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Domains of Dirichlet forms and effective
resistance estimates on p.c.f. fractals

by

JIAXIN HU (Beijing) and XINGSHENG WANG (Glasgow)

Abstract. We consider post-critically finite self-similar fractals with regular har-
monic structures. We first obtain effective resistance estimates in terms of the Euclidean
metric, which in particular imply the embedding theorem for the domains of the Dirichlet
forms associated with the harmonic structures. We then characterize the domains of the
Dirichlet forms.

1. Introduction. Let (K, {F;}},) be a post-critically finite (p.c.f.) self-
similar fractal in R™ (n > 1) with a regular harmonic structure (H,r), and
let (£, D) be the Dirichlet form associated with (H,r). Let R be the effective
resistance determined by the form (£, D). In this paper, we are concerned
with the following problems:

(1) What is the relationship between R and the Euclidean metric?
(2) How to characterize the domain D of &7

These two problems are important in studying the dynamical aspects of
fractals, such as PDE’s, Brownian motions, heat kernels, and function spaces
on fractals.

Recall that the answer to the first problem above is obvious if K is a
bounded open interval in R and £ is the classical energy form with respect
to the Lebesgue measure,

(1.1) E(f.9) ==\ Vf Vgda.

K

N =

As a matter of fact, there exists some ¢ > 0 such that, for all z,y € K,

(1.2) ¢ o —yl < R(z,y) <clz—yl
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The second inequality in (1.2) follows by using the definition of R (see (2.9)
below) and the Sobolev embedding theorem:

(1.3) () = F()] < 2o —y|2E(f, £)?

(see for example [1, formula (9), p. 98]). The first inequality in (1.2) also
follows; this is because for any x¢ < yg in K, letting

0 if x < x,
fo(z) = ¢ (z —20)/(yo — w0) if 20 < 2 <y,
1 if z > yo,
we obtain
E(fo, fo) = % | 1£5(2)? da = % lyo — @0l ™",

K

and then use the definition (2.8) below (cf. [18, Sect. 1.6]). Note that for the
higher-dimensional case, there does not exist such an elegant estimate for R
as in (1.2).

The second problem above is also easy for the classical case: if K is an
open domain in R™ (n > 1) and € is as in (1.1), then the domain D of £ is
just W12(K), the usual Sobolev space on K.

However, for the fractal case, the above two problems are non-trivial.
Recall that for problem (1), if K is a nested fractal, there exists a geodesic
metric d on K, and Barlow |2, Lemma 8.17] obtained the following relation-
ship between R and d:

R(z,y) ~ d(z,y)’,

where 0 = log o/log~, and g, are the resistance and shortest path scaling
factors, respectively. If K is a Sierpinski gasket in R?, Strichartz [18, Sect. 1.6]
obtained a relationship between R and the Euclidean metric:

(1.4) R(z,y) ~ |z —y|*~%,

where df = log3/log2 and d,, = log5/log?2 are, respectively, the Hausdorff
and walk dimensions of the Sierpinski gasket. Under certain mild conditions,
we shall obtain in Section 3 a relationship between R and the Euclidean
metric for p.c.f. fractals with regular harmonic structures. (If the harmonic
structure is not regular, then R(z,y) may be infinite for some points = and y,
but |z — y| < oo for any z,y € K since K is bounded. So R cannot be
controlled from above by the Euclidean metric. Therefore, the estimate (1.4)
fails.) In particular, we show that (1.4) holds with different exponents for a
certain class of nested fractals. (One may use the heat kernel estimates in
[12] to derive (1.4) for some nested fractals—but this is another story.)

As for problem (2), the first result was obtained by Jonsson [9] for the
Sierpinski gasket K in R™. It was shown that the domain D of the energy
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form & is equivalent to a Sobolev-type space on K, that is,
(1.5) D= W2 () = {f € L*(K, ) : W o(f) < 00},

where p is the o := log(n + 1)/log 2-dimensional Hausdorff measure on K,
B = log(n + 3)/log?2 is the walk dimension, and

(1.6) ngg(f):osuplr*(a*ms V1) — F@) P du(y) dp(z).
<r< K B(z,r)

Here B(z,r) ={y € K : |[y—x| < r} is the ball of radius  and center = in K
under the Euclidean metric. (Note that Jonsson used Lip(3/2,2, 00) (K, i) to
denote the space W5/22(11).) Pietruska-Patuba generalized Jonsson’s result
to a certain class of nested fractals in R™ (see [16]).

On the other hand, one can characterize the domain D of the energy
& with the help of heat kernel estimates. Assume that the heat kernel (or
transition density) p(t, z,y) exists on K, and satisfies

(L7) B (Pl — y) < ptay) < OBtz — y)

for all z,y € K and 0 < t < 1, where «,( > 0 and ®; > 0 is continuous
and decreasing on [0,00) for i« = 1,2. Under certain mild assumptions on
@1 and Py, one can show that the domain D of the Dirichlet form (£, D)
associated with the heat kernel p(¢, z,y) is equivalent to Wﬂ/m(u), where
is the a-measure on K (that is, u(B(z,7)) ~ r%); see [17] for the Euclidean
case and [4] for metric spaces. However, it is rather complicated to obtain
heat kernel estimates like (1.7) (see [7, 13| for p.c.f. fractals with regular
harmonic structures).

In Section 4, we characterize the domain D of the energy £ on p.c.f.
fractals with regular harmonic structures. We avoid using the heat kernel
estimates, and present a direct proof. We do follow the technique in [9],
but there are some new twists in our proof. The effective metric R and the
self-similar measure p with the standard weights will be used in defining
the function spaces Wﬁ/m(,u). We mention in passing that a closely related
problem was studied in [11], where the domain of the Laplacian on p.c.f.
self-similar sets was characterized.

Notation. The constants in this paper sometimes change from line to
line while they are all denoted by the same letter c. The integers M, M; and
constants ¢; are fixed for ¢ > 0. For two non-negative functions f,g, by f ~ g
we mean that there is some ¢ > 0 such that ¢71f < g <cf.

2. Preliminaries

2.1. p.c.f. fractals and Dirichlet forms. We first recall the concept of
p.c.f. fractals introduced by Kigami [10].
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Let M > 2 be an integer, and set S = {1,...,M}. Let W, = J,,,~, 5™
be the collection of all finite words. Let (X, d) be a complete metric space,
and let {F;}M, be a family of strict contractions on (X, d). Then there exists
a unique non-empty compact subset K of X such that

M
(2.1) K =|JFi(K)
=1

(see [8] or [3]). For any word w = iy i, € S™, any sequence {p;}M, of
positive numbers and any function f : K — R, denote by |w| = m the length
of w, and set

Fw:Filo"'oﬂmv Kw:Fw(K)a

Pw = Piy * " Pims fw:fon-
For the empty word w, set p,, = 1 and Fy, = id. Write B(xo,7) = {y € K :

ly — xo| < r} for g € K and r > 0.
Define a continuous surjection 7 : SN — K by

{m(w)} = () Fiyoin (K)
m>1
for any infinite word w = i35 --- € SN. Let
c=xinky), r=x7c), P=Jo"D),
i#] n>1

where o : SN — SN is the shift map defined by

o(iyinis ) = igiz- - .
If P is finite, the triple (K, S, {F;}ics) is termed a post-critically finite self-
similar set (see [10, Definition 1.3.13, p. 23]). Let
22)  Vo=7P), Vm= {J Fu() (m=>=1), Vi=] Va

wes™m m>0

If (K, {F;}},) is a p.c.f. fractal, then V;;, C Vi1 (m > 0). From now on we
assume that (K, {F;}M,), or simply K, is a p.c.f. fractal.

We now recall how to construct a Dirichlet form on a p.c.f. fractal K.
Let Vy be as in (2.2), and ¢(Vp) = {f : Vo — R} be the collection of all
real functions on V. Let H = (Hpq)pqev, be a Laplace matriz, or simply a
Laplace, on Vj, that is, for any f, g € £(V}),

o H,, = Hy >0 for any p # q € Vp;

o (f) Hg) = ZpEVg f(p)(ZqGVO Hpqg(q)) S O’
e Hf =0 if and only if f is constant.
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Given a Laplace H on Vj, and a family r = {Ti}ij\i1 of positive numbers,
we define an energy form &£, on V,, for m > 0 by

gO(fvg) = _(f’ Hg)’
(2'3> Em(f,g) = Z T;lgo(fwagw) (m > 1)7

wes™
for f,g: Vi, — R. In what follows, we write &,,(f) := En(f, f) for simplicity.
If there exists a pair (H,r) such that the variational problem

(2.4) min{&1(g) : glv, = f} = & (f)
is solvable for any f € ¢(Vp), then we say that (H,r) is a harmonic structure
for K. If in addition r; < 1 for all 1 < ¢ < M, then the harmonic structure
is said to be regular (see [10, Definition. 3.1.2, p. 69]).
From now on we assume K has a regular harmonic structure (H, {r;}}1,).
Note that (2.4) implies that the sequence {&,,(f)}m>0 is non-decreasing
in m for any f:V, — R. Let

(2.5) E(f) = lim &n(f),

m—00
(2.6) D= {feC(K): &(f) < oo},
where C(K) is the space of all continuous functions on K. It is known that
(€,D) defined as in (2.5) and (2.6) is a local, regular, irreducible Dirichlet
form on L?(K,u) for any Borel measure p which charges every set of the
form K,, for w € S™ (see |2, Theorem 7.14, p. 99] or [10, Theorem 3.4.6,

p. 92]). Clearly & is self-similar: for any f € D, we have foF; € D for each i,
and

(2.7) Ef)=) 1 'E(foFy).
€S
We call {r;}M, the weights of the energy .
In order to characterize the domain D of the form (&,D), we need the

effective resistance R on K. Let R : K x K — [0, 0] be defined by R(x,z)=0
for x € K, and

(2.8) R(z,y)" = f{&(f) : fx) =0, fly) =1}
for any x # y € K. Note that (2.8) is equivalent to
(2.9) R(z,y) = sup{|f(x) = f(y)I?/E(f) : E(f) > 0}

for x # y € K. It turns out that R is a metric on K, and the topology
induced by R is equal to the original topology on K (see [10, Theorem 3.3.4,
p. 85] or 2, Proposition 7.18, p. 101]).

2.2. Partition. The idea of partition on p.c.f. fractals (going back to
Hambly [6]) will be useful in our analysis. Let a = {a;}}, be a family of
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numbers with 0 < a; < 1 for each i. For 0 < A < 1, define
(2.10) NAaN)={w=1i1-im:ay < A<a;--a, ,}

with the convention that ag = 1. We call Aa(\) the partition with respect to
a and A. Note that the set Aa()\) is finite; this is easily seen since 0 < A < 1
and 0 < a; < 1 for each 7. For simplicity, for 7,w € Ay(\) write

T~w if KN Ky, #0.

For z,y € K, we write x ~ y if z,y € K,, for some w € Aa(N). Clearly, by
(2.1) and (2.7), we see that, for any partition Aa(A),

(2.11) K= |J Ku &fH= > r'Etw) (feD),

wE/la()\) weAa(A)
For f:V, —= R and 0 < A\ < 1, define
(2.12) af)i= Y ra'éolfw).
wEAr ()

PROPOSITION 2.1. Let (K, {F;}M,) be a p.c.f. fractal with a regular har-
monic structure (H, {r;}} ). Then {Ex(f)} is increasing as A \, 0 for any f,
and

(2.13) lim £3(/) = £(f), [ €D.

Proof. Let 0 < A\ < A2 < 1. Then the partition A,()\2) is a “father”
of Ay(A1), that is, any word w € Ap(A1) can be written as w = 7w’ with
7 € Ar(A2) and w' € W, with w’ being possibly an empty word. Indeed, let

w:i1~-'im6/lr()\1)\/lr()\2) (mZ 1).
Then Ay > 7;, -+ -7, ; otherwise we would have
Tiv = Tipy < )\1 < )\2 < Tiy  Tip_1s

and so w =iy -+ iy € Ap(A2) by the definition, a contradiction. Let 1 < k <
m — 1 be an integer such that

Tip * Ty, < )\2 < T ER & PR

This implies 7 := i1 -+ - i € Ar(A2). Setting w' := ig11 - iy, we see that
w = 7w’ with 7 € Ap(A2). This shows that Ap(A\2) is a father of Ap(A1).
Therefore, for f € D,

En) = D ra'&lfe)= > & (fr) = En(f),
wEAr (A1) TEAr(A2)

proving that {€,(f)} is decreasing in \ for any f. Here, the inequality follows
from both the harmonic structure and the post-critical finiteness of K.
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Finally, for 0 < A < 1, letting
m1 =mi(r,A) = min{|w| : w € A (\)},
ma = meo(r,\) = max {|w| : w € A(N\)},
we see that S™! is a father of A,(\), and A;(\) a father of S™2. Hence,
Emi(f) S ENS) < Ema(f)  (f €D).
Thus

E(f) = Tim &, (f) < TmES) < i Eny(f) = E(f).

mi—o0 mg—00

3. Effective resistance estimates. In this section we give two-sided
estimates of the effective resistance R in terms of the Euclidean metric. The
two exponents appearing in the two-sided estimates of R are calculated for
some fractals, both nested and non-nested.

THEOREM 3.1. Let (K,{F;}M,) be a p.c.f. fractal in R™ with a regular
harmonic structure (H,{r;}}1,). Assume that s; < 1 is the contraction ratio
of F;, that is,

[Fi(z) = Fi(y)| < sile =yl for z,y € R™.

Then there exists some ¢ > 0 such that, for all x,y € K,

1 .
(3.1) ¢ Ha—y|™ < R(z,y) where ar = iy 12?2'

Proof. Let xg # yo € K. Without loss of generality, assume that
R(z0,y0) < (2¢1)7"
where ¢; > 0 will be determined below. Set
A = 2c1R(zo,y0) < 1.

Then A,(\) is a partition. There exist two words wy,ws € Ay (A) such that
xo € Ky, and yg € K,,,. We claim that

Ky, N Ky, #0.
Otherwise there would exist a A,(\)-harmonic function f satisfying
(32) f’le =1 and f’VA\le = 0,

where Vy, := F, (Vo) for w € Wy, and Vi = Uyea, ) Fu (Vo). (We say that
a function f on K is Ap(\)-harmonic if E(f,¢) = 0 for any ¢ € D with
@’VA =0.)
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Note that f(zo) =1 and f(yo) = 0. Since f is Ay(A)-harmonic, we have
(83) &N =aN= D ru'&(fu)

wWEAr(N)
> w(é > Hpq(f(Fw(p))—f(Fw(q)))2>-
weAr(A) P,.a€Vo

Using (3.2), we see that the right-hand side of (3.3) is actually equal to the
sum of the terms

" Hpq(f(Fu(p)) = f(Fu(a))? = ' Hpg,

with w (# wj) running over all the words in Ay(\) with w ~ wj, and p
and ¢ running over V such that Fy,(p) € Vi, (so that f(F,(p)) = 1 and
f(Fy(q)) = 0); all the other terms are equal to zero. Hence, noting that
Tw = ATmin, the right-hand side of (3.3) is bounded by

HmaxMO(MO - 1)T1;1 < Hmax(rmin)_lMO(MO - 1))\_1 = Cl>\_1a

where Hpyax = maxpzqev, Hpg, Mo = Vo and rpin = minr;. Therefore, by
(2.8), it follows that
R(zo,y0) ™" < el

and so
R(z0,90) > ¢ A = 2R(z0, y0),

yielding a contradiction. So the claim holds.
Now let zy € Ky, N Kyy,. Since xg, 29 € Ky, writing zg = Fy, (z) and
20 = Fuy, (2() for some x(), z{, € K, we see that

20 — 20| = | Fuy () = Fuy (25)] < s, diam ()
< (1, )Y diam(K) < A diam (K).
Similarly, noting that yo, 20 € K,, we find that
lyo — 20| < AY*'diam(K).
Therefore,
w0 — yol < |20 — 20| + |20 — yo| < 2\ *1diam(K) = cR(x0,y0)"/*,
giving R(zo,y0) > ¢ g — yo|**. =
To bound R from above, we need the following separation property:

(C1) There exist a family b = {b;}¥, of numbers with 0 < b; < 1 for
every 7, and a constant co > 0 such that, for any 0 < A < 1,

dist(Ky, K7) > o\ i Ky NK, =0
for w, T € Ap(N).
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We remark that cs is independent of A, but may depend on {bl}lj\il Condition
(C1) says that any two disjoint components obtained from any partition
Ap(N) with 0 < A < 1 are a distance at least co\ apart.

THEOREM 3.2. Let (K,{F;}M,) be a p.c.f. fractal in R™ (n > 1) with a
reqular harmonic structure (H,{r;}} ). Assume that condition (C1) holds
for some b = {b;}M,. Then there exists c > 0 such that, for all z,y € K,

logr;
min .
1<i<M log b;
Proof. First note that R(z,y) < ¢ < oo for all z,y € K, since the

harmonic structure is regular (see [10, Theorem 3.3.4, p. 85]). This implies
that

(3.4) R(z,y) < clz —y|** where ay=

|f(2) = fW)I* < Rz, y)E(f) < cE(f)

for any f € D. In particular, for z,y € K,, (w € W), writing = F,(z')
and y = F,(y') for some 2’,y’ € K, we have

(3.5) () = FW)P = |fula’) = fuy ) < cE(fu)-
Now let xg # yo € K. Without loss of generality, we assume that
[Zo — yol < c2/2,

where ¢z is as in condition (C1). Let
2
A= —|zg—yo| < L.
C2
There are two words wy,ws € Ap(A) such that xg € Ky, and yp € Ky,.
Then K, N K, # (); otherwise, condition (C1) would imply
|$0 - y0| > diSt(Kquwz) > CQ)‘ = 2’1‘0 - yO’v

a contradiction. Let zp € Ky, N Ky,. For f € D, as xg,20 € Ky,, We see
from (3.5) and (2.11) that

(3:6)  [flzo) = f(20)* < c€(fun) = T (Fuun) " E(fuur)
< cru, E(f) < c(buw, ) E(f) < AE(S).
Similarly, since zg, yo € Ky,, we have
|/ (20) = f(yo)|? < eA2E(f).
Therefore,
|/ (o) = £(yo)|* < 2(1f (o) — £ (20)” + | (20) = f (o))
< eAE(f) = clwo — yo|*E(S),
which gives
R(xo,y0) < clxo — yo|**.
Thus (3.4) follows. =
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Condition (C1) may be replaced by the following connectivity property:

(C2) There exist b = {b;}}, with 0 < b; < 1 for each i, a (small)
constant c3 > 0 and an integer M; such that, for any 0 < A < 1
and any xo € K, each point y € B(xg,c3\) can be connected to z
by a sequence {x}};°, of points in K with 1 < ng < My, xpy =y
and xp_1 ~ xp for 1 < k < ng.
For a partition Ag(\) with 0 < A < 1, condition (C2) means that any point

y in any ball B(xg,csA) can be connected to its center xg by at most M;
components obtained from the partition Ag(\).

THEOREM 3.3. Let (K,{F;}M,) be a p.c.f. fractal in R™ (n > 1) with a
regular harmonic structure (H,{r;}},). Assume that condition (C2) holds
for some b = {b;}M,. Then there exists ¢ > 0 such that, for all z,y € K,

log 7
(3.7) R(z,y) < clz —y|*® where a3 = min 8T
1M log by

Proof. Let xg # yo € K. Without loss of generality, we assume that
|zo — yo| < c3/2 where c3 is as/\in (C2). Set \ := 2051]300 —yol- Let Ag(X) be
the partition with respect to b and A. Note that yo € B(zo,csA). Then, by
(C2), there exists a sequence {x}.°, of points with 1 < ng < My, 2,y = v,
and

Tg—1, 7 € Ky,  for some wy € Ag(\) (k=1,...,n0).

For f € D, as in (3.6), we have
[f (@) = far1)]” Seru () Selbuw ) PE(f) < AVE(S), k=1,...,n0.

Therefore,

7o) — Fo)l? = () — Fxm))) < mo S (Fe) = Flasr))
k=1 k=1

< eMPAE(S) = clzo — yol E(S),
which implies that
R(z0,0) < clzo — yo|™*.
Thus (3.7) follows. =

We remark that Theorem 3.2 or 3.3 implies the Morrey—Sobolev embed-
ding of the function space D:

(3.8) f(z) = f(y)] < clz —ylPVE)
for all z,y € K and all f € D, for some ¢, 5 > 0.

We now give some examples of p.c.f. fractals where condition (C1) or
(C2) holds so that the conclusion of Theorem 3.2 or 3.3 is true.
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e Nested fractals. The nested fractal (K,{F;}},) was introduced by
Lindstrgm [14]. It belongs to the class of p.c.f. fractals in R with the same
contraction ratio 0 < ¢ < 1, that is,

|Fi(2) = Fi(y)| = elx =yl (z,y €R").
It is known that K has a regular harmonic structure (H, {r;}},) with r; :=
r <1for1<i< M (see for example [15]). Moreover, condition (C2) holds

for b; = p for a certain class of nested fractals (see [12, Lemma 5.4]). Thus,
by Theorems 3.1 and 3.3, there exists ¢ > 0 such that, for all z,y € K,

c_1|33 . y|logr/logg < R(m,y) < c|$ o y|log7“/logg'

As a typical representative of nested fractals, the Sierpiriski gasket K in R”
admits an effective resistance R satisfying

c | y’log n+1)/log2 < R(ZE y) < C|ZE |log n+1)/log2

by taking r; = (n+1)/(n + 3) when constructing the Dirichlet form. Note
that the exponent

log(25) _log(n+3) _logo+D) _
log 2 log 2 log 2 Pt T

is the difference between the walk dimension d,, and the Hausdorff dimension
dy of the Sierpinski gasket (see also [18] for n = 2).

o Vicsek sets. Let
p1=1(0,0), p2=(1,0), p3=(1,1), ps=(0,1), ps=1(1/2,1/2)
be the four corners and center of the unit square in the plane. Define
Fi(e) =@ —p)+p (1<i<4), F=j@—ps)+ps (¢€R),

The Vicsek set is K = |JJ_, Fi(K). Tt is a p.c.f. fractal but not a nested
fractal, and the boundary is Vy = {p1, p2, p3, pa}-

Let b = {b;}?_; where b; = 1/4 for each i. Then the Vicsek set satisfies
condition (C1). Indeed, for 0 < A\ < 1, let m > 1 be an integer such that
4= < X\ < 4=(m=1 Then Ap()\) = S™, and

dist (Ko, K7) > 247D >IN if K, N K, =0

for w,7 € S™. It is not hard to construct a regular harmonic structure
(H,{r;}2_,) on the Vicsek set. In fact, let
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and r1 = ro =13 =74 = 27 1(1 —7) and 75 = 7 with 0 < r < 1. One
can verify that (H,{r;}}_,) is a regular harmonic structure on K for any
0 < r < 1. Thus we see from Theorems 3.1 and 3.2 that, for all z,y € K,

(39 Mo =yl < Rlay) < cla — |,
where
{ log(271(1 — 7)) logr}
] = maxq — y — )
log 4 log 2
) log(271(1—7)) logr
(rg = minq — ,— .
log4 log 4

Note that the effective resistance R here cannot be controlled by any
powered Euclidean metric, that is,

(3.10) R(z,y) ~ |z — y\e (Vz,y € K)

fails for any 6 > 0. In fact, let m > 1 be any integer and set w; =11---1 €
S™. Choose a family {(%m, Ym)}m>1 of points in K, where

Tm = (0,0) = Fu,(p1),  ym = (47",0) = Fy, (p2)-
Clearly Zm, Ym € Fu, (Vo) with |z, — ym| = 47™. Let f be the S™-harmonic
function on K satisfying f(zm) =1 and fly; \(z,,} = 0. Then we have
E(f)=En(f) =327 A —m)™™,

which gives

R(Zm, ym) "t = inf{E(u) : u € D and u(zy) = 1, u(y,) = 0}

<SE) =327 (1 =)™ =3-4"" = 3lzyn — ym| ",

where 0; = —log(27(1 — r))/log 4. Therefore, R(Zm,Ym) > 37 |Tm — Ym|?*.
On the other hand, for any u € D, we see that

E(u) 2 Em(u) 2 15} (w(zm) — ulym))® = 27 (L =) "™ (u(zm) — u(ym))?
= |2 = yml| ™ (u(zm) — ulym))?,
which implies that R(@m, Ym) < |Zm — ym|?* by using (2.9). Therefore,
(3.11) 3_1|xm - ym|€1 < R(Tm, Ym) < |Tm — ym|01-

Similarly, let wy = 55---5 € 8™, and take x}, = Fy,(p1) and y,, = Fy, (p2)-
Clearly |z, — y,,| = 27™. By the same calculation as above, we can obtain
1—-7
3(1+7)
where 03 = —logr/log2. If r # 1/2, we see that 01 # 0. It follows from (3.11)

and (3.12) that (3.10) cannot hold for any 6 > 0, provided that r # 1/2.

(3.12) N = Yl < R, yp) < |20 =yl ™,
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4. Domains of Dirichlet forms. Let (K, {F;}},) be a p.c.f. fractal
with a regular harmonic structure (H, {r;}}£,), and let (£, D) be the asso-
ciated Dirichlet form defined as in (2.5) and (2.6). In this section, we give a
characterization of the domain D.

To this end, we need to introduce a measure u. We choose p to be the
normalized self-similar measure with the standard weights {p;}},, that is,

=1
M
(4.1) p=> pi-pok;!
i=1
where p; = r{', with « given by
M
(4.2) d e =1
i=1

For any w # 7 € W,, we have

(4.3) p(Ky) = (ry)® and p(K,NK;)=0.

Observe that there exist constants 0 < ¢4 < ¢5 independent of z and A such

that for any x € K and 0 < A < 1,

(4.4) Br(z,c4\) C Na(z) C Br(x,cs)),

where Br(z,\) = {y € K : R(y,x) < A} is a ball in the metric R, and
Na(z) = | J{Kw: 2 € Ky and w € Ax(N)}

is the union of all components K,, (w € Ay(A)) to which x belongs. Indeed,
the first inclusion in (4.4) follows since, for x € K and y ¢ N)(x), one can
find a function f such that f(z) = 1 and f(y) = 0, and £(f) < (ca\) 7!
for some ¢4 > 0 (see the proof of Theorem 3.1). So R(z,y) > ¢4 by using
(2.8), and therefore Br(x,cs\) C Ny(x). The second inclusion follows from
[2, Prop. 8.9, p. 110].

THEOREM 4.1. Let (K, {F;}M,) be a p.c.f fractal with a regular har-
monic structure (H,{r;}},), and let (€,D) be the associated Dirichlet form
defined as in (2.5) and (2.6). Let p be a self-similar measure with standard
weights. Then there exists some ¢ > 0 such that

(4.5) Walf) < E(f) < cWalf)

for all f € C(K), where

(4.6)  Walf) == sup ACtU {1 f(@) - f)I* duly) du(),
0<A<1 K Br(z,c1))

and the constants o and c4 are as in (4.2) and (4.4), respectively. In partic-

ular, D ={f € C(K) : Wo(f) < oo}.
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Note that (4.5) implies that W, (f) < oo if and only if £(f) < oco. We
decompose Theorem 4.1 into Lemmas 4.3 and 4.4 below. In order to prove
Lemma 4.3, we need the following proposition.

PROPOSITION 4.2. Let (K, {F;}},), (€,D) and u be as in Theorem 4.1.
Then, for 0 <A <1 and f € C(K),

(4.7) SV 1f@) = fulwo) du(z) < eX*TE(S)
”LUEA,-()\) Kw

for any xg in Vo, with ¢ independent of A, f and xq.

Proof. The proof is motivated by [5]. Without loss of generality, assume
that f € D and z¢ € V. Since Ay(\) is a partition, so is

{wr :w € A()\) and 7 € S*}

for any k > 1. Therefore, for p-almost all = € K, there is exactly one 7 € S*
such that x € Ky,;. We define fi(x) := fyur(xo) if x € Kyr. Obviously
the function fj is defined p-almost everywhere on K, and is constant on
each component of the form K, where w € A(\) and 7 € S*. Since f is

continuous, we see that fi(x) — f(z) for y-almost all x € K as k — oo. In
order to derive (4.7), it is enough to show that

(4.8) S T (@) = fulzo)? du(z) < ex*TE(f).
wWEAr(N) K

In fact, if (4.8) holds, then letting k¥ — oo in (4.8) and using the dominated
convergence theorem, we obtain (4.7).
Fix w € Ay(\) and 7 := ;1 - - - i, for k > 1 temporarily. Let

T = Fwilmil (fbo), 1 S l S k.

Note that
@9 (flw) - (Za‘m V2 f )~ F)
< (Z a) (iaz(f(wm) — f@)?)
=0

< CZ al $l+1 (l’l))2,

where {a;}7°, is a sequence of positive numbers satisfying >, a,l_1 < 00,
which will be specified later on. Observing that

(f(xl-i-l) - f( )) (fwu Zl( 41 (mO)) - fwi1~~il (CCO))Q
< Cgl(fwu---u) < Cg(fwil---il)v
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we see from (4.9) that

k—1

(F(@r) = F(@0))* < € al(fuiriy)-
=0

Therefore, using the fact that pu(Kyr) = (rw)*w(Kr) < A*u(K;), we obtain
V (fi(@) = ful@0)® du(z) = p(Kur)(f (1) = f(0))?

Kyr
k—1

< AWKy i) Y W€ (fuiyiy)
1=0

for any w € Ap()\) and any 7 := iy ---i € S* (k> 1). Hence,

(4.10) | (fi(@) = ful@o))?du@) = Y | (ful@) = ful20))® du(z)

Kw TGS’“ K’w'r
k-1
<X Y (Kiyi) Y @ (fuiyi)
il,‘..,ik =0

k—1
S c)\O‘Zal Z g(fwnu)
=0

11500501

In the last inequality above, we have exchanged the order of the summations,
and then used the fact that 3., . oo (K, .) =1 and p(Kj..q) <1
(I > 1). On the other hand, for any [ > 0,

A1) D > Efwini) = DY, (Pwiveid) Twiveit) T Efuwirir)

WEAr(N) 115058 WEAr(N) 151
SArma)' DD (Pwinei) T E(Fuiy i)
WEAL(N) 1,051

= )\(Tmax)l‘s(f)v

SINCE Tpiy iy, = TwTiyei; < A(Tmax)!, where 7yax := max; 7; < 1. Therefore,
from (4.10) and (4.11) we obtain

k-1
S k@) = fulwo)Pdu@) <X S a( D0 D ECfwiei)
weAr(A) Ku 1=0  WEA(N) i1 yernsi
< X)) armax)’ < ATIE(S),
1=0
where we have chosen a; := (rmax) /2 that satisfies >, a; ' < oco. Thus

(4.8) follows. This finishes the proof. m
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LeEMMA 4.3. Let (K,{F;}M,), (£,D) and i be as in Theorem 4.1. Then
there exists some ¢ > 0 such that, for all f € C(K),

(4.12) Wa(f) < cE(f),
where Wy (f) is defined as in (4.6).

Proof. Assume that f € D; otherwise (4.12) holds automatically. Let
0 < X < 1. Note that u(K, N K;) = 0 for any distinct w, 7 € A(A). Set

o=\ | If@-rePduy) du=).
K Br(z,ca))
Then, by (4.4),

nH= > | | If@-fwlPduy du)

wEAr(N) Ky Br(z,ca))
< Z YoV @) = rw)P dpty) du(a).
weEA (X)) T~vw Koy Ko

For x € Ky, y € K;, let 29 € Ky, N K; = F,(Vo) N Fr (Vo) (if w = 7, we
simply take any point zy € Fy,(Vp) and run the same proof as below; so we
only consider the case w # 7). Using the elementary inequality

(@) = F)I” < 2(1f(x) = f(20)]” + [ f(20) = F()I*),
and the fact that {7 : 7 ~ w} < My for an integer M, independent of w
and A (cf. [10, Lemma 4.2.3, p. 139]), we obtain

L <ed Yo f) = £z du(a).
weAr(\) Kuw
zoGFw(Vo)

Let zp = Fyy(xg) for some zg € Vj. By (4.7) and the fact that §V{ < oo, it
follows immediately that

IN(f) < eX**HE(S),
proving (4.12). =
LEMMA 4.4. Let (K, {F;})), (§,D) and p be as in Theorem 4.1. Then
(4.13) E(f) < cWalf)
for all f € C(K), where ¢ > 0.

Proof. Let 0 < A < ¢q4/c5 < 1. Let f € C(K). Without loss of generality,
we assume that W, (f) < oco. We have

(w11 &= wtal<e Y Bt Y Ue) - 1@)?).
weA(N) weA(N)  PpaEFL (Vo)
Noting that, for any =g € K,

[f(p) = f(@ < 2((f(p) — f(20))* + (f(w0) — f())*),
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we see that

1f(p) — f(@)]?
P

< (Kﬁw(f(p)—f( ) duo) + sz(f(xo)— £(@)* du(ao))
Hence
415) > (f) - f@)

P,q€Fw (Vo)

< Ms Z S 20))? dp(zo),
PEFw (Vo) pEw) 2

where M3z = 44(F,,(Vp)) = 48Vh. Let w € Ax(\) and p € F,,(Vp) be fixed.

We now estimate the last integral. Let 0 < a < 1 be any fixed number
(for example, a = 1/2). For each integer I > 0, let A(Aa') := Ar(Aa') be a
partition. We choose a sequence of subsets of K,:

Ky, Kyr, Kwryy -+,

such that wr; € A(Aa!) and p € Ky for each I > 0. Note that Ky C Kyr,
for any [ > i > 0, because Aa! < \a*, and so the partition A(Aa") is a father
of A(Aa!). For simplicity, we write

Ky=Ky, K/ =Ku, (1>1).
Note that, for any z; € K] (1 > 0),

(1) — Fan)?= (@) — ) + 30, 2 a2 (f i) — f(@)))

§2(f(p)—f($k))2+2(ial )(Zal (7141) (%))2)7
1=0

where {a;}{°, is a sequence of positive numbers satisfying 3% a;' < oo,
which will be determined below. Integrating the above inequality with re-
spect to each x; € K] for 0 < < k, and then dividing by p(Kj) - -- pu(K}),
we obtain

(4.16)

| (f(p) = f(20))? dps(o)

p(Kw) Ko

V (F(p) = F(ax))? dpaack)

o L iy | J ) = S0 duain)

I+1
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Note that the first term on the right-hand side of (4.16) tends to zero as
k — oo, since { K} } shrinks to p as k — oo and f is continuous. In order to
estimate the second term, we set

k—

(4.17)  Aux(f) =Y m

— u(
< |\ (Flag) = F@0)? dulaigs) dp(zy).

17
Kl Kl+1

—_

By (4.4), we have
K| C Nyu(z;) € Br(zy, cshal)

for any x; € K] and [ > 0. Using the fact that
K|, C K| C Ky,
we obtain

I | () = f@))? du(ig) dua)

17
Kl Kl+1

ST T Gl — F@) duten) dute).
Kw Br(z,c5Mal)

Note that, using (4.3) and the fact that wr € Ar(\a'), we get
w(K]) = (rwr)* ~ (Aa')*  for any 1 > 0.
Therefore, it follows from (4.17) that

e
—

(4.18) Api(f) <ec al(Aal)_QO‘

(]

l

I
[ o

X

| (F) = f@) duly) du(z).

w Br(z,c5Aal)

=

Hence, combining (4.14)-(4.16) shows that, for any k£ > 0,

(4.19) af)<e Y it Auk(f)

weAr ()
+ Y g VU0 - 1) )
puéeF/zlur((‘;\o)) K

On the other hand, noting that r,, ~ A for w € A;(\), it follows from (4.18)
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that
(420) > M Auk(f) <edTt D Awk(f)
wEAr(N) wEAr(A)
k—1
<A ad) ) (Fy) - f®)? duly) du(x)
=0 K Br(z,c5\al)

k—1
= > aa{(esa) P (Fy) - F@) dpuly) dp(a) |
=0

K Br(z,c5\al)

k-1
< cWa(f)Zalal < cWu(f).
=0

Here we have chosen a; := a~'/? that satisfies >0 al_l < 00. Therefore, by
(4.19) and (4.20), -

Ef) < Walf)+ S ! j(,) [ (F) — 1(2)%du(z) (k> 0),
weAr(N) S K},
pEFw(Vo)

where c is independent of £ and A. Letting k — oo, we see that

E(f) < eWal(f).
This gives (4.13) by letting A — 0 and using (2.13). =

Finally, we remark that Theorem 4.1 follows directly from Lemmas 4.3
and 4.4.
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