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On the global stable manifold

by

Alberto Abbondandolo and Pietro Majer (Pisa)

Abstract. We give an alternative proof of the stable manifold theorem as an ap-
plication of the (right and left) inverse mapping theorem on a space of sequences. We
investigate the diffeomorphism class of the global stable manifold, a problem which in the
general Banach setting gives rise to subtle questions about the possibility of extending
germs of diffeomorphisms.

Let M be an open subset of a manifold M ′ of class Ck, 1 ≤ k ≤ ω
(meaning that k ∈ Z

+, or k = ∞, or k = ω, where as usual Cω denotes the
analytic category) modeled on the Banach space E. Let f : M → f(M) ⊂
M ′ be a Ck diffeomorphism (1), and let x ∈M be a hyperbolic fixed point
of f . This means that the spectrum of Df(x) does not meet the unit circle,
thus it is divided into two disjoint closed subsets σ(Df(x)) ∩ {|z| < 1}
and σ(Df(x)) ∩ {|z| > 1}, and the spectral decomposition theorem gives
a corresponding Df(x)-invariant decomposition of the tangent space of M
at x, TxM = Es ⊕ Eu. The stable manifold of x is the set

W s(x) =
{
p ∈

⋂

n∈N

f−n(M)
∣∣∣ lim
n→∞

fn(p) = x
}
.

The stable manifold theorem states that W s(x) is an immersed Ck subman-
ifold of M . A first way to prove such a result is to define the local stable
manifold near x, to use the graph transform method to show that in lo-
cal coordinates such a set is the graph of a Lipschitz map, then to prove
further regularity, and finally to use the map f to describe the whole sta-
ble manifold. See, for example, [Shu87]. Another approach is due to Irwin
[Irw70], who replaces the graph transform method by an argument involv-
ing the implicit mapping theorem applied to the space of sequences (see
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(1) Usually M ′ = M = f(M), so that f is a diffeomorphism of M . We allow this
slightly more general setting to include the case of a local diffeomorphism.

[113]
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also [Wel76]). See [HPS77, Irw80, FHY83, Wig94, CFdlL03a, CFdlL03b] for
many generalizations and for more bibliography.

The first aim of this note is to give a different proof of the stable manifold
theorem. Denote by cx(M) the set of allM -valued sequences converging to x,
and recall that cx(M) has a natural structure of Ck manifold modeled on
the Banach space c0(E), the space of infinitesimal E-valued sequences with
the supremum norm (see Section 1). The stable manifold theorem can then
be stated in the following form:

Theorem A. Let M be an open subset of the Ck Banach manifold M ′,
let f : M → f(M) ⊂ M ′ be a Ck diffeomorphism, 1 ≤ k ≤ ω, and let

x ∈M be a hyperbolic fixed point of f , inducing the Df(x)-invariant splitting

TxM = Es ⊕ Eu. Then the set

W = {u ∈ cx(M) |u(n+ 1) = f(u(n)) ∀n ∈ N}

is a closed Ck submanifold of cx(M), and the evaluation map at zero,

ev0 : cx(M) →M, u 7→ u(0),

restricts to a Ck injective immersion of W onto W s(x) and has the property

that D ev0(x)TxW=Es (here x denotes the constant sequence x(n)=x).

Therefore, W s(x) is a Ck immersed submanifold of M . Simple examples
show that W s(x) may not be an embedded submanifold, and may not even
be locally closed. Lifting the dynamical system to the space of sequences pro-
duces instead the closed embedded submanifold W . Notice also that ev0 |W
is a semi-conjugacy between the shift operator on W and the restriction of f
to W s(x). By considering f−1 instead of f one finds an analogous statement
for the unstable manifold W u(x).

As in Irwin’s approach, the proof of Theorem A uses the implicit mapping
theorem on the space of sequences, but in a more direct way, due to the fact
that we deal with zero sets of mappings instead of graphs. The whole analysis
is reduced to quite a simple linear problem, and the regularity in the Ck or
even in the analytic case follows directly.

Let us sketch the proof of Theorem A in the case M ′ = M = R
n.

Assuming that the fixed point x is the origin, W is the zero set of the Ck

map

F : c0(R
n) → c0(R

n), u 7→ Su− f∗(u),

where S is the left shift (Su)(n) = u(n + 1), and f∗ denotes composition
with f . It is readily seen that the set of u ∈ W such that DF (u) has a right
inverse is open and f−1

∗ -invariant. Such a set contains the origin, because
the linear mapping

DF (0) : c0(R
n) → c0(R

n), v 7→ Sv −Df(0)∗v,
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has a right inverse in the form of a convolution operator (see Lemma 2.1
below). The only f−1

∗ -invariant neighborhood of 0 in W is the whole W , so
the implicit mapping theorem implies that W is a Ck submanifold of c0(R

n).
The restriction to W of the map ev0 is clearly injective, and an argument
similar to the one used above shows that it is an immersion.

The usual statement of the local stable manifold theorem is then deduced
from Theorem A as a simple corollary (see Section 3). The same idea works
for continuous-time dynamical systems, i.e. flows obtained by integrating
some vector field on M (see Remark 2.3).

Finally, we investigate the diffeomorphism class of the global stable man-
ifold W s(x) when f is a global diffeomorphism of the Banach manifold M .
In this case, it is natural to expect W to be Ck diffeomorphic to the Ba-
nach space Es, so that the stable manifold is a Ck-immersed copy of Es.
We do not know if this is true for manifolds M modeled on an arbitrary
Banach space. The difficulty in proving such a result is due to the fact that
on Banach spaces the problem of extending the germ of a map by keeping
the same regularity is quite delicate, because there need not exist a smooth
norm, or smooth partitions of unity. We characterize those diffeomorphisms
for which W is diffeomorphic to Es in terms of an extension property for
the germ of f at x (see Corollary 4.6), and we deduce the following re-
sult:

Theorem B. Let f be a Ck diffeomorphism of the Ck Banach manifold

M , 1 ≤ k ≤ ω, and let x ∈ M be a hyperbolic fixed point of f , with associ-

ated splitting TxM = Es ⊕ Eu. Then the manifold W is homeomorphic to

the Banach space Es, by a bi-locally Lipschitz homeomorphism (2). Assume

moreover that the Banach space Es has the following property : there exists

a bounded Ck map ϕ : Es → Es such that

(i) ϕ coincides with the identity in a neighborhood of 0, in the case

1 ≤ k <∞;
(ii) ϕ(0) = 0 and Dϕ(0) = I, in the case k = ∞ or k = ω.

Then W is Ck diffeomorphic to the Banach space Es.

Therefore, W s(x) is always the image of Es under a locally Lipschitz
and locally closed injective map, which can be chosen to be a Ck immersion
whenever the Banach space Es has one of the properties described above.

Notice that these properties are hereditary, in the sense that if a Banach
space E admits a map ϕ with one of these properties, then every comple-

(2) A map h between Banach manifolds (on which there is no preferred metric) is said
to be locally Lipschitz if ϕ ◦ h ◦ ψ−1 is locally Lipschitz for every pair of local charts ϕ
and ψ. A homeomorphism h is said to be bi-locally Lipschitz if both h and h−1 are locally
Lipschitz.
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mented linear subspace of E does (if the subspace E′ is the image of the
bounded linear projection P , consider Pϕ|E′).

The property of admitting a Ck bounded map coinciding with the iden-
tity in a neighborhood of 0 was introduced by Atkin [Atk01]. He observed
that this property not only holds trivially when the Banach space E admits
a Ck norm (so for instance when E is a Hilbert space), but it also holds
for some less regular Banach spaces such as ℓ∞ or C0(K,R). This property
implies that Ck germs at 0 ∈ E have Ck extensions to the whole Banach
space E, a fact which is useful in order to make global constructions, also
in the absence of Ck partitions of unity.

Clearly, an Atkin map cannot exist in the analytic category, but in this
case (and actually also in the smooth category) it is enough to assume the
weaker condition (ii). Again, some non-regular Banach spaces, such as ℓ∞
and C0(K,R), admit an analytic map satisfying (ii).

We do not know whether there exist Banach spaces which do not admit
a Ck map satisfying (i) or (ii).

Added in proof. Christopher Atkin recently informed us that he has a proof that
every Banach space with a Schauder basis admits a bounded C∞ map satisfying (i).

1. Notations, definitions and basic facts

Linear operators and splittings. Let (E, | · |E) and (F, | · |F ) be Banach
spaces. We denote by L(E,F ) the Banach space of all bounded linear opera-
tors from E to F , endowed with the operator norm ‖T‖ := sup|x|E≤1 |Tx|F .
If E = F we simply write L(E) for L(E,E). A linear subspace X (nec-
essarily closed) of E is complemented in E if and only if there exists a
subspace Y such that E = X⊕Y . If L ∈ L(E,F ) and R ∈ L(F,E) are such
that LR = IF , then L is called a left inverse of R or a linear retraction,
and R is called a right inverse of L or a linear section. Then L is surjec-
tive, R is injective and E decomposes as E = kerL⊕ranR, with projections
PranR = RL and PkerL = IE−RL. Conversely, ifR ∈ L(F,E) is injective and
E = X⊕ranR for some subspace X of E, then L := R−1PranR ∈ L(E,F ) is
a right inverse of R, with kerL = X. Similarly, if L ∈ L(E,F ) is surjective
and E = kerL⊕ Y for some subspace Y of E, then R := (L|Y )−1 is a right
inverse of L with ranR = Y . The set of linear sections L ∈ L(E,F ) and the
set of linear retractions R ∈ L(E,F ) are open in L(E,F ).

Immersions and submersions. Let M , N be differentiable manifolds of
class Ck, 1 ≤ k ≤ ω, modeled on the Banach space E, respectively F . A map
f : M → N is a local immersion (resp. a local submersion) at p if f is a
linear section (resp. a linear retraction) in local charts at p, meaning that
there exist a local chart at p, ϕ : U → ϕ(U) ⊂ E, a local chart at q := f(p),
ψ : V → ψ(V ) ⊂ F , and a linear operator A ∈ L(E,F ) which is a linear
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section (resp. a linear retraction) such that ψfϕ−1 = A|ϕ(U). Then Y :=
f(U) is a submanifold of N and its tangent space at q is TqY = ranDf(p)
(resp. X := f−1(q) ∩ U is a submanifold of M and its tangent space at p
is TpX = kerDf(p)). The map f is said to be simply an immersion (resp.
a submersion) if it is a local immersion (resp. a local submersion) at any
p ∈M . In the first case, if f is also injective, f(M) is said to be an immersed

submanifold of N . If f is a local submersion at every p ∈ f−1(q), then f−1(q)
is an embedded submanifold of M .

The implicit mapping theorem implies the usual criterion for local im-
mersions and submersions, stating that f is a local immersion (resp. a local
submersion) at p if and only if Df(p) ∈ L(TpM,TqN) is a linear section
(resp. a linear retraction). A standard reference is [Lan99, Section II, §2].

The criterion for local submersions has the following immediate conse-
quence:

Proposition 1.1. Let f, g : M → N be Ck maps between Ck Banach

manifolds, 1 ≤ k ≤ ω, and set

W = {p ∈M | f(p) = g(p)}.

If for every p ∈W , the operator Df(p)−Dg(p) ∈ L(TpM,Tf(p)N) is a linear

retraction, then W is a Ck submanifold of M , with TpW = ker(Df(p) −
Dg(p)).

Indeed, the matter being local, we may assume that N is an open subset
of the Banach space F , so that W is the zero set of the map f − g, which is
by hypothesis a local submersion at every p ∈W .

Discrete convolutions on ℓp classes. If (E, | · |) is a Banach space, the
ℓp-norm of u : Z → E is ‖u‖p := (

∑
n∈Z

|u(n)|p)1/p for 1 ≤ p < ∞, and
‖u‖∞ := supn∈Z |u(n)|. Then ℓp(Z, E) denotes the Banach space of all u :
Z → E such that ‖u‖p <∞. The set

c0(Z, E) := {u : Z → E | lim
|n|→∞

u(n) = 0}

is a closed subspace of ℓ∞(Z, E), and ℓp(Z, E) ⊂ ℓq(Z, E) ⊂ c0(Z, E) ⊂
ℓ∞(Z, E) for 1 ≤ p ≤ q <∞. The analogous class {u : N → E | limn→∞ u(n)
= 0} is denoted simply by c0(E); it can be viewed as a closed comple-
mented subspace of c0(Z, E). Indeed, the identity mapping on c0(E) factors

as c0(E)
j
→ c0(Z, E)

̺
→ c0(E), the inclusion j being given by zero-extension,

and the map ̺ by restriction to N ⊂ Z.

If g ∈ ℓ1(Z,L(E)) and u ∈ ℓ∞(Z, E), their convolution product g ∗ u is
defined by

(g ∗ u)(n) :=
∑

h∈Z

g(n− h)u(h).
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Young’s inequality ‖g ∗u‖p ≤ ‖g‖1‖u‖p implies that for any p ∈ [1,+∞] the
convolution product is continuous as a bilinear map ℓ1(Z,L(E))×ℓp(Z, E) →
ℓp(Z, E). Furthermore, g ∗ u ∈ c0(Z, E) whenever g ∈ ℓ1(Z,L(E)) and u ∈
c0(Z, E) (3).

Notice that the convolution with g ∈ ℓ1(Z,L(E)) defines a bounded
linear operator Rg on c0(E) by u 7→ g∗u (more precisely, Rgu = ̺(g∗j(u))).

Manifolds of sequences. Let M be a Ck manifold modeled on the Banach
space E, let x ∈ M , and let cx(M) be the set of sequences u : N → M
which converge to x. Equivalently, denoting by N = N ∪ {∞} the one-point
compactification of the set of natural numbers, cx(M) is the set

cx(M) = {u ∈ C0(N,M) |u(∞) = x},

so it can be endowed with the restriction of the compact-open topology of
C0(N,M). The space cx(M) has the structure of a Ck manifold modeled on
the Banach space c0(E). Indeed, given Ck local charts ϕn : Un → ϕn(Un)
⊂ E, n = 0, . . . ,m, where x ∈ Um and ϕm(x) = 0, consider the open subset
of cx(M),

U = U(U0, . . . , Um)

= {u ∈ cx(M) |u(n) ∈ Un ∀n = 0, . . . ,m− 1, u(n) ∈ Um ∀n ≥ m},

and the homeomorphism Φ = Φ(ϕ0, . . . , ϕm) : U → Φ(U) ⊂ c0(E) defined
by

Φ(u)(n) =

{
ϕn(u(n)) if 0 ≤ n ≤ m− 1,

ϕm(u(n)) if n ≥ m.

It is easy to check that the collection of homeomorphisms Φ(ϕ0, . . . , ϕm)
constitutes a Ck atlas of cx(M). The tangent bundle of cx(M) is

Tcx(M) = c0x(TM),

where 0x is the zero element of TxM ⊂ TM , and its fibers are

Tucx(M) = {v : N → TM | v(n) ∈ Tu(n)M ∀n ∈ N, lim
n→∞

v(n) = 0x}.

In particular, the tangent space of cx(M) at the constant sequence x is
Txcx(M) = c0(TxM).

The (left) shift operator S : cx(M) → cx(M), S(u)(n) = u(n + 1), is
of class Ck, and its differential at x is the (left) shift linear operator S on
c0(TxM).

Also the evaluation at zero, ev0 : cx(M) →M , u 7→ u(0), is a map of class
Ck, and its differential at u is the linear evaluation at zero, D ev0(u)[v] =
v(0).

(3) This follows immediately by approximating g with the sequence gn := 1[−n,n]g,
for gn → g in ℓ1, gn ∗ u ∈ c0(Z, E) and by Young’s inequality ‖g ∗ u − gn ∗ u‖∞ =
‖(g − gn) ∗ u‖∞ ≤ ‖gn − g‖1‖u‖∞ → 0, so g ∗ u = limn→∞ gn ∗ u ∈ c0(Z, E).
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Finally, every continuous map f : M → N with f(x) = y induces by
composition a continuous map f∗ : cx(M) → cy(N), f∗(u) := f ◦u. If f is of
class Ck, 1 ≤ k ≤ ω, so is f∗. Indeed, by taking local charts we are reduced
to the case M = E, N = F , x = y = 0, where the hth differential of f∗ at
u ∈ c0(E) is given by the formula

(Dhf∗(u)[v]
h)(n) = Dhf(u(n))[v(n)]h.

In particular, the differential of f∗ at the constant sequence x is the multi-
plication operator by Df(x),

Df∗(x) : Txcx(M) = c0(TxM) → Tycy(N) = c0(TyN),

Df∗(x)[u](n) = Df(x)[u(n)].

Hyperbolic fixed points. An invertible operator T ∈ L(E) is said to be
hyperbolic if its spectrum does not meet the unit circle: σ(T )∩{|z| = 1} = ∅.
Then σ(T ) consists of the two disjoint closed subsets σ(T ) ∩ {|z| < 1} and
σ(T ) ∩ {|z| > 1}, so E has the T -invariant spectral decomposition E =
Es ⊕Eu, where σ(T |Es) = σ(T )∩{|z| < 1} and σ(T |Eu) = σ(T )∩{|z| > 1}.

A fixed point x of a diffeomorphism f : M → f(M) ⊂ M ′ is said to
be hyperbolic if the differential of f at x, Df(x) ∈ L(TxM), is a hyperbolic
operator. The corresponding spectral decomposition of the tangent space at
x is denoted by TxM = Es ⊕ Eu.

2. Proof of the stable manifold theorem. Let us prove Theorem A.
By definition,

W = {u ∈ cx(M) | S(u) = f∗(u)}.

We start by studying the linear map DS(x) − Df∗(x) ∈ L(Txcx(M)). By
the discussion of Section 1, this is the linear operator

S −Df(x)∗ : c0(TxM) → c0(TxM).

Let us simplify the notation by setting E = TxM , T = Df(x) ∈ L(E). De-
note by P s and P u the spectral projections associated to the decomposition
E = Es ⊕ Eu induced by the hyperbolic operator T .

Lemma 2.1. For n ∈ Z, set

g(n) := Tn−1(1Z+(n)IE − P u),

where Z
+ = {1, 2, . . . }, and 1Z+ is its characteristic function. Then g ∈

ℓ1(Z,L(E)) and the corresponding convolution operator Rg ∈ L(c0(E)) is a

right inverse of S − T∗. Moreover ,

ker(S − T∗) = {u ∈ c0(E) |u(n) = Tnu(0) ∀n ∈ N, u(0) ∈ Es}.
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Proof. Let ‖ · ‖ be the operator norm induced by a Banach norm on E.
By the spectral radius theorem

lim
n→∞

‖g(n)‖1/n= lim
n→∞

‖Tn−1P s‖1/n= lim
n→∞

‖T |n−1
Es ‖1/n=max |σ(T |Es)| < 1,

lim
n→∞

‖g(−n)‖1/n = lim
n→∞

‖T−(n+1)P u‖1/n = lim
n→∞

‖T |
−(n+1)
Eu ‖1/n

= max |σ(T |−1
Eu)| < 1.

Therefore, g(n) tends to 0 exponentially fast for |n| → ∞, in particular g is
in ℓ1(Z,L(E)).

For any u ∈ c0(E) and n ∈ N, we have

[(S − T∗)Rg(u)](n) =

∞∑

h=0

g(n+ 1 − h)u(h) −
∞∑

h=0

Tg(n− h)u(h)

=
∞∑

h=0

Tn−h[1Z+(n+ 1 − h) − 1Z+(n− h)]u(h)

=
∞∑

h=0

Tn−h1{0}(n− h)u(h) = u(n),

that is, (S − T∗)Rg = Ic0(E) (4). Finally, it is clear that u ∈ ker(S − T∗) if
and only if u(n) = Tnu(0) for any n ∈ N, which defines an element of c0(E)
if and only if u(0) ∈ Es.

Let us prove that the closed subset W is a Ck submanifold of cx(M).
By Lemma 2.1, DS(x) − Df∗(x) is a linear retraction. Since the space of
linear retractions is open, DS(u) − Df∗(u) is a linear retraction for every
u ∈ W ∩ U , for a suitable neighborhood U of x in cx(M).

On the other hand, f∗ and S commute. As a consequence, if u ∈ W then
un = fn∗ (u) is also in W , and the linear operator DS(u)−Df∗(u) is obtained
from DS(un)−Df∗(un) by left and right multiplication by invertible linear
operators. Since un eventually belongs to W ∩ U , DS(un) − Df∗(un) is
a linear retraction, and so is DS(u) − Df∗(u). Therefore, Proposition 1.1

(4) Here is a more heuristic argument to find a right inverse for the linear operator
S − T∗. First notice that the equation (S − T∗)u = w ∈ c0(E) is equivalent to u(n+ 1) =
Tu(n) + w(n), ∀n ≥ 0. Iterating this gives u(n) = Tnu(0) +

∑n−1
h=0 T

n−1−hw(h). We
can split this equation into u(n) = TnP su(0) +

∑n−1
h=0 T

n−1−hP sw(h) + Tn[P uu(0) +∑n−1
h=0 T

−1−hP uw(h)]. Now the first and second terms converge as n → ∞, because the
spectral radius theorem implies that ‖TnP s‖ ≤ cλn for some c ≥ 1 and λ < 1. The third
term may not converge unless the sequence in the square brackets converges to 0, that
is, P uu(0) +

∑n−1
h=0 T

−1−hP uw(h) = −
∑

∞

h=n
T−1−hP uw(h), whence u(n) = TnP su(0) +

(g ∗ w)(n).
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implies that W is a Ck submanifold of cx(M), with

(1)
TxW = ker(DS(x) −Df∗(x))

= {v ∈ c0(TxM) | v(n) = Df(x)nv(0) ∀n ∈ N, v(0) ∈ Es}.

The Ck map ev0 : cx(M) →M is clearly injective on W , and it remains
to show that for any u ∈ W ,D ev0 |W(u) : TuW → Tu(0)M is a linear section.
This is clearly true if u = x, for (1) shows that D ev0(x) is an isomorphism
onto Es, which is complemented in TxM . Since the space of linear sections is
open, the same is true for every u in a neighborhood of x in W . The formula
ev0 ◦f∗ = f ◦ev0 implies that D ev0(u)|TuW is obtained from D ev0(un)|TunW

by left and right multiplication by invertible operators. As before, since un
converges to x, we conclude that D ev0(u)|TuW is a linear section for every
u ∈ W . The proof of Theorem A is complete.

Remark 2.2. The fact that DS(u) −Df∗(u) is a linear retraction can
also be proved directly by the following generalization of Lemma 2.1: if
T : c0(E) → c0(E) is the multiplication operator by a sequence (Tn) ⊂ L(E)
converging to a hyperbolic operator, then S − T ∈ L(c0(E)) is a linear
retraction.

Remark 2.3. A similar argument yields the stable manifold theorem
for a hyperbolic equilibrium point x of the local flow determined by a Ck

vector field X on a Ck+1 Banach manifold M , where 1 ≤ k ≤ ω. Denote
by C1

x([0,+∞[,M) the space of C1 curves [0,+∞[ →M converging to x as
t → +∞, with the first derivative converging to 0. Then one can use the
implicit function theorem to prove that the set

W = {u ∈ C1
x([0,+∞[,M) |u′(t) −X(u(t)) = 0}

is a Ck submanifold of C1
x([0,+∞[,M), and that the evaluation at 0 restricts

to a Ck immersion of W onto the stable manifold of 0. The basic linear step
consists in proving that if L ∈ L(E) is infinitesimally hyperbolic (i.e. its
spectrum does not meet the imaginary axis), then the operator

d

dt
− L : C1

0([0,+∞[, E) → C0
0 ([0,+∞[, E)

is a linear retraction. See [AM04] for more details.

3. The local stable manifold theorem

Adapted norms. An adapted norm for a hyperbolic operator T ∈ L(E)
is an equivalent norm | · | on E such that

(2) |ξ| = max{|P sξ|, |P uξ|},
|Tξ| ≤ λ|ξ| ∀ξ ∈ Es,

|T−1ξ| ≤ λ|ξ| ∀ξ ∈ Eu,
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for some 0 < λ < 1. One can always find a norm with these properties,
provided that λ > max |σ(T ) ∩ {|z| < 1}| and λ > 1/min |σ(T ) ∩ {|z| > 1}|.
Indeed, the following stronger statement holds: if the spectrum of T is con-
tained in the annulus {α < |z| < β}, then E has an equivalent norm | · |
such that, denoting by ‖ · ‖ the corresponding operator norm,

(3) ‖T‖ ≤ β, ‖T−1‖ ≤ 1/α.

If | · |0 is any equivalent norm on E, a norm | · | satisfying (3) can be defined
as

|ξ| =
∞∑

n=1

αn|T−nξ|0 +
∞∑

n=0

β−n|Tnξ|0,

as shown by the spectral radius theorem (see for instance [HPS77, Proposi-
tion 2.8]).

The local stable manifold. Let U be an open neighborhood of 0 in the
Banach space E, and let f : U → f(U) ⊂ E be a Ck diffeomorphism,
1 ≤ k ≤ ω, having 0 as a hyperbolic fixed point. Let T = Df(0), let
E = Es⊕Eu be the corresponding splitting, and let | · | be an adapted norm
on E for the hyperbolic operator T . If V is a closed linear subspace of E,
we denote by V (r) the closed ball in V of radius r. By the first property of
adapted norms (2), E(r) = Es(r) ×Eu(r).

Given r > 0 such that E(r) ⊂ U , the local stable manifold of 0 is the set

W s
loc,r(0) :=

{
p ∈

⋂

n∈N

f−n(E(r))
∣∣∣ lim
n→∞

fn(p) = 0
}
.

This definition depends on r. However, if r0 is small enough,

(4) W s
loc,r(0) = W s

loc,r0(0) ∩ E(r) ∀r ≤ r0.

Indeed, the first set is contained in the second by definition. Let us prove
that the other inclusion holds when r0 is small. The point 0 ∈ W is a fixed
point of the Ck map f∗|W : W → W . By (1) and by the second property of
adapted norms (2),

‖Df∗(0)|T0W‖ = ‖T∗|T0W‖ ≤ λ < 1,

so a first order approximation shows that f∗|W is locally a contraction at 0.
In particular, there exists r0 > 0 such that ‖f∗(u)‖∞ ≤ ‖u‖∞ for every
u ∈ W with ‖u‖∞ ≤ r0. Since f∗ coincides with the shift S on W , this
is equivalent to saying that |u(n)| = |fn(u(0))| is a decreasing sequence if
u ∈ W and ‖u‖∞ ≤ r0. The conclusion follows.

Theorem 3.1 (Local stable manifold theorem). Let U be an open neigh-

borhood of 0 in the Banach space E, f : U → f(U) ⊂ E be a Ck diffeomor-

phism, 1 ≤ k ≤ ω, having 0 as a hyperbolic fixed point , inducing the splitting
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E = Es ⊕ Eu. If r > 0 is small enough, then W s
loc,r(0) is the graph of a Ck

map w : Es(r) → Eu(r) such that w(0) = 0 and Dw(0) = 0.

Proof. Since ev0 |W is a Ck immersion, it is an embedding of an open
neighborhood of 0 in W . Therefore, if r0 is small enough the set

{ev0(u) |u ∈ W , ‖u‖∞ < r0}

is a Ck submanifold of E, with tangent space at 0 equal to D ev0(0)T0W =
Es. Then, if r < r0 is small enough, the set

W s
loc,r0(0) ∩E(r) = {ev0(u) |u ∈ W , ‖u‖∞ < r0} ∩E(r)

is the graph of a Ck map w : Es(r) → Eu(r) such that w(0) = 0 and
Dw(0) = 0, and the conclusion follows from (4).

4. The diffeomorphism class of the global stable manifold

Characterization of diffeomorphisms such that W s(x) is an immersed

copy of Es. A hyperbolic fixed point x of a diffeomorphism f : M ⊂M ′ →
f(M) ⊂M ′ is said to be a local attractor if W s(x) is a neighborhood of x, or
equivalently (5) if Es = TxM . It is said to be a global attractor if W s(x) = M
(in particular, f(M) ⊂ M), in which case f is said to be a topological

contraction of M .

Definition 4.1. Let U be an open neighborhood of 0 in the Banach
space E, and let f : U → f(U) ⊂ E be a diffeomorphism of class Ck,
1 ≤ k ≤ ω, such that the hyperbolic fixed point 0 is a local attractor. We
say that the germ of f at 0 extends to a Ck topological contraction of E if it
can be represented by a global Ck diffeomorphism of E having 0 as a global
attractor.

In other words, we require the existence of a global diffeomorphism f̃ :
E → E of class Ck which coincides with f in a neighborhood V ⊂ U of 0,
and which is a topological contraction. If we want f̃ to be only Lipschitz,
its existence is always guaranteed:

Lemma 4.2. Under the assumptions of Definition 4.1, there always exists

a homeomorphism f̃ : E → E such that f̃ and f̃−1 are globally Lipschitz , f̃
coincides with f in a neighborhood V ⊂ U of 0, and 0 is a global attractor.

Proof. Let T = Df(0) and let |·| be an adapted norm for T ; if ‖·‖ denotes
the corresponding operator norm, we have ‖T‖ < 1. Let ϕ : E → E be a k-
Lipschitz bounded map which coincides with the identity in a neighborhood
of 0 (for instance, ϕ(ξ) = χ(|ξ|)ξ with χ(s) = 1 for s ≤ 1, χ(s) = 2 − s for
1 ≤ s ≤ 2, χ(s) = 0 for s ≥ 2, has the required properties, with lipϕ ≤ 3).

(5) Indeed, if Es 6= TxM the local stable manifold has empty interior, so by the Baire
theorem the global stable manifold cannot fill an open set.



124 A. Abbondandolo and P. Majer

Write f as f(ξ) = T (ξ + f0(ξ)). Since f0 is at least C1 and Df0(0) = 0, we
can find a neighborhood U0 of 0 such that

lip f0|U0 < 1/k, θ := (1 + k lip f0|U0)‖T‖ < 1.

Up to replacing ϕ(ξ) by λϕ(ξ/λ)—which is still k-Lipschitz—we may assume
that ϕ(E) ⊂ U0, and we set

f̃ : E → E, f̃(ξ) = T (ξ + f0(ϕ(ξ))).

The map f̃ is a Lipschitz diffeomorphism of E onto E together with its
inverse because lip(f0 ◦ϕ) ≤ k lip f0|U0 < 1. Moreover, f̃ = f in a neighbor-
hood of 0, and

|f̃(ξ)| ≤ ‖T‖(|ξ| + |f0(ϕ(ξ))|) ≤ ‖T‖(1 + k lip f0|U0)|ξ| = θ|ξ|,

so the fact that θ < 1 implies that 0 is a global attractor.

In the analytic category the extension of a germ is unique (and not always
possible, even in finite-dimensional spaces), so the requirement of Definition
4.1 is quite strong. A weaker property is given by the following:

Definition 4.3. Under the same assumptions of Definition 4.1, we say
that the germ of f at 0 extends up to conjugacy to a Ck topological con-

traction of E if there exists a Ck diffeomorphism h : V → h(V ) of an open
neighborhood of 0 with h(0) = 0 such that the germ of h ◦ f ◦ h−1 at 0
extends to a topological contraction of E.

For instance, if an analytic diffeomorphism is analytically linearizable
near a hyperbolic local attractor, then it extends up to conjugacy to an
analytic topological contraction of E. This latter definition is relevant also
in the smooth and in the finite differentiability category because it extends
to diffeomorphisms defined on manifolds:

Definition 4.4. If U is an open neighborhood of x in the Banach man-
ifold M (modeled on the Banach space E) and f : U → f(U) ⊂ M is a Ck

diffeomorphism, 1 ≤ k ≤ ω, having x as a local attractor, we say that the
germ of f at x extends up to conjugacy to a Ck topological contraction of E
if the germ of diffeomorphism on an open neighborhood of 0 in E defined
by conjugacy by a local chart (mapping x into 0) extends up to conjugacy
to a topological contraction of E.

Clearly, this definition does not depend on the choice of the local chart.

Theorem 4.5. Let f be a Ck diffeomorphism of the Ck Banach mani-

fold M modeled on the Banach space E, 1 ≤ k ≤ ω, and assume that the

hyperbolic fixed point x ∈M is a global attractor. Then M is homeomorphic

to E by a bi-locally Lipschitz homeomorphism. Furthermore, M is Ck dif-

feomorphic to E if and only if the germ of f at x extends up to conjugacy

to a Ck topological contraction of E.
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Proof. Let U ⊂ M be an open neighborhood of x in M , and let ψ :
U → ψ(U) ⊂ E be a Ck local chart with ψ(x) = 0. Consider the Ck

diffeomorphism

g = ψ ◦ f ◦ ψ−1 : ψ(U ∩ f−1(U)) → ψ(U ∩ f(U)) ⊂ E.

By Lemma 4.2, there exists an invertible topological contraction h : E →
E which is locally Lipschitz together with its inverse and which coincides
with g in an open neighborhood V ⊂ ψ(U ∩ f−1(U)) of 0. If we are also
assuming that the germ of f at x extends up to conjugacy to a Ck topological
contraction of E, up to changing the local chart ψ we may assume that h is
a Ck diffeomorphism.

Let us define the global homeomorphism φ : M → E. Let p ∈ M . Since
W s(x) = M , there exists n ∈ N such that fn(p) ∈ ψ−1(V ), and we set

φ(p) = h−n(ψ(fn(p))).

Since ψ conjugates the diffeomorphisms f |ψ−1(V ) and h|V = g|V , this defini-
tion does not depend on the choice of n. The map φ is invertible, its inverse
being the map

φ−1(ξ) = f−n(ψ−1(hn(ξ))),

for n = n(p) so large that hn(ξ) ∈ V . So φ is the required locally Lip-
schitz homeomorphism, and when h is a Ck diffeomorphism, φ is also a Ck

diffeomorphism.

Conversely, assume that there is a Ck diffeomorphism φ : M → E. Up to
composition with a translation, we may assume that φ(x) = 0. In particular,
φ is a local chart mapping x into 0, and φ◦f ◦φ−1 is a global diffeomorphism
of E onto E which is a topological contraction of E. This shows that the
germ of f at x extends up to conjugacy to a Ck topological contraction
of E.

Let us consider the general case W s(x) 6= M . Denote by W s
loc(x) the

image under ev0 of a neighborhood of x in W so small that ev0 is an em-
bedding on it. Then W s

loc(x) ⊂ W s(x) is a Ck submanifold modeled on the
Banach space Es.

Corollary 4.6. Let f : M → M be a Ck diffeomorphism of a Banach

manifold , 1 ≤ k ≤ ω. Let x be a hyperbolic fixed point of f , with associated

splitting TxM = Es ⊕Eu. Then the Ck manifold W is homeomorphic to Es

by a bi-locally Lipschitz homeomorphism. Furthermore, W is Ck diffeomor-

phic to Es if and only if the germ of f |W s
loc(x)

at x extends up to conjugacy

to a Ck topological contraction of Es.

Indeed, it is enough to apply Theorem 4.5 to the diffeomorphism f∗ of
the manifold W .
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Since the evaluation at zero defines a local conjugacy between the re-
striction of f∗ to a small neighborhood of x in W and the restriction of f
to W s

loc(x), the above corollary can be restated in the following way: W s(x)
is always the image of a locally Lipschitz and locally closed injective map
Es →֒M , which can be chosen to be also a Ck immersion if and only if the
germ of f |W s

loc(x)
at x extends up to conjugacy to a Ck topological contrac-

tion of Es.
The statement about the locally Lipschitz homeomorphism in the above

corollary is the first part of Theorem B.

Regularity conditions on the Banach space E. If 1 ≤ k ≤ ∞ and the
Banach space is somehow regular, one may expect that every germ of Ck

diffeomorphism having 0 as a hyperbolic local attractor extends to a Ck

topological contraction of E. This is actually true for a large class of Banach
spaces. Indeed let us consider the following conditions on E:

(E1) E is finite-dimensional;
(E2) E has a Hilbert structure;
(E3) there exists a Ck norm on E (i.e. an equivalent norm | · | such that

the function ξ 7→ |ξ| is Ck on E \ {0});
(E4) there exists a bounded Ck map ϕ : E → E which coincides with

the identity on a neighborhood of 0;
(E5) there exists a bounded Ck map ϕ : E → E such that ϕ(0) = 0 and

Dϕ(0) = I.

It is readily seen that (E1)⇒(E2)⇒(E3)⇒(E4)⇒(E5). For instance, if E
admits a Ck norm | · |, a Ck map ϕ satisfying (E4) can be defined as

ϕ(ξ) = χ(|ξ|)ξ,

where χ : [0,+∞) → R is a smooth function with compact support and
such that χ(s) = s for s ≤ 1. Condition (E4) was considered by Atkin
[Atk01], who observed that it may also hold for Banach spaces which do not
have regular norms. For instance, the Banach space ℓ∞ = ℓ∞(N,R) does
not admit a smooth norm, but it supports a smooth map ϕ satisfying (E4),
namely

ϕ(u)(n) = χ(u(n)), ∀n ∈ N,

where χ : R → R is a smooth bounded function coinciding with the identity
in a neighborhood of 0. A similar construction works for the Banach space
L∞(X,F , µ), (X,F , µ) a measure space, and for the Banach space C0(K,R),
K a compact topological space.

Condition (E5) holds for a large class of Banach spaces, even in the
case k = ω, when (E4) is obviously never fulfilled. For instance, the spaces
L∞(X,F , µ) and C0(K,R) admit the analytic map

u 7→ sinu,
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which satisfies (E5). It is not clear whether (E4) and (E5) are equivalent for
k < ω.

Even if we do not know any counterexample, it is not likely that every
Banach space admits a smooth map satisfying (E4) or (E5). In any case, it
would be interesting to characterize the class of Banach spaces which admit
such maps. At the moment, the situation is unclear even for simple spaces
such as ℓ1.

The case of finite differentiability. The following result, together with
Corollary 4.6, implies part (i) of Theorem B.

Proposition 4.7. Let 1 ≤ k ≤ ∞, and assume that the Banach space

E satisfies condition (E4) above. Let U ⊂ E be an open neighborhood of 0,
and let f : U → f(U) ⊂ E be a Ck diffeomorphism with hyperbolic fixed

point 0 which is a local attractor. Then the germ of f at 0 extends to a Ck

topological contraction of E.

Notice that if the map ϕ appearing in (E4) is also globally Lipschitz, we
could argue as in Lemma 4.2, writing f = T ◦ (id + f0) and then using ϕ
to extend f0 to a Ck map on E with small Lipschitz norm. Without this
assumption, a natural idea is to see id + f0 as the time-one map obtained
by integrating a time dependent small vector field X, and then use ϕ to
extend X. We therefore need the following easy:

Lemma 4.8. Let 1 ≤ k ≤ ω, let U ⊂ E be an open neighborhood of 0,
and let g : U → E be a Ck map such that g(0) = 0 and Dg(0) = I. Then

there exists a neighborhood V ⊂ U of 0 and a Ck map X : [0, 1] × V → E
such that X(t, 0) = 0, D2X(t, 0) = 0 for every t ∈ [0, 1], and the solution of

the Cauchy problem

∂tG(t, ξ) = X(t, G(t, ξ)), G(0, ξ) = ξ,

satisfies G(1, ξ) = g(ξ) for every ξ in some neighborhood of 0.

Proof. The differential with respect to the second variable of the Ck map

G : [0, 1] × U → E, G(t, ξ) = tg(ξ) + (1 − t)ξ,

namely tDg(ξ) + (1 − t)I, is uniformly invertible for every (t, ξ) in a neigh-
borhood of [0, 1] × {0}. By the parametric inverse mapping theorem, there
exist a neighborhood V of 0 and a Ck map H : [0, 1] × V → E such that

H(t, G(t, ξ)) = ξ ∀(t, ξ) ∈ [0, 1] × V.

Setting

X(t, η) = g(H(t, η))−H(t, η),

we conclude that X has the desired properties.
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We can now prove Proposition 4.7.

Proof of Proposition 4.7. Let T =Df(0) and let | · | be an adapted norm
for T , so that T becomes a contraction. Consider the diffeomorphism g =
T−1f , whose differential at 0 is the identity operator. LetX∈Ck([0, 1]×V,E)
and G be as in Lemma 4.8. By assumption, there is a Ck map ϕ : E → E
whose image is contained in Br0(0), which coincides with the identity map
on Bs0(0), for some 0 < s0 < r0 < +∞. Since X(t, 0) = 0 and D2X(t, 0) = 0
for every t ∈ [0, 1], we can find r > 0 such that

(5) |X(t, ξ)| ≤ ε|ξ| ∀(t, ξ) ∈ [0, 1] ×Br(0),

where ε > 0 is so small that eεr0/s0‖T‖ < 1. The Ck map

ψ(ξ) =
r

r0
ϕ

(
r0
r
ξ

)

takes values in Br(0), and coincides with the identity mapping on Bs(0),
with s = rs0/r0. The time dependent Ck vector field

X̃ : [0, 1] × E → E, X̃(t, ξ) = X(t, ψ(ξ)),

coincides with X on [0, 1] × Bs(0), so by (5), |X̃(t, ξ)| ≤ ε|ξ| there. On the
other hand, if |ξ| ≥ s,

(6) |X̃(t, ξ)| = |X(t, ψ(ξ))| ≤ ε|ψ(ξ)| ≤ εr ≤ ε
r

s
|ξ| = ε

r0
s0

|ξ|.

We conclude that the above estimate holds for every (t, ξ) ∈ [0, 1] × E.

Therefore, the solution G̃ of the Cauchy problem

∂tG̃(t, ξ) = X̃(t, G̃(t, ξ)), G̃(0, ξ) = ξ,

is defined for every (t, ξ) ∈ [0, 1]×E, coincides with G in a neighborhood of
[0, 1] × {0}, and by (6) it satisfies

(7) |G̃(t, ξ)| ≤ eεr0t/s0 |ξ| ∀(t, ξ) ∈ [0, 1] × E.

Since G(1, ξ) = g(ξ), the global Ck diffeomorphism

g̃ : E → E, g̃(ξ) = G̃(1, ξ),

coincides with g in a neighborhood of 0. Then the Ck diffeomorphism f̃ = T g̃
coincides with f in a neighborhood of 0. Finally, by (7),

|f̃(ξ)| ≤ ‖T‖ |g̃(ξ)| ≤ ‖T‖eεr0/s0 |ξ|,

and the fact that eεr0/s0‖T‖ < 1 implies that the hyperbolic fixed point 0 is
a global attractor.

The smooth and analytic cases. It remains to prove part (ii) of Theo-
rem B. Let us start by examining some consequences of assumption (E5)
(here by Taylor polynomial we mean Taylor polynomial at 0):
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Lemma 4.9. Let k = ∞ or k = ω. The following facts are equivalent :

(i) there exists a bounded map ϕ ∈ Ck(E,E) such that ϕ(0) = 0 and

Dϕ(0) = I;
(ii) every polynomial map p : E → E with deg p ≤ n is the Taylor

polynomial of order n of some bounded map ψ ∈ Ck(E,E);
(iii) if ε > 0, K is a compact manifold of class Ch, 0 ≤ h ≤ ω, U is an

open neighborhood of 0 in E, F is a Banach space, and φ : K×U →
F is a Ch map such that for every x ∈ K the map φ(x, ·) : E → F is

of class Ck and φ(x, 0) = 0, then there exists a map ψ : K×E → F
with the same regularity such that sup |ψ| < ε and for every x ∈ K
the Taylor polynomials of order n of φ(x, ·) and of ψ(x, ·) coincide.

Proof. Statement (i) is a particular case of (ii): take p(x) = x and n = 1.
Statement (ii) is a particular case of (iii): take K a singleton, φ = p− p(0).
So it is enough to prove that (i) implies (iii). Given ϕ satisfying (i), it is easy
to construct a bounded map ϕn ∈ Ck(E,E) such that ϕn(ξ) = ξ + o(|ξ|n)
as ξ → 0. Indeed, one may define ϕn inductively as

{ϕ1 = ϕ,

ϕn+1(ξ) = ϕn

(
ξ −

1

(n+ 1)!
Dn+1ϕn(0)ξn+1

)
.

Let φ : K × U → F be the map appearing in (iii). By replacing ϕ(ξ) by
λϕ(ξ/λ) in the above construction, we may assume that the image of ϕ
(hence also of ϕn) is contained in a neighborhood V ⊂ U of 0 which is
so small that supK×V |φ| < ε (such a neighborhood exists because φ is
continuous, and it vanishes on the compact set K × {0}). Then the map

ψ(x, ξ) = φ(x, ϕn(ξ))

has the required properties.

The proof of Proposition 4.11 below relies on the following classical con-
jugacy result (see for instance [CFdlL03a]):

Theorem 4.10. Let k = ∞ or k = ω. Let U ⊂ E be an open neigh-

borhood of 0, and let f : U → f(U) ⊂ E be a Ck map with f(0) = 0, and

Df(0) = T an isomorphism with spectral radius ̺(T ) < 1. Then f is Ck

locally conjugate to its Taylor polynomial of order n, provided that n is so

large that ̺(T−1)̺(T )n+1 < 1.

Theorem B(ii) is a consequence of Corollary 4.6 and of the following:

Proposition 4.11. Let k = ∞ or k = ω, and assume that the Banach

space E satisfies condition (E5). Let U ⊂ E be an open neighborhood of 0,
and let f : U → f(U) ⊂ E be a Ck diffeomorphism with hyperbolic fixed

point 0 which is a local attractor. Then the germ of f at 0 extends up to

conjugacy to a Ck topological contraction of E.
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Proof. Let T = Df(0) and let | · | be an adapted norm for T , so that
T becomes a contraction. Consider the diffeomorphism g := T−1f , whose
differential at 0 is the identity operator. Let X ∈ Ck([0, 1]×V,E) and G be
as in Lemma 4.8: G is the map obtained by integrating the time dependent
vector field X, and G(1, ·) = g in a neighborhood of 0.

Consider the Ck map

φ : [0, 1] × V → L(E), φ(t, ξ) = D2X(t, ξ).

Fix n ∈ N so large that

(8) ̺(T−1)̺(T )n+1 < 1,

and ε > 0 so small that eε‖T‖ < 1. Since φ(t, 0) = D2X(t, 0) = 0, by Lemma
4.9 there exists a Ck map ψ : [0, 1] × E → L(E) such that

(9) sup
(t,ξ)∈[0,1]×E

‖ψ(t, ξ)‖ < ε

and for every t ∈ [0, 1] the Taylor polynomials of order n − 1 of φ(t, ·) and
ψ(t, ·) coincide. Equivalently,

(10) ψ(t, ξ) − φ(t, ξ) = o(|ξ|n−1) as ξ → 0,

uniformly in t ∈ [0, 1]. Consider the globally defined time dependent vector
field of class Ck,

X̃ : [0, 1] ×E → E, X̃(t, ξ) =

1\
0

ψ(t, sξ)ξ ds.

By (9),

(11) |X̃(t, ξ)| ≤
1\
0

‖ψ(t, sξ)‖ |ξ| ds ≤ ε|ξ| ∀(t, ξ) ∈ [0, 1] × E.

Since

X(t, ξ) =

1\
0

d

ds
X(t, sξ) ds =

1\
0

D2X(t, sξ)ξ ds =

1\
0

φ(t, sξ)ξ ds,

by (10) we have

X̃(t, ξ) −X(t, ξ) =

1\
0

(ψ(t, sξ) − φ(t, sξ))ξ ds = o(|ξ|n) as ξ → 0,

uniformly in t ∈ [0, 1]. Therefore, X(t, ·) and X̃(t, ·) have the same Taylor
polynomial of order n. An easy induction argument then shows that G(t, ·)

and the solution G̃(t, ·) of the Cauchy problem

∂tG̃(t, ξ) = X̃(t, G̃(t, ξ)), G̃(0, ξ) = 0,

have the same Taylor polynomial of order n, for every t ∈ [0, 1]. In particular,

g(ξ) = G(1, ξ) and g̃(ξ) := G̃(1, ξ) have the same Taylor polynomial of



Global stable manifold 131

order n. The same happens for f = T ◦ g and f̃ := T ◦ g̃, so by (8) Theorem

4.10 implies that f and f̃ are Ck locally conjugate at 0.
Since X̃ has linear growth by (11), the map G is well defined on [0, 1]×E,

and G(t, ·) is a Ck diffeomorphism of E onto E for every t ∈ [0, 1]. By (11),

|f̃(ξ)| ≤ ‖T‖ |g̃(ξ)| ≤ ‖T‖eε|ξ|,

so the fact that eε‖T‖ < 1 implies that f̃ is a topological contraction of E,
concluding the proof.
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