-valued E-functions have continuous extensions to $\bar{\Gamma}$. A similar result holds for $R I_{0}(U)$ and $F Z I_{0}(U)$ sets, as we show in Proposition 2.4 below.

Note that a set is $I_{0}(U), R I_{0}(U)$ or $F Z I_{0}(U)$, if and only if the same is true for any translate of U, so there is no loss of generality in assuming U is a neighbourhood of the identity.

Proposition 2.4. Let $0<\varepsilon<1, E \subset \Gamma$ be asymmetric, and $U \subset G$ a symmetric, compact neighbourhood of the identity. Let $E_{2}=\{\chi \in E$: $\left.\chi^{2}=\mathbf{1}\right\}$. Suppose that for each pair of Hermitian functions $r: E \rightarrow\{ \pm 1\}$ and $s: E \backslash E_{2} \rightarrow\{ \pm i\}$ there are measures $\mu_{1}, \mu_{2} \in M_{\mathrm{d}}^{\mathrm{r}}(U)\left(\right.$ resp.$\left.\in M_{\mathrm{d}}^{+}(U)\right)$ such that $\left|\widehat{\mu}_{1}(\chi)-r(\chi)\right|<\varepsilon$ for all $\chi \in E$ and $\left|\widehat{\mu}_{2}(\chi)-s(\chi)\right|<\varepsilon$ for all $\chi \in E \backslash E_{2}$. Then E is $R I_{0}\left(U^{2}\right)$ (resp. $F Z I_{0}\left(U^{2}\right)$).

Proof. We give the proof in the $F Z I_{0}(U)$ case. Let $0<\varepsilon_{0}<1 / 2$. First, suppose $\varphi \in B\left(\ell^{\infty}\left(E \backslash E_{2}\right)\right)$ is imaginary and Hermitian. Put

$$
s(\chi)= \begin{cases}i & \text { if } \Im \varphi(\chi) \geq 0 \\ -i & \text { if } \Im \varphi(\chi)<0\end{cases}
$$

Since E is asymmetric, s is Hermitian. Thus, we can obtain μ_{2} as in the hypothesis. Then

$$
\left|\frac{\widehat{\mu_{2}}(\chi)}{2}-\varphi(\chi)\right|<\frac{1+\varepsilon}{2} \quad \text { for all } \chi \in E \backslash E_{2}
$$

Replacing φ with $\varphi-i \Im \widehat{\mu}_{2} / 2$, and iterating this process, we obtain $\nu_{2} \in$ $M_{\mathrm{d}}^{+}(U)$ such that

$$
\left|\widehat{\nu}_{2}-\varphi\right|<\varepsilon_{0} \quad \text { on } E \backslash E_{2} .
$$

Now consider the general case, $\varphi(\chi)=a_{\chi}+b_{\chi} i$ on E. We find ν_{2} as above for $i \Im \varphi$ on $E \backslash E_{2}$. We note that $\varphi-\widehat{\nu}_{2}$ is Hermitian on E since ν_{2} is a real measure. We set

$$
r(\chi)= \begin{cases}1 & \text { if } \Re \varphi(\chi)-\Re \widehat{\nu}_{2}(\chi) \geq 0 \\ -1 & \text { if } \Re \varphi(\chi)-\Re \widehat{\nu}_{2}(\chi)<0\end{cases}
$$

for $\chi \in E$. Obtain μ_{1} as in the hypothesis. Then $\mu_{1}+\widetilde{\mu}_{1} \in M_{\mathrm{d}}^{+}(U)\left(^{4}\right)$. Also $\widehat{\mu}_{1}(\chi)+\left(\widetilde{\mu}_{1}\right)^{\wedge}(\chi)=2 \Re \widehat{\mu}_{1}(\chi)$. Hence

$$
\left|\frac{\widehat{\mu}_{1}(\chi)+\left(\widetilde{\mu}_{1}\right)^{\wedge}(\chi)}{4}-\left(\Re \varphi(\chi)-\Re \widehat{\nu}_{2}(\chi)\right)\right|<\frac{1+\varepsilon}{2} \quad \text { for all } \chi \in E
$$

As $\widehat{\mu}_{1}+\left(\widetilde{\mu}_{1}\right)^{\wedge}$ is real-valued, we iterate as before, and thus we find a $\nu_{1} \in$ $M_{\mathrm{d}}^{+}(U)$ with a real-valued Fourier transform and satisfying

$$
\left|\widehat{\nu}_{1}(\chi)-\left(\Re \varphi(\chi)-\Re \widehat{\nu}_{2}(\chi)\right)\right|<\varepsilon_{0}
$$

Then $\left|\widehat{\nu}_{1}(\chi)+\widehat{\nu}_{2}(\chi)-\varphi(\chi)\right|<2 \varepsilon_{0}<1$.
We appeal to Proposition 2.1 to complete the argument.

[^3]Of course, E is $R I_{0}(U)$ (or $F Z I_{0}(U)$) if and only if $E \cup E^{-1}$ is $R I_{0}(U)$ $\left(F Z I_{0}(U)\right)$, as the transform of a real measure is Hermitian. More is true, however.

Theorem 2.5. Let $E \subset \Gamma$ and $U \subset G$ be a symmetric neighbourhood of the identity. Then E is $R I_{0}(U)$ if and only if $E \cup E^{-1}$ is $I_{0}(U)$.

Proof. Suppose that E is $R I_{0}(U)$; we must show that $E \cup E^{-1}$ is $I_{0}(U)$. The argument is an adaptation of [7, proof of 2.11]. The novelty in the adaptation is to use "anti-Hermitian" functions: $\nu(\gamma)=-\nu\left(\gamma^{-1}\right)$ for all relevant γ and to decompose each bounded real-valued $\varphi: E \cup E^{-1} \rightarrow \mathbb{C}$ into the sum of Hermitian and anti-Hermitian functions, which will be the transform of measures of the form $\frac{1}{2}(\mu+\widetilde{\mu})$ and $\frac{1}{2} i(\nu-\widetilde{\nu})$, respectively, where $\mu, \nu \in M_{\mathrm{d}}^{\mathrm{r}}(U)$. We omit further details.

Now suppose that $E \cup E^{-1}$ is $I_{0}(U)$. Let $\varphi: E \rightarrow \mathbb{C}$ be the bounded Hermitian function to be interpolated on E by an element of $M_{\mathrm{d}}^{\mathrm{r}}(U)$. Extend φ to $E^{-1} \backslash E$ by

$$
\varphi\left(\gamma^{-1}\right)=\overline{\varphi(\gamma)}, \quad \gamma \in E \backslash E^{-1}
$$

Let $\mu \in M_{\mathrm{d}}(U)$ be such that $\widehat{\mu}(\gamma)=\varphi(\gamma)$ for $\gamma \in E \cup E^{-1}$. Such a μ exists because $E \cup E^{-1}$ is $I_{0}(U)$. Let $\nu=\frac{1}{2}(\mu+\bar{\mu})$. Then for $\gamma \in E, \widehat{\nu}(\gamma)=$ $\frac{1}{2}\left(\widehat{\mu}(\gamma)+\overline{\widehat{\mu}\left(\gamma^{-1}\right)}\right)=\varphi(\gamma)$, so E is indeed $R I_{0}(U)$.

Corollary 2.6. Suppose E, F are $R I_{0}$ sets and that $E \cup E^{-1}$ and $F \cup$ F^{-1} have disjoint closures in $\bar{\Gamma}$. Then $E \cup F$ is $R I_{0}$.

Proof. $E \cup E^{-1}$ and $F \cup F^{-1}$ are I_{0} sets with disjoint closures. Hence their union is I_{0} by [6, Lem. 2.1].

Corollary 2.7. Let G be a connected group and suppose E is $R I_{0}(U)$. If $\lambda \in \Gamma$, then for any neighbourhood V of the identity of $G, E \cup\{\lambda\}$ is $R I_{0}(U \cdot V)$.

Proof. This follows since the union of an $I_{0}(U)$ set and a finite set is $I_{0}(U \cdot V)[7,2.7]$.

The characterization of $R I_{0}$ given in the theorem can be used to prove the class of $R I_{0}$ sets is strictly smaller than the I_{0} sets:

Example 2.8 (A set in \mathbb{Z} that is $I_{0}(U)$ for all open U, but not $R I_{0}$). Let $E_{1}=\left\{10^{j}+5 j+1: j \geq 1\right\}$ and $E_{2}=\left\{10^{j}+1: j \geq 1\right\}$. Then $E_{1} \cup E_{2}$ is not $I_{0}\left[17\right.$, p. 178]. Let $E=E_{1} \cup-E_{2}$. Then $E \cup-E$ is not I_{0} and so E is not $R I_{0}$ by the theorem.

Now suppose $U \supseteq\left(-4 \pi / 10^{N}, 4 \pi / 10^{N}\right)$ and put $b=\pi / 10^{N}$. Except for a finite number of $n \in E$ (say, for all $n \in E \backslash \Delta$),

$$
\widehat{\delta}_{b}(n)= \begin{cases}e^{-i \pi / 10^{N}} & \text { if } n=-10^{j}-1 \\ e^{i \pi(5 j+1) / 10^{N}} & \text { if } n=10^{j}+5 j+1\end{cases}
$$

Put $\nu=e^{i \pi / 10^{N}} \delta_{b}-\delta_{0}$. Then $\widehat{\nu}=0$ on $E_{2} \backslash \Delta,|\widehat{\nu}| \geq\left|1-e^{i \pi / 10^{N}}\right|>0$ on $E_{1} \backslash \Delta$ and $\nu \in M_{\mathrm{d}}\left(-2 \pi / 10^{N}, 2 \pi / 10^{N}\right)$.

Let $\varphi \in \ell^{\infty}(E)$. As E_{1} and E_{2} are ε-Kronecker sets for some $\varepsilon<1$, the tail of each is $I_{0}\left(-\pi / 10^{N}, \pi / 10^{N}\right)$ [7, Thm. 3.2]. Since $\widehat{\nu}$ is bounded away from 0 on $E_{1} \backslash \Delta$ we can find $\omega_{1}, \omega_{2} \in M_{\mathrm{d}}\left(-\pi / 10^{N}, \pi / 10^{N}\right)$ such that $\widehat{\omega}_{1}=\varphi$ on $E_{2} \backslash \Delta(\Delta$ renamed as necessary $)$ and

$$
\widehat{\omega}_{2}=\left(\varphi-\widehat{\omega}_{1}\right) / \widehat{\nu} \quad \text { on } E_{1} \backslash \Delta
$$

Take $\omega=\omega_{1}+\omega_{2} * \nu$. Then $\omega \in M_{\mathrm{d}}\left(-3 \pi / 10^{N}, 3 \pi / 10^{N}\right)$ and interpolates φ on $E \backslash \Delta$. Now apply [7, 2.8] to conclude that E is $I_{0}(U)$.

Corollary 2.7 implies that a set is $R I_{0}(U)$ for all open sets U if it is $R I_{0}(U)$ with bounded constants (in the connected case). In contrast, no non-empty set is $F Z I_{0}(U)$ for all open sets U since even singletons are not $F Z I_{0}(U)$ for small neighbourhoods of the identity.

However, the class of $F Z I_{0}$ sets is closed under the adjunction of finite sets.

Proposition 2.9. Suppose E is $F Z I_{0}$ and F is a finite set not containing 1. Then $E \cup F$ is $F Z I_{0}$.

Proof. There is no loss in assuming F is a singleton $\{\gamma\}$ and $\gamma, \gamma^{-1} \notin E$. As $\bar{E} \cap \Gamma=E$ (see [18]), there is a (Bohr) closed neighbourhood V of $\mathbf{1}$ in $\bar{\Gamma}$ such that $E \cap V \cdot V^{-1}=\emptyset$ and $E \cap\left\{\gamma, \gamma^{-1}\right\} V \cdot V^{-1}=\emptyset$. Put

$$
f=\frac{1}{2 m(V)}\left(1_{\gamma V \cup V} * 1_{\gamma^{-1} V^{-1} \cup V^{-1}}\right)
$$

Then $f(\gamma) \geq 1 / 2$ and $f=0$ on E. As f is positive definite, there exists $\mu \in M_{\mathrm{d}}^{+}(G)$ such that $\widehat{\mu}=f$ on Γ. It follows easily that $E \cup\{\gamma\}$ is $F Z I_{0}$.

3. $F Z I_{0}(U)$ with bounded constants

3.1. ε-Kronecker sets are $F Z I_{0}(U)$ with bounded constants

Theorem 3.1. Let $0<\varepsilon<\sqrt{2}$ and let E be an ε-Kronecker subset of the discrete abelian group Γ. Let $U \subset G$ be open. Then E is $F Z I_{0}(U)$ with bounded constants.

Proof. Let U be a neighbourhood of the identity. Let $W \subset U$ be a symmetric neighbourhood such that $W^{2} \subset U$. By [7, Thm. 3.2], for any (fixed) $\varepsilon^{\prime}>\varepsilon$ there is a finite subset Δ such that $E \backslash \Delta$ is ε^{\prime} - $\operatorname{Kronecker}(W)$. Choose $\delta=\delta\left(\varepsilon^{\prime}\right) \in(0,1)$ such that $\left|\left\langle\gamma, x_{0}\right\rangle-1\right|<\varepsilon^{\prime}$ implies $\Re\left\langle\gamma, x_{0}\right\rangle \geq \delta$ and pick $b>0$ such that $b+\sqrt{1-\delta^{2}}<1$.

Let $\varphi \in B\left(\ell^{\infty}(E \backslash \Delta)\right)$, say $\varphi(\gamma)=a_{\gamma}+i b_{\gamma}$, for a_{γ}, b_{γ} real and $\gamma \in E \backslash \Delta$. Let $x_{0} \in W$ satisfy

$$
\begin{array}{ll}
\left|\left\langle\gamma, x_{0}\right\rangle-1\right|<\varepsilon^{\prime} & \text { if } a_{\gamma} \in[b, 1] \\
\left|\left\langle\gamma, x_{0}\right\rangle+1\right|<\varepsilon^{\prime} & \text { if } a_{\gamma} \in[-1,-b] \\
\left|\left\langle\gamma, x_{0}\right\rangle-i\right|<\varepsilon^{\prime} & \text { if } a_{\gamma} \in(-b, b)
\end{array}
$$

Then

$$
\left|a_{\gamma}-\Re\left\langle\gamma, x_{0}\right\rangle\right|<\max \left(1-\delta, 1-b, b+\sqrt{1-\delta^{2}}\right)=\varepsilon_{0}<1
$$

By iterating we can interpolate any real sequence on $E \backslash \Delta$ with the FourierStieltjes transform of some $\mu \in M_{\mathrm{d}}^{+}(W)$.

To interpolate $\left\{i b_{\gamma}\right\}_{\gamma \in E \backslash \Delta}$ we argue as follows: Let $x_{1} \in W$ be such that

$$
\left|\left\langle\gamma, x_{1}\right\rangle-r_{\gamma} i\right|<\varepsilon \quad \text { for all } \gamma \in E \backslash \Delta
$$

where $r_{\gamma}=1$ if $b_{\gamma} \geq 0$ and $r_{\gamma}=-1$ if $b_{\gamma}<0$. By the previous part of the proof there exists $\mu \in M_{\mathrm{d}}^{+}(W)$ such that $\widehat{\mu}(\gamma)=-\Re\left\langle\gamma, x_{1}\right\rangle$ for $\gamma \in E \backslash \Delta$. For such γ,

$$
\left|\frac{\widehat{\mu+\delta_{x_{1}}}(\gamma)}{2}-i b_{\gamma}\right|=\left|\frac{\Im\left\langle\gamma, x_{1}\right\rangle}{2}-b_{\gamma}\right|<1-\frac{\delta}{2}
$$

where δ is as above.
Consequently, if $\sigma \in M_{\mathrm{d}}^{+}(U)$ is a measure interpolating a_{γ}, then

$$
\nu=\sigma+\left(\mu+\delta_{x_{1}}\right) / 2 \in M_{\mathrm{d}}^{+}(U)
$$

satisfies $|\widehat{\nu}(\gamma)-\varphi(\gamma)|<1-\delta / 2$. Now iterate. It is clear that the constant of interpolation depends only on ε. ■

The following result should be contrasted with Example 5.1, which shows $F Z I_{0}$ and $R I_{0}$ sets are not preserved under translation.

Proposition 3.2. Let E be an ε-Kronecker subset of the discrete abelian group Γ. Then for all γ and $\varepsilon^{\prime}>\varepsilon$, there exists a finite set Δ such that $(E \backslash \Delta) \cdot \gamma$ is ε^{\prime}-Kronecker and $F Z I_{0}(U)$ with bounded constants.

Proof. Choose a neighbourhood U of the identity such that $\gamma \approx 1$ on U. There exists Δ such that $E \backslash \Delta$ is $\varepsilon^{\prime}-\operatorname{Kronecker}(U)$; thus we can approximate any $\varphi \in B\left(\ell^{\infty}((E \backslash \Delta) \cdot \gamma)\right)$ with $\widehat{\delta}_{x}$, where $x \in U$.
3.2. Other $F Z I_{0}(U)$ sets with bounded constants. In this subsection we collect examples of $F Z I_{0}(U)$ sets in non-classical abelian groups. These results will be used for the general existence theorems in Section 5.

Proposition 3.3. Let $\varepsilon>0$ and let $E=\left\{\chi_{n}\right\}$ be an infinite sequence in the (discrete group of) rationals, \mathbb{Q}. Then E has an infinite ε-Kronecker subset and hence a subset that is $F Z I_{0}(U)$ with bounded constants.

Proof. Fix q such that $1+\pi / \varepsilon<q$.

Case 1: $\left\{\chi_{n}\right\}$ is unbounded in \mathbb{R}. Then we can find a subsequence (not renamed) such that $\chi_{n+1} / \chi_{n}>q$ for all n. Such a set is ε-Kronecker by [15, $2.4(1)]$.

Case 2: The $\left\{\chi_{n}\right\}$ accumulate at $r \in \mathbb{R}$ in the usual topology of \mathbb{R}. Then we can find a subsequence (not renamed) such that $\left(\chi_{n+1}-r\right) /\left(\chi_{n}-r\right)<$ $1 / 3 q$. Obviously all finite portions of such a set are $\varepsilon / 3-$ Kronecker. By taking elements in the dual of \mathbb{R}_{d}, the Bohr compactification of \mathbb{R}, we see that $\left\{\chi_{n}-r: n \geq 1\right\}$ is $\varepsilon / 2$-Kronecker. Given a 0-neighbourhood U there is some integer N such that $F=\left\{\chi_{n}\right\}_{n=N}^{\infty}$ is $2 \varepsilon / 3$ - $\operatorname{Kronecker}(U)$. But then F is ε-Kronecker in \mathbb{Q}, and hence $F Z I_{0}(U)$ with bounded constants by Theorem 3.1.

For a prime $p, \mathcal{C}\left(p^{\infty}\right)$ denotes the discrete group generated by all elements of the form $\chi=e^{2 \pi i k / p^{n}} \in \mathbb{T}$, where $1 \leq k<p$ and $n \geq 1$, i.e., the infinite p-subgroup of \mathbb{T}_{d} consisting of all elements whose orders are a power of p. Integers $\ell \in \mathbb{Z}$ give rise to characters on $\mathcal{C}\left(p^{\infty}\right):\langle\varrho, \ell\rangle=e^{2 \pi i k \ell / p^{n}}$, where $\varrho=e^{2 \pi i k / p^{n}}$. Of course, any element of the coset $\ell+p^{n} \mathbb{Z}$ gives rise to the same value.

Proposition 3.4. Let $\varepsilon>0$ and let $E=\left\{\gamma_{j}\right\}$ be an infinite sequence in $\mathcal{C}\left(p^{\infty}\right)$. Then E has an infinite ε-Kronecker subset and hence a subset that is $F Z I_{0}(U)$ with bounded constants.

Proof. Let $1 \leq C<\infty$ be such that $\left|1-e^{\pi i / p^{C}}\right|<\varepsilon / 2$. By passing to a subsequence χ_{j} of the γ_{j}, we may assume $\chi_{j}=e^{2 \pi i k_{j} / p^{n_{j}}}$ where $n_{1} \geq C$ and $n_{j+1}-n_{j} \geq C$ for $j \geq 1$.

Let $\varphi:\left\{\chi_{j}\right\} \rightarrow \mathbb{T}$ be given. Then the possible values of a character at χ_{1} are $e^{2 \pi i k_{1} \ell / p^{n_{1}}}$. Since $1 \leq k_{1} \leq p$, those values are spaced equidistantly on \mathbb{T} with distance between them equal to $\left|1-e^{2 \pi i k_{1} \ell / p^{n_{1}}}\right|<\varepsilon / 2$, so one of them is at most $\left|1-e^{\pi i / p^{n_{1}}}\right|<\varepsilon / 2$ from $\varphi\left(\chi_{1}\right)$. Choose $\ell_{1} \in \mathbb{Z}$ such that

$$
\left|e^{2 \pi i k_{1} \ell_{1} / p^{n_{1}}}-\varphi\left(\chi_{1}\right)\right|<\varepsilon / 2
$$

The last inequality does not change if we replace ℓ_{1} by an element of the $\operatorname{coset} \ell_{1}+p^{n_{1}} \mathbb{Z}$.

Now consider $e^{2 \pi i k_{2}\left(\ell_{1}+\ell_{2} p^{n_{1}}\right) / p^{n_{2}}}$ for $\ell_{2} \in \mathbb{Z}$. Those quantities are equally spaced on the unit circle at spacing of $\left|1-e^{\pi i k_{2} / p^{n_{2}-n_{1}}}\right|$. Since $n_{2}-n_{1} \geq C$, the distance between those values is less than $\varepsilon / 2$, so we can find ℓ_{2} such that

$$
\left|e^{2 \pi i k_{2}\left(\ell_{1}+\ell_{2} p^{n_{1}}\right) / p^{n_{2}}}-\varphi\left(\chi_{2}\right)\right|<\varepsilon / 2
$$

Those values do not change if we replace ℓ_{2} by an element of $\ell_{2}+p^{n_{2}} \mathbb{Z}$.
Continuing in this manner, we obtain a sequence in \mathbb{Z} which does the correct interpolation on each finite subset of E. So any accumulation point
in the dual of $\mathcal{C}\left(p^{\infty}\right)$ will interpolate φ with error less than or equal to $\varepsilon / 2$ and from this we may conclude that E is ε-Kronecker.

We recall that a subset E of an abelian group L is called independent if $N \geq 1, x_{1}, \ldots, x_{N} \in E, n_{1}, \ldots, n_{N} \in \mathbb{Z}$ and $\sum_{j=1}^{N} x_{j}^{n_{j}}=\mathbf{1}_{L}$ imply $x_{j}^{n_{j}}=\mathbf{1}_{L}$ for $1 \leq j \leq N$.

Proposition 3.5. Let $E \subset \Gamma$ be independent. Then E is $F Z I_{0}(U)$ for all open U with bounded constants.

Proof. Let Λ be the subgroup of Γ generated by E. For each $\chi \in E$, let Λ_{χ} be the cyclic subgroup of Γ generated by χ, and H_{χ} be the dual group of Λ_{χ}. The independence of E implies that $\Lambda=\bigoplus_{\chi \in E} \Lambda_{\chi}$ and that the dual group, H, of Λ is the direct product $H=\prod_{\chi \in E} H_{\chi}$. We may assume that $\Gamma=\Lambda$.

Let $U \subset G$ be any neighbourhood of the identity. Then there exists a finite set $\Delta \subset E$ such that $\prod_{\chi \in E \backslash \Delta} H_{\chi} \subset U$. Let $F \subset E \backslash \Delta$ be the elements of order 2 (if any). Without loss of generality, we may assume that $U=\{1\} \times U_{0} \times U_{1}$, where $U_{0}=\prod_{\chi \in F} H_{\chi}$ and $U_{1}=\prod_{\chi \in E \backslash(\Delta \cup F)} H_{\chi}$.

Let $\varphi: E \backslash \Delta \rightarrow \mathbb{T}$ be Hermitian. If F is non-empty, then the independence of F and the fact that φ takes only the values ± 1 on F imply that for each $\chi \in F$ there exists $x_{\chi} \in H_{\chi}$ with $\left\langle\chi, x_{\chi}\right\rangle=\varphi(\chi)$. Let $x=\prod_{\chi \in F \backslash \Delta} x_{\chi}$ if F is non-empty, and let x be the identity of G otherwise.

For each $\chi \in E \backslash F$, there exists x_{χ} such that $\left|\left\langle\chi, x_{\chi}\right\rangle-\varphi(\chi)\right| \leq 1$, by the definition of H_{χ}. (The worst case occurs if χ has order 3, and otherwise the above difference is at most $\sqrt{2} / 2$.) This shows that an independent set containing only elements of order greater than 2 is ε-Kronecker for all $\varepsilon>1$.

By Theorem 3.1 applied to $E \backslash F$, there is a constant K (independent of U_{1}), a finite set $\Delta_{1} \subset E \backslash F$ (depending only on U_{1}), and a measure $\nu_{1} \in M_{\mathrm{d}}^{+}\left(U_{1}\right)$ such that

$$
\widehat{\nu}_{1}(\chi)=\varphi(\chi) \quad \text { on } E \backslash\left(F \cup \Delta_{1}\right), \quad\left\|\nu_{1}\right\| \leq K
$$

Let $\nu=\delta_{x} \times \nu_{1}$. Then $\widehat{\nu}(\chi)=\varphi(\chi)$ for each $\chi \in E \backslash\left(\Delta \cup \Delta_{1}\right)$. Hence $E \backslash\left(\Delta \cup \Delta_{1}\right)$ is $F Z I_{0}(U)$ with constant K.

4. Existence theorems for $F Z I_{0}$ and $F Z I_{0}(U)$ sets

4.1. Γ has large $F Z I_{0}(U)$ sets with bounded constants

Theorem 4.1. Let Γ be an infinite discrete abelian group. Then Γ contains an $F Z I_{0}(U)$ set with bounded constants and having the same cardinality as Γ.

The following corollary is due to [13]; another proof is in [15].
Corollary 4.2. Every discrete abelian group contains an I_{0} set of the same cardinality.

Before proving Theorem 4.1, we need a lemma.
Lemma 4.3. Let $E \subset \Gamma$. Suppose that E is uncountable. Then E contains an independent set A such that $\# A=\# E$.

Proof of Lemma 4.3. Let $\kappa=\# E$. Let F be the torsion subgroup of the subgroup H of Γ that E generates. Suppose $\kappa=\#(H / F)$. Let A be a subset of E such that the set of cosets $A \cdot F$ is maximal independent in the quotient H / F. As E generates $H, E \cdot F$ generates H / F, and any maximal independent subset of $E \cdot F$ also generates H / F. Hence, the cardinalities of the four (types of) sets, $E \cdot F, H / F$, maximal independent subset of H / F, and maximal independent subset of $E \cdot F$, are all equal. Thus, $\# A=\kappa$ if $\kappa=\#(H / F)$. Of course, if $A \cdot F$ is independent in the torsion-free group H / F, then A must be independent in H.

If $\kappa>\#(H / F)$ then $\kappa=\# F$. We apply verbatim all but the first two paragraphs of the proof of $[15$, Lem. 3.7], from which we conclude that H contains an independent set A^{\prime} with $\# A^{\prime}=\kappa$. Of course that cannot happen unless E contains an independent set A with $\# A=\kappa$.

Proof of Theorem 4.1. If Γ is uncountable, then the theorem follows from Proposition 3.5 and Lemma 4.3 (with $E=\Gamma$).

If Γ is countable and contains an infinite independent set, then the theorem follows from Proposition 3.5. We thus assume that E is countable and does not contain an infinite independent set.

If Γ has an element of infinite order, then Γ contains a copy of \mathbb{Z}, which contains Hadamard sets of ratio greater than 3. These are ε-Kronecker sets with $\varepsilon<\sqrt{2}$ [6, Prop. 2•3] and consequently $F Z I_{0}(U)$ with bounded constants, by Theorem 3.1.

We thus assume that Γ is a countable torsion group with no infinite independent sets. By [2, 20.1], Γ can be identified with a subgroup of the direct sum $\bigoplus_{\beta} \mathcal{C}\left(p_{\beta}^{\infty}\right)$. If that direct sum is minimal with respect to containing Γ, then the direct sum must be finite, since otherwise induction would show that Γ contained an infinite independent set. Therefore the projection of Γ onto one of the summands must be infinite. Applying Proposition 3.4 gives the desired set in $\mathcal{C}\left(p_{\beta}^{\infty}\right)$. Taking the corresponding characters in Γ completes the proof.

4.2. E has large $F Z I_{0}$ sets

Theorem 4.4. Let E be an infinite subset of the discrete abelian group Γ. Then E has an infinite $F Z I_{0}$ subset of the same cardinality as E.

Proof. If E is uncountable, then E contains a maximal independent subset F of the same cardinality as E by Lemma 4.3 , and we may apply Proposition 3.5.

We thus assume that $E=\left\{\chi_{n}\right\}$ is countable. By [2, 20.1], Γ can be identified with a subgroup of a divisible group Λ which is a direct sum

where the \mathbb{Q}_{α} are copies of the rationals in \mathbb{R}. We may assume $\Gamma=\Lambda$. For convenience, let us write $\Gamma=\bigoplus_{\ell} \Gamma_{\ell}$ where each Γ_{ℓ} is one of \mathbb{Q} or $\mathcal{C}\left(p^{\infty}\right)$, the direct sum is (at most) countable, and for each ℓ there is some character $\chi_{n} \in E$ whose projection onto Γ_{ℓ} is not trivial.

Let $I=\left\{\ell:\right.$ there is some n such that the projection of χ_{n} onto Γ_{ℓ} is not trivial and not of order two $\}$.

CASE 1: $\# I$ is infinite. As each χ_{n} has a non-trivial projection onto only finitely many factors Γ_{i}, it follows that there must be an infinite subsequence (not renamed) such that the projection onto $\Gamma_{\alpha_{n}}$ is of order ≥ 3, but the projections of χ_{m} onto $\Gamma_{\alpha_{n}}$ are trivial for $m<n$. As these χ_{n} are of order at least three, they form an ε-Kronecker set for any $\varepsilon>1$, and hence even an $F Z I_{0}(U)$ set with bounded constants.

Case 2: $\# I$ is finite. We distinguish between two subcases.
(a) There is some index ℓ such that the projection of χ_{n} onto Γ_{ℓ} is infinite. In this case apply Propositions 3.3 or 3.4 to find an infinite ε-Kronecker subset of these projections, and therefore of the original χ_{n} (for any $\varepsilon>0$).
(b) Otherwise it follows that the projections of χ_{n} onto $\bigoplus_{\ell \in I} \Gamma_{\ell}$ form a finite set and hence infinitely many of them have the same projection, say γ. We restrict ourselves to this set of projections (again, not renamed). If $\ell \notin I$, then $\Gamma_{\ell}=\mathcal{C}\left(2^{\infty}\right)$ and the projection of χ_{n} onto Γ_{ℓ} is either trivial or is (the unique element) of order two. As the projections of these χ_{n} onto $\bigoplus_{\ell \in I} \Gamma_{\ell}$ coincide, their projections onto $\bigoplus_{\ell \in I^{\mathrm{c}}} \Gamma_{\ell}$ must be distinct.

Hence the complement $I^{\text {c }}$ must be infinite and therefore we can obtain an infinite independent set as in Case 1, but consisting of elements of order 2, say $\left\{\gamma_{j}\right\}$. Such a set is $F Z I_{0}(U)$ with bounded constants: we need only to interpolate real functions φ, since the characters are of order 2. The corresponding characters are of the form $\gamma \oplus \gamma_{j}$. If γ is of order one or two it is obvious that $\left\{\gamma \oplus \gamma_{j}\right\}$ is $F Z I_{0}$. To see that $\left\{\gamma \oplus \gamma_{j}\right\}$ is $F Z I_{0}$ otherwise, we apply Proposition 2.4: Given any choice of signs $\left\{r_{j}\right\}$ we can find $\mu \in M_{\mathrm{d}}^{+}\left(\bigoplus_{\ell \in I^{c}} \Gamma_{\ell}\right)$ such that $\widehat{\mu}\left(\gamma_{j}\right)=r_{j}$. As $\gamma^{2} \neq 1$ we can choose $\nu \in M_{\mathrm{d}}^{+}\left(\bigoplus_{\ell \in I^{c}} \Gamma_{\ell}\right)$ such that $\widehat{\nu}(\gamma)=i$. Then $\widehat{\delta_{1} \times \mu}\left(\gamma \oplus \gamma_{j}\right)=r_{j}$ and $\widehat{\nu \times \mu}\left(\gamma \oplus \gamma_{j}\right)=i r_{j}$.

Remark 4.5. E need not contain an $F Z I_{0}(U)$ set for small U. Take, for instance, $G=\mathbb{Z}_{3} \times \mathbb{D}_{2}$ and let $\varrho \in \widehat{\mathbb{Z}}_{3}, \varrho \neq 1$. Let $F \subset \widehat{\mathbb{D}}_{2}$ be an independent set. The set $E=\{\varrho\} \times F$ is $F Z I_{0}$ (it is just a special case of Case $2\left(\right.$ b) above) but no infinite subset is $F Z I_{0}\left(\{0\} \times \mathbb{D}_{2}\right)$ as it is clearly only
possible to interpolate real-valued sequences by positive measures supported on $\{0\} \times \mathbb{D}_{2}$.
4.3. Existence of $F Z I_{0}(U)$ subsets with bounded constants

Theorem 4.6. Let G be a compact connected abelian group. Then every infinite $E \subset \Gamma$ contains an $F Z I_{0}(U)$ set with bounded constants of the same cardinality.

Corollary 4.7. Γ contains a subset of cardinality $\# \Gamma$ that is $I_{0}(U)$ for all open U.

Proof. If E is uncountable, then E has an independent set of the same cardinality and Proposition 3.5 completes the proof.

We may thus assume that E, and therefore Γ, is countable. Because Γ has no elements of finite order, Γ is contained in the countable direct sum of copies of \mathbb{Q}, and we may assume that Γ is such a sum.

Suppose that the projection of E on any one of the factors \mathbb{Q} is infinite. Then by Proposition 3.3, we have an infinite $F Z I_{0}(U)$ set with bounded constants.

Otherwise, E has non-zero projections on an infinite number of the factors. We again have an infinite independent set of elements whose order is infinite, so we have an $F Z I_{0}(U)$ set with bounded constants by Proposition 3.5.
5. Translation of $F Z I_{0}$ sets. In contrast to the situation for I_{0} sets, translation does not in general preserve $R I_{0}$ or $F Z I_{0}$ sets.

Example 5.1 (A translate of an $F Z I_{0}$ set which is not $R I_{0}$). Let $E_{1}=$ $\left\{16^{j}+4 j: j \geq 1\right\}, E_{2}=\left\{-16^{j}-2: j \geq 1\right\}$, and $E=E_{1} \cup E_{2}$. The two sets E_{1}, E_{2} are $F Z I_{0}(U)$ with bounded constants, being ε-Kronecker for $\varepsilon<1$. If we evaluate $\widehat{\delta}_{0}+\widehat{\delta}_{\pi / 2}$ on E, we get 2 on E_{1} and 0 on E_{2}. Standard arguments show that E is $F Z I_{0}(U)$. But $E+1$ is not even $R I_{0}$ because $(E+1) \cup(-E-1)$ is not I_{0}.

One reason for the interest in sets that are $F Z I_{0}(U)$ with bounded constants is that under this (additional) assumption $F Z I_{0}$ is preserved under translation.

Proposition 5.2. Suppose E is an antisymmetric $F Z I_{0}(U)$ set with bounded constants and suppose F is a finite, asymmetric set.
(1) Suppose there exists a neighbourhood $V \subset G$ such that F is $F Z I_{0}(V)$. Then there is a finite set Δ such that $(E \backslash \Delta) \cdot F$ is $F Z I_{0}(V)$.
(2) If $F^{-1} \cap E=\emptyset$ then $E \cdot F$ is $F Z I_{0}$.

Proof. (2) follows from (1), since a finite set is $F Z I_{0}(G)$ and the union of a finite set with an $F Z I_{0}$ set is $F Z I_{0}$ (Prop. 2.9).
(1) Assume $F=\left\{\lambda_{1}, \ldots, \lambda_{M}\right\}$. For each $k=1, \ldots, M$ let $\mu_{k}=\sum_{j=1}^{\infty} a_{j k} \delta_{x_{j k}}$ $\in M_{\mathrm{d}}^{+}(V)$ be such that

$$
\widehat{\mu}_{k}\left(\lambda_{i}\right)= \begin{cases}1 & \text { if } i=k \\ \widehat{\mu}_{k}\left(\lambda_{i}\right)=0 & \text { otherwise }\end{cases}
$$

(Here we use the fact that F is asymmetric, as well as $F Z I_{0}(V)$.) Choose N_{k} such that $\left\|\mu_{k}-\sum_{j=1}^{N_{k}} a_{j k} \delta_{x_{j k}}\right\|<\varepsilon / M$.

Let K be as in the definition of $F Z I_{0}(U)$ with bounded constants (Definition 3) and let $\varepsilon_{j k}=\varepsilon 2^{-j} /\left(K M a_{j k}\right)$. Choose neighbourhoods $U_{j k} \subset V$ of $x_{j k}$ such that $\left|\lambda_{i}\left(x_{j k}\right)-\lambda_{i}(y)\right|<\varepsilon_{j k}$ for $y \in U_{j k}, i=1, \ldots, M$.

Let $\varphi \in \ell^{\infty}(E \cdot F)$ be a given Hermitian function of norm one. Select finite sets $\Delta_{j k} \subset \Gamma$ and measures $\nu_{j k} \in M_{\mathrm{d}}^{+}\left(U_{j k}\right)$, of norm at most K, such that $\widehat{\nu}_{j k}(\chi)=\varphi\left(\chi \lambda_{k}\right)$ for $\chi \in E \backslash \Delta_{j k}$. Put $\Delta=\bigcup_{k=1}^{M} \bigcup_{j=1}^{N_{k}} \Delta_{j k}$ and let $\mu=\sum_{j, k} a_{j k} \nu_{j k} \in M_{\mathrm{d}}^{+}(V)$. From (5) we know that for $\chi \in E \backslash \Delta$ and $\lambda_{i} \in F, \widehat{\nu}_{j k}\left(\chi \lambda_{i}\right)=\lambda_{i}\left(x_{j k}\right) \widehat{\nu}_{j k}(\chi)+E_{i j k}$ with error term $E_{i j k}$ satisfying $\left|E_{i j k}\right| \leq K \varepsilon_{j k}$. Thus

$$
\left|\widehat{\mu}\left(\chi \lambda_{i}\right)-\varphi\left(\chi \lambda_{i}\right)\right| \leq\left|\sum_{k=1}^{M} \sum_{j=1}^{N_{k}} a_{j k} \lambda_{i}\left(x_{j k}\right) \varphi\left(\chi \lambda_{k}\right)-\varphi\left(\chi \lambda_{i}\right)\right|+\sum_{j, k} \frac{\varepsilon 2^{-j} a_{j k}}{a_{j k} M}
$$

As $\left|\sum_{j=1}^{N_{k}} a_{j k} \lambda_{i}\left(x_{j k}\right)-\widehat{\mu}_{k}\left(\lambda_{i}\right)\right| \leq \varepsilon / M$ and $\widehat{\mu}_{k}\left(\lambda_{i}\right)=1$ if $i=k$ and 0 else, it follows that $\left|\widehat{\mu}\left(\chi \lambda_{i}\right)-\varphi\left(\chi \lambda_{i}\right)\right| \leq 2 \varepsilon$. Thus $(E \backslash \Delta) \cdot F$ is $F Z I_{0}(V)$.

A set can be $F Z I_{0}(U)$ for all open U without bounded constants:
Example 5.3. The set $\left\{9^{j}\right\} \cup\left\{9^{j}+3 j+1\right\}$ is $F Z I_{0}(U)$ for all open U, but not with bounded constants.

Proof. To see this assume $U=\left[-\pi / 9^{N}, \pi / 9^{N}\right]$. With $a=\pi / 9^{N}$ we get $\widehat{\delta}_{a}\left(9^{j}\right)=-1$ for $j>N$ and $\left|\widehat{\delta}_{a}\left(9^{j}+3 j+1\right)+1\right| \geq \varepsilon>0$. Since the transform of $\delta_{0}+\delta_{a}$ is 0 on $\left\{9^{j}\right\}$ and bounded away from zero on $\left\{9^{j}+3 j+1\right\}$, it follows that $\left\{9^{j}\right\}_{j>N} \cup\left\{9^{j}+3 j+1\right\}_{j>N}$ is $F Z I_{0}(U)$. This set is not even $I_{0}(U)$ with bounded constants as $E \cup(E+1)$ is not $I_{0}[7,3.1]$.

References

[1] J. Florek, Interpolation by the Fourier-Stieltjes transform of a positive compactly supported measure, Colloq. Math. 54 (1987), 113-120.
[2] L. Fuchs, Abelian Groups, Hungarian Academy of Sciences, Budapest, 1958.
[3] M. Déchamps-Gondim, Ensembles de Sidon topologiques, Ann. Inst. Fourier (Grenoble) 22 (1972), no. 3, 51-79.
[4] J. Galindo and S. Hernández, The concept of boundedness and the Bohr compactification of a MAP abelian group, Fund. Math. 15 (1999), 195-218.
[5] B. N. Givens and K. Kunen, Chromatic numbers and Bohr topologies, Topology Appl. 131 (2003), 189-202.
[6] C. C. Graham and K. E. Hare, ε-Kronecker and I_{0} sets in abelian groups, I: arithmetic properties of ε-Kronecker sets, Math. Proc. Cambridge Philos. Soc. 140 (2006), 475-489.
[7] -, -, ε-Kronecker and I_{0} sets in abelian groups, III: interpolation by measures on small sets, Studia Math. 171 (2005), 15-32.
[8] -, -, I_{0} sets for compact, connected groups: interpolation with measures that are non-negative or of small support, preprint, 2006.
[9] —, —, Characterizations of some classes of I_{0} sets, preprint, 2005.
[10] C. C. Graham, K. E. Hare, and T. W. Körner, ε-Kronecker and I_{0} sets in abelian groups, II: sparseness of products of ε-Kronecker sets, Math. Proc. Cambridge Philos. Soc. 140 (2006), 491-508.
[11] C. C. Graham and A. T.-M. Lau, Relative weak compactness of orbits in Banach spaces associated with locally compact groups, Trans. Amer. Math. Soc., to appear.
[12] K. E. Hare and L. T. Ramsey, I_{0} sets in non-abelian groups, Math. Proc. Cambridge Philos. Soc. 135 (2003), 81-98.
[13] S. Hartman and C. Ryll-Nardzewski, Almost periodic extensions of functions, I, Colloq. Math. 12 (1964), 23-29.
[14] J.-P. Kahane, Séries de Fourier Absolument Convergentes, Springer, Berlin, 1970.
[15] K. Kunen and W. Rudin, Lacunarity and the Bohr topology, Math. Proc. Cambridge Philos. Soc. 126 (1999), 117-137.
[16] J. Lopez and K. Ross, Sidon Sets, Lecture Notes in Pure Appl. Math. 13, Dekker, New York, 1975.
[17] J.-F. Méla, Sur les ensembles d'interpolation de C. Ryll-Nardzewski et de S. Hartman, Studia Math. 29 (1968), 167-193.
[18] L. T. Ramsey, A theorem of Ryll-Nardzewski and metrizable L.C.A. groups, Proc. Amer. Math. Soc. 78 (1980), 221-224.
[19] W. Rudin, Fourier Analysis on Groups, Wiley Interscience, New York, 1962.
[20] E. Strzelecki, On a problem of interpolation by periodic and almost periodic functions, Colloq. Math. 11 (1963), 91-99.
[21] N. Th. Varopoulos, Tensor algebras over discrete spaces, J. Funct. Anal. 3 (1969), 321-335.

Department of Mathematics
University of British Columbia
Vancouver, B.C., Canada
E-mail: ccgraham@alum.mit.edu

Department of Pure Mathematics
University of Waterloo
Waterloo, Ont., Canada N2L 3G1
E-mail: kehare@uwaterloo.ca

Mailing address of C. C. Graham:
RR\#1-D-156
Bowen Island, B.C., Canada V0N 1G0

[^0]: 2000 Mathematics Subject Classification: Primary 42A55, 43A46; Secondary 43A05, 43A25, 42A82.

 Key words and phrases: associated sets, Bohr group, ε-Kronecker sets, FatouZygmund property, ε-free sets, Hadamard sets, I_{0} sets, Sidon sets.

 Both authors partially supported by NSERC.

[^1]: $\left.{ }^{1}\right)$ See $[5,6,10,7,21]$ for applications and properties of ε-Kronecker sets. Given and Kunen [5] use the term " ε-free". For existence theorems for ε-Kronecker sets, see [4, Lem. 3.2], [5, Lem. 3.8], [11, Thm. 3.1], and [12, Thm. 4.1].
 $\left(^{2}\right)$ We generally omit the phrase "for all open U ".

[^2]: $\left({ }^{3}\right)$ That Hadamard sets are I_{0} was first proved in [20]; for other proofs see [14, 15]. The I_{0} with bounded constants property was proved in [7].

[^3]: $\left(^{4}\right) \widetilde{\mu}(X)=\overline{\mu\left(X^{-1}\right)}$ for a Borel set X.

