
STUDIA MATHEMATICA 177 (3) (2006)

Rank and the Drazin inverse in Banach algebras

by

R. M. Brits (Johannesburg), L. Lindeboom (Pretoria)
and H. Raubenheimer (Johannesburg)

Abstract. Let A be an arbitrary, unital and semisimple Banach algebra with nonzero
socle. We investigate the relationship between the spectral rank (defined by B. Aupetit and
H. Mouton) and the Drazin index for elements belonging to the socle of A. In particular,
we show that the results for the finite-dimensional case can be extended to the (infinite-
dimensional) socle of A.

1. Introduction. Throughout this paper we shall assume that A is a
semisimple, complex and unital Banach algebra with the unit denoted by 1
and the group of invertible elements by A−1. We denote by exp(A) the set
of all exponentials of A, that is, exp(A) = {ex : x ∈ A}. For a ∈ A we denote
the spectrum of a by σ(a,A), with the convention that we write σ(a) if the
algebra under discussion is clear from the context. The nonzero spectrum
of a ∈ A is denoted σ′(a) = σ(a) \ {0}. An element a ∈ A belongs to the
socle of A, denoted Soc(A), if there exist finitely many minimal left ideals
or, equivalently, minimal right ideals such that a belongs to their sum. The
set Soc(A) is a two-sided ideal of A. We assume Soc(A) 6= {0}.
Following [3] we define the rank of an element a ∈ A by

rank(a) = sup
x∈A

#σ′(xa) ≤ ∞

where # denotes the number of elements in a set. By the semisimplicity of
A we know that rank(a) = 0 if and only if a = 0. Notice further that for
a ∈ A we have rank(a) ≤ rank(1) with equality whenever a ∈ A−1. It can be
shown ([3, Corollary 2.9]) that Soc(A) = {a ∈ A : rank(a) <∞}, the set of
finite rank elements of A. Also, if a ∈ Soc(A) then ([3, Theorem 2.2]) the set

E(a) = {x ∈ A : #σ′(xa) = rank(a)}

is a dense open subset of A. Amongst the elements of Soc(A) Aupetit and
Mouton distinguish the maximal finite rank elements as those a ∈ Soc(A)
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with rank(a) = #σ′(a). Since the sets E(a) are dense in A the set of maximal
finite rank elements is dense in Soc(A).

If A is finite-dimensional then A = Soc(A), and conversely, if A = Soc(A)
then A is finite-dimensional. In general however, Soc(A) is not necessarily
closed in A and hence not necessarily finite-dimensional. A particularly good
reason for studying this notion of (spectral) rank is that it coincides with
the standard rank in the case A = B(X), the Banach algebra of bounded
linear operators on a Banach space X ([3, p. 118]); for some pathologies
occurring on a previous rank definition used by several other authors see
[3, p. 124]. The results obtained in this paper support the evidence pointing
to the spectral rank as a suitable notion of “rank” in the case of general
semisimple Banach algebras. In particular, our main result, Theorem 2.7,
extends the relationship between rank and Drazin index (defined hereafter),
which is known to hold for complex matrices (Mn(C)), to the socle of a
semisimple Banach algebra.

An element a ∈ A is said to be Drazin invertible in A if there exist b ∈ A
and k ∈ Z

+ such that

(i) akba = ak,

(ii) bab = b,

(iii) ba = ab.

The unique element ([11, Lemma 1]) b satisfying (i)–(iii) is called the
Drazin inverse of a. As is customary we denote the Drazin inverse of a
by aD and we call the least k ∈ Z

+ such that (i) holds the Drazin index
of a. If for a 6= 0 we define a0 = 1 then it is clear that A−1 is precisely
the subset of Drazin invertible elements with Drazin index zero. The subset
of Drazin invertible elements with Drazin index equal to zero or one is
called the group invertibles, where the term “group” refers to the fact that
if a is group invertible with group inverse aD, then {a, aD} generates an
abelian group with identity aaD. Notice that if a is Drazin invertible with
Drazin inverse aD then aD is always group invertible (with group inverse
a2aD), even though a might not be group invertible. We denote the set of
Drazin invertible elements by D(A) and the set of group invertibles by G(A).
Although we restrict ourselves in this paper to the sets D(A) and G(A) we
mention that the Drazin inverse belongs to the broad and intensively studied
subject of generalized inverses, which is not confined only to the Banach
algebra setting. For more on this topic (and some applications) see [6], [9].

In [5] it was shown that Soc(A) ⊆ D(A) and that Soc(A) is the largest
ideal contained in D(A). In fact, it was shown there that if J is a left or right
multiplicative ideal (i.e. J only needs to absorb products in A from the left
or the right) such that J ⊆ D(A) then J ⊆ Soc(A). Since every maximal
finite rank element can be written as a linear combination of orthogonal
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rank 1 idempotents ([3, Theorem 2.8]) it follows that the maximal finite
rank elements are all group invertible in Soc(A). Hence Soc(A) ∩ G(A) is
dense in Soc(A). In general (even for finite-dimensional cases) it is not true
that every element of Soc(A) is group invertible; it was shown in [5] that
Soc(A) ⊆ G(A) if and only if every element of Soc(A) belongs to the center
of A. Using generalized inverses, we show here (Corollary 2.2 (ii)⇔(iii)) that
the property “every element of Soc(A) is central in A” is equivalent to an
apparently much weaker condition on Soc(A).
In order to prove Theorem 2.7 we need a structural characterization of

Aupetit and Mouton’s spectral definition of rank for elements belonging to
Soc(A). We start with some terminology and notation.
An element of an algebra A is indecomposable if it cannot be written as

a sum a = b+ c where b, c ∈ A are nonzero elements satisfying bAc = 0.
We denote by Mr,n, with r ≤ n ≤ 2r, the algebra of all n × n complex

matrices [ai,j ] satisfying ai,j = 0 whenever i > r or j ≤ n− r.
We can now state the required result which we shall refer to as the rank

structure decomposition (see [4, p. 289]) of an element belonging to Soc(A).

Theorem 1.1 (M. Brešar, P. Šemrl). Let A be a semisimple unital com-
plex Banach algebra and let n ∈ N. Then a ∈ A has rank(a) = n if and only
if there exist a1, . . . , ak ∈ A such that

(i) a = a1 + · · ·+ ak,
(ii) each ai is indecomposable,
(iii) aiAaj = 0 whenever i 6= j,
(iv) aiAai ≃Mri,ni for some ri, ni ∈ N, ri ≤ ni ≤ 2ri,
(v) n = r1 + · · ·+ rk.

Moreover , a1, . . . , ak are unique nonzero elements in Soc(A) satisfying
(i)–(iii).

As a first application of Theorem 1.1 we give an alternative proof of
[3, Theorem 2.12] which is perhaps a bit easier and in fact proves a little
more.

Theorem 1.2 (B. Aupetit, H. du T. Mouton). For a ∈ A,

rank(a) ≤ dim(aAa) ≤ (rank(a))2.

Moreover , if a ∈ Soc(A) then rank(a) = dim(aAa) if and only if aAa ≃
M1,n1 ⊕ · · · ⊕M1,nk where ni ∈ {1, 2} and k = rank(a).

Proof. As in the first part of the proof of [3, Theorem 2.12] it suffices to
consider a ∈ Soc(A). So let a ∈ Soc(A) with rank structure decomposition
a = a1 + · · ·+ ak and rank(a) = r1 + · · ·+ rk as in 1.1. For each i we first
prove

(1.2.1) aiAai∩(a1Aa1+· · ·+ai−1Aai−1+ai+1Aai+1+· · ·+akAak) = {0}.
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If for some set {x1, . . . , xk} ∈ A we have

aixiai =
k∑

j=1
j 6=i

ajxjaj

then let z ∈ A be such that rank(aixiai) = #σ
′(aixiaiz). Using aiAaj = {0}

we obtain

#σ′((aixiaiz)
2) = #σ′

(

aixiaiz
( k∑

j=1
j 6=i

ajxjajz
))

= 0

and by the spectral mapping theorem it follows that #σ′(aixiaiz) = 0. Thus
rank(aixiai) = 0 and hence aixiai = 0, which proves (1.2.1).
It follows further that

aAa = (a1 + · · ·+ ak)A(a1 + · · ·+ ak) ⊆ a1Aa1 + · · ·+ akAak

where dim(aiAai) = r
2
i for each i. Let Vi = {e

(i)
1 , . . . , e

(i)

r2
i

} be a basis for

aiAai. Since aiAai is finite-dimensional one may easily prove that

Bi = {x ∈ A : aixai = α1e
(i)
1 + · · ·+ αr2i e

(i)

r2
i

with αj 6= 0 for each j}

is a dense and open subset of A. It follows from Baire’s theorem that
dim(aAa) = dim(a1Aa1 + · · ·+ akAak) and hence that

(1.2.2) aAa = a1Aa1 + · · ·+ akAak.

We thus have

rank(a) = r1 + · · ·+ rk ≤ r
2
1 + · · ·+ r

2
k

= dim(a1Aa1) + · · ·+ dim(akAak)

= dim(a1Aa1 + · · ·+ akAak) = dim(aAa)

≤ (r1 + · · ·+ rk)
2 = (rank(a))2.

If rank(a) = dim(aAa) then, following the above arguments, we deduce that
ri = 1 for each i. Thus aiAai = Cai ≃ M1,r where r = 2 if ai is nilpotent
and r = 1 if ai is not nilpotent. The result follows by observing that (1.2.2)
is actually a direct sum.
On the other hand, if aAa ≃M1,n1 ⊕ · · · ⊕M1,nk where ni ∈ {1, 2} and

k = rank(a) then it follows directly that dim(aAa) = k = rank(a).

The following lemma will be instrumental in some of our results and is
a special case of [7, Theorem 6.4]. Note that, since every element of Soc(A)
is algebraic, we can replace quasinilpotent in [7, Theorem 6.4] by nilpotent.

Lemma 1.3 (core-nilpotent decomposition). Let a ∈ Soc(A). Then a has
a unique decomposition of the form a = ca+ra where ca is a group invertible
element in Soc(A), ra is a nilpotent element in Soc(A) and cara = raca = 0.
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Remark. One may actually observe that, by the uniqueness of the core-
nilpotent decomposition, ca = aa

Da and ra = a(1−aa
D). The element ca is

called the core of a and ra the nilpotent part of a. The idempotent 1−aa
D is

called the spectral projection of a corresponding to 0; the terminology being
appropriate in view of the holomorphic functional calculus (see 1.6).

It is also appropriate, at this stage, to recall two facts that will be used
throughout the remainder of this paper without specific reference:

(1.4) If A is a semisimple Banach algebra with identity and p ∈ A is an
idempotent, then pAp is a semisimple Banach algebra with iden-
tity p. Moreover, σ′(pxp,A) = σ′(pxp, pAp) for every x ∈ A.

(1.5) If A is a Banach algebra and a1, . . . , an ∈ A with aiaj = ajai = 0
for i 6= j, then σ′(a1 + · · ·+ an) =

⋃n
i=1 σ

′(ai).

The first part of (1.4) and the containment σ′(pxp, pAp) ⊆ σ′(pxp,A) are
well known ([1, Lemma 2.5]). For the reverse containment notice that if
λ 6= 0 and pbp is the inverse to λp − pap in pAp then pbp + 1

λ
(1− p) is the

inverse to λ−pap in A. For (1.5), use induction on the argument in the proof
of [3, Lemma 2.15]. Concerning (1.4), recall that if pAp is finite-dimensional
then the structure of pAp is given by the Wedderburn–Artin theorem.

A particularly useful representation of the Drazin inverse is given by the
holomorphic functional calculus: if a ∈ Soc(A) then 0 is an isolated point
of σ(a) or possibly, in the finite-dimensional case, 0 /∈ σ(a). If the latter
instance occurs then the Drazin inverse is just the usual inverse a−1 and the
representation follows easily. If 0 is isolated in σ(a) then let U0 be an open
ball with center 0 and U1 be an open set containing σ(a) \ {0} such that U0
and U1 are separated in C. Let Γ0 be a circle in U0 surrounding 0 and let
Γ1 be a smooth contour in U1 surrounding σ(a) \ {0}. By the holomorphic
functional calculus, the Drazin inverse of a is given by

(1.6) aD =
1

2πi

\
Γ0∪Γ1

g(λ)(λ− a)−1 dλ

where

g(λ) =

{
1/λ, λ ∈ U1,

0, λ ∈ U0.

2. Rank and the Drazin inverse. For a ∈ A we define the commutant
of a as the set comm(a) = {x ∈ A : xa = ax}. If B is a subset of A and
a ∈ Soc(A) then a is said to assume its rank on B if there is b ∈ B such
that rank(a) = #σ′(ba). Recall further that x ∈ A is said to be central in
A if x commutes with every element of A. As our first basic result, relating
rank to group invertibility, we have
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Proposition 2.1. Let a ∈ Soc(A). If a assumes its rank on comm(a)
then a ∈ G(A).

Proof. If rank(a) = 0 then a = 0 and obviously the result holds. So let
a ∈ Soc(A) with rank(a) 6= 0 and let u ∈ comm(a) be such that rank(a) =
#σ′(ua). Now, since a and u commute, we cannot have σ(a) = {0}, and if
0 /∈ σ(a) (which may happen in the finite-dimensional case) then the result
follows trivially. Hence, using 2 ≤ #σ(a) <∞, it follows that

l = inf{|λ− α| : λ, α ∈ σ(a), λ 6= α} > 0.

Denote by B the Banach algebra generated by {1, a, u}. Choose α ∈ C with
|α| > max{‖u‖, l−1 diamσ(ua)}. For every complex homomorphism Φ on B
we have Φ(ua) 6= 0 ⇒ Φ((α − u)a) 6= 0, thus establishing a correspondence
σ′(ua) 7→ σ′((α−u)a). Also, since |α| > l−1 diamσ(ua), the correspondence
is one-one. So there is v ∈ comm(a) ∩ A−1 such that rank(a) = #σ′(av).
Moreover, it is easily seen that av is of maximal rank in Soc(A). By the
diagonalisation theorem ([3, Theorem 2.8]) it follows that av is group in-
vertible. If b is the group inverse for av then, in view of 1.6, b commutes
with both a and v. It follows by the invertibility of v that vb is the group
inverse of a.

By definition, the set of maximal finite rank elements is contained in the
set R = {a ∈ Soc(A) : a assumes its rank on comm(a)} and hence R is also
dense in Soc(A). However, it is easy to see that the containment is strict
in general. On the other hand, consideration of matrix algebras shows that
Proposition 2.1 does not characterize elements of Soc(A) belonging to G(A).
Our next result is an extension of [5, Theorem 11].

Corollary 2.2. The following conditions on Soc(A) are equivalent :

(i) Soc(A) ⊆ G(A),

(ii) every element of Soc(A) is central in A,

(iii) every a ∈ Soc(A) assumes its rank on comm(a),

(iv) 0 is the only nilpotent element in Soc(A),

(v) the distance between any two distinct idempotents in Soc(A) is at
least one,

(vi) the set of rank 1 idempotents is orthogonal.

Proof. The equivalence of (i) and (ii) was shown in [5]. Obviously (ii)
implies (iii), and (iii) implies (i) by Proposition 2.1. If 0 is the only nilpotent
element in Soc(A) then, by the core-nilpotent decomposition, Soc(A) ⊆
G(A). Conversely, if a ∈ Soc(A) is group invertible and ak = 0 for some
k ∈ N then, since a and aD commute, we have σ(aaD) = {0}, which implies
aaD = 0 because aaD is an idempotent. Thus aaDa = a = 0.
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Suppose (ii) holds. If p and q are distinct idempotents in Soc(A) then it
follows that (p−q)3 = p−q and hence that ‖p−q‖ ≥ 1. Thus (ii) implies (v).
On the other hand, if (v) holds then, since Soc(A) is a two-sided ideal, it
follows that, for an idempotent p ∈ Soc(A) and x ∈ A arbitrary, eλxpe−λx ∈
Soc(A) for each λ ∈ C. By continuity of the map λ 7→ eλxpe−λx − p there
exists an open ballB0 = B(0, ε), ε > 0, in C such that ‖eλxpe−λx−p‖ < 1 for
all λ ∈ B0. So, using the assumption in (v), e

λxpe−λx−p = 0 for all λ ∈ B0.
Since the function λ 7→ eλxpe−λx − p is also analytic on C it follows by the
scarcity theorem for the rank ([3, Theorem 2.3]) that rank(eλxpe−λx−p) = 0
for all λ ∈ C. So, for λ = 1, we have exp = pex, that is, p commutes with
every element of exp(A). Since exp(A) + exp(A) = A it follows that p is
central in A. The implication (v)⇒(ii) now follows from the density of the
maximal finite rank elements in Soc(A).
If (ii) holds and p, q are nonzero rank 1 idempotents then pq 6= 0 implies

pq = p = q using the minimality of p and q together with Theorem 1.2. Thus
(ii) implies (vi). Finally, if (vi) holds then let p be a rank 1 idempotent and
let a ∈ A be arbitrary. If we choose α, β ∈ C such that α, β belong to the
resolvent of a with α 6= β then (α− a)p(α− a)−1 and (β− a)p(β− a)−1 are
also rank 1 idempotents. If neither of them equals p then, by assumption,
their respective products with p are zero. But this yields αp = pap = βp,
which is a contradiction. Hence p = (α − a)p(α − a)−1 for some α in the
resolvent of a, from which one obtains pa = ap. Again, by the density of the
maximal finite rank elements, (ii) follows.

As opposed to Corollary 2.2 we now identify those elements of Soc(A)
belonging to G(A) which, together with Lemmas 2.5 and 2.6, lead to a
connection between the Drazin index and the rank, thus generalizing the
case A =Mn(C) ([9, p. 126]) to the socle of an arbitrary semisimple Banach
algebra.

Theorem 2.3. If a ∈ Soc(A) with Drazin inverse aD then a ∈ G(A) if
and only if rank(a) = rank(aD).

Proof. ⇒ If a is group invertible with group inverse aD then

rank(a) = rank(a2aD) ≤ rank(aD) = rank(a(aD)2) ≤ rank(a).

Thus rank(a) = rank(aD).
⇐ Suppose rank(a) = rank(aD). First note that since aD is group in-

vertible with group inverse aaDa, they are both invertible in the semisimple
algebra aaDAaaD (which has aaD as identity). Hence

rank(a) = rank(aD) = rank(aaDa) = rank(aaD).

Choose x ∈ E(aaDa) and y ∈ E((1− aaD)a) such that

σ(aaDax) ∩ σ((1− aaD)ay) = {0}.



218 R. M. Brits et al.

Since a and aD commute we have

rank(a) ≥ rank(aaDaxaaD + (1− aaD)ay(1− aaD))

≥ #σ′(aaDaxaaD + (1− aaD)ay(1− aaD))

= #[σ′(aaDaxaaD) ∪ σ′((1− aaD)ay(1− aaD))]

= #σ′(aaDaxaaD) + #σ′((1− aaD)ay(1− aaD))

= rank(aaDa) + rank((1− aaD)a)

= rank(a) + rank((1− aaD)a).

Thus, since the rank is nonnegative, we have rank((1−aaD)a) = 0. It follows
that (1− aaD)a = 0 and hence a is group invertible.

Theorem 2.4. An element a ∈ Soc(A) belongs to G(A) if and only if
rank(a) = rank(ak) for each k ∈ N.

Proof. ⇒ If a is group invertible with group inverse b then, obviously,
for each k ∈ N, ak is group invertible with group inverse bk. But all these
elements are invertible in the semisimple algebra abAab and hence all of
them have rank equal to rank(ab).

⇐ Suppose rank(a) = rank(ak) for each k ∈ N and suppose a has Drazin
index k1 ∈ N. If b is the Drazin inverse of a then ak1 is group invertible with
group inverse bk1 . But clearly, since b is group invertible, we have rank(b) =
rank(bk1) by the first part of the proof. So, from rank(ak1) = rank(bk1), it
follows that rank(a) = rank(b). By Theorem 2.3, a is group invertible.

Lemma 2.5. The Drazin index of a ∈ Soc(A) is the least nonnegative
integer k such that ak is group invertible.

Proof. If the Drazin index of a is k then it is clear that ak is group
invertible. Now suppose aj is also group invertible for some j ∈ N with
j < k. Denote by b the Drazin inverse of a and by c the group inverse of
aj . By the core-nilpotent decomposition we have aj = (aba)

j
+ aj(1 − ab)

and also aj = ajcaj+0. It follows from the uniqueness of the decomposition
that aj(1− ab) = 0. But this contradicts the definition of the Drazin index,
that is, that k is the least nonnegative integer such that akba = ak.

Lemma 2.6. For a ∈ Soc(A) the rank of a is additive on the rank struc-
ture decomposition of a.

Proof. Let a ∈ Soc(A) with rank structure decomposition a =
∑m
i=1 ai.

Then clearly rank(a) = rank(
∑m
i=1 λiai) for each choice λ1, . . . , λm of non-

zero scalars. Choose x ∈ E(a) ∩ E(a1) ∩ · · · ∩ E(am) such that rank(a) =
#σ′(ax) = #σ′(

∑m
i=1 aix). Obviously we may choose λ1, . . . , λm such that
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σ(λiaix) ∩ σ(λjajx) = {0} for all i 6= j. It follows that

rank(a) ≥ #σ′
( m∑

i=1

λiaix
)

= #
[ m⋃

i=1

σ′(λiaix)
]

=

m∑

i=1

#σ′(λiaix)

=
m∑

i=1

#σ′(aix) =
m∑

i=1

rank(ai) ≥ rank(a)

where the final inequality follows from the subadditivity of the rank ([3, The-
orem 2.14]). Thus rank(a) =

∑m
i=1 rank(ai).

Theorem 2.7. An element a ∈ Soc(A) has Drazin index k if and only
if k is the least integer satisfying

rank(ak) = rank(ak+1).

In particular , a is group invertible if and only if rank(a) = rank(a2).

Proof. ⇐ Let a ∈ Soc(A) and suppose k is the least nonnegative integer
such that rank(ak) = rank(ak+1). If a =

∑m
i=1 ai is the rank structure

decomposition of a then ak =
∑m
i=1 a

k
i and a

k+1 =
∑m
i=1 a

k+1
i are the

rank structure decompositions of ak and ak+1 respectively (see [4, Proposi-
tion 2.4]). By Lemma 2.6 it follows that

rank(ak) =
m∑

i=1

rank(aki ) = rank(a
k+1) =

m∑

i=1

rank(ak+1i ).

Now since rank(aki ) ≥ rank(a
k+1
i ) for each i we actually have rank(a

k
i ) =

rank(ak+1i ) for each i. It follows from Theorem 1.1 that

akiAa
k
i ≃Mri,ni and a

k+1
i Aa

k+1
i ≃Mri,n′i

where n′i ≤ ni. Note that ri is the same for a
k
i and a

k+1
i since rank(aki ) =

rank(ak+1i ). Hence the dimension of a
k+1
i Aa

k+1
i does not diminish, that is,

dim(ak+1i Aa
k+1
i ) = dim(a

k
iAa

k
i ).

Since ak+1i Aa
k+1
i is a vector subspace of akiAa

k
i we have a

k+1
i Aa

k+1
i =

akiAa
k
i . Inductively it follows that a

k+r
i Aa

k+r
i = akiAa

k
i for each r ∈ N.

Thus by Theorem 1.1, rank(aki ) = rank(a
k+r
i ) for each r ∈ N. This being

true for all i, we have rank(ak) = rank(ak+r) for each r ∈ N. In particular
rank(ak) = rank((ak)n) for all n ∈ N. So, using Theorem 2.4, we infer that
ak is group invertible. Also, if j < k then, by assumption, we have

rank(aj) > rank(aj+1) ≥ · · · ≥ rank((aj)2)

and hence aj cannot be group invertible. So if k is the least integer such
that rank(ak) = rank(ak+1) then k is the least integer such that ak is group
invertible. By Lemma 2.5, k is the Drazin index of a.



220 R. M. Brits et al.

⇒ If a has Drazin index k then by Lemma 2.5, k is the least integer
such that ak is group invertible. Hence, as in the first part of the proof, we
cannot have rank(ak) > rank(ak+1). Thus rank(ak) = rank(ak+1).

Corollary 2.8. If ab and ba belong to Soc(A) and ab ∈ G(A) then
ba ∈ G(A) if and only if rank(ab) = rank(ba).

Proof. ⇐ If ab is group invertible then by Theorem 2.4, rank((ab)k) =
rank(ab) for each k ∈ N. So if rank(ab) = rank(ba) then, for k > 1,

rank(ba) = rank(ab) = rank((ab)k) = rank(abab . . . ab
︸ ︷︷ ︸

k times

)

≤ rank(baba . . . ba
︸ ︷︷ ︸

k−1 times

) = rank((ba)k−1) ≤ rank(ba).

Since k > 1 was arbitrary the result follows by Theorem 2.4.
⇒ If ab and ba are both group invertible then, by Theorem 2.7,

rank(ab) = rank(abab) ≤ rank(ba) = rank(baba) ≤ rank(ab).

Hence rank(ab) = rank(ba).

In [5] it was shown that 1− ab is Drazin invertible if and only if 1− ba
is Drazin invertible, with preservation of the index. This is not true for ab
and ba: Consider a Banach algebra A with a, b ∈ A satisfying ab = 1 but
ba 6= 1. Then ab is Drazin invertible with Drazin index 0 but, since ba is
not invertible, ba cannot have Drazin index equal to 0. However, using the
fact that ab = 1, it is easy to see that ba is an idempotent and thus group
invertible. So ba is also Drazin invertible but with Drazin index 1. Generally
speaking this is the worst that could happen: it is not hard to prove, using
the definition of the Drazin inverse, that if ab is Drazin invertible then ba
is always Drazin invertible, with the respective indices differing by at most
one.
Much of the existing theory of Drazin invertibility for matrix algebras

(see [6, Chapter 7]) is derived through the use of matrix block forms. Now
many more of these results may be generalized to the Banach algebra
case (not only to socle elements) using the functional calculus representa-
tion (1.6). We only give one more example (thereby generalizing [6, Corol-
lary 7.6.2(ii)]), suggesting how one may proceed.

Theorem 2.9. Let a ∈ A be Drazin invertible. Then a has Drazin index
k if and only if k is the least integer such that

lim
λ→0
(a− λ)−1ak

exists.

Proof. ⇒ Suppose a is Drazin invertible with Drazin index k. Let U0 and
U1 be separated open sets in C such that 0 ∈ U0 and σ

′(a) ⊆ U1. Let (λn)
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be a sequence in C such that (λn) ⊆ U0 and λn → 0. For each n let Vn ⊆ U0
be an open ball with center 0 such that λn /∈ Vn. Let Γ be a smooth contour
in U1 surrounding σ

′(a) and let Γ0 be a small circle in U0 surrounding 0.
Finally, for each n, let Γn be a small circle in Vn surrounding 0. Now, for
each n, a− λn is invertible and

(a− λn)
−1 =

1

2πi

\
Γ∪Γn

(α− λn)
−1(α− a)−1 dα.

Also, using the fact that ak+1aD = ak, we find that

ak =
1

2πi

\
Γ∪Γ0

f(α)(α− a)−1 dα =
1

2πi

\
Γ∪Γn

fn(α)(α− a)
−1 dα

for each n, where f is defined by

f(α) =

{
αk, α ∈ U1,

0, α ∈ U0,

and fn is the restriction of f to Vn ∪ U1. It follows by the holomorphic
functional calculus that, for each n,

(a−λn)
−1ak =

1

2πi

\
Γ∪Γn

fn(α)

α− λn
(α−a)−1 dα =

1

2πi

\
Γ∪Γ0

gn(α)(α−a)
−1 dα

where gn is defined by

gn(α) =







αk

α− λn
, α ∈ U1,

0, α ∈ U0.

If we define g by

g(α) =

{
αk−1, α ∈ U1,

0, α ∈ U0,

then (gn) is a sequence of holomorphic functions on U0 ∪ U1, converging
uniformly to g on compact subsets of U0 ∪ U1. We hence have

lim
n
(a− λn)

−1ak = lim
n

1

2πi

\
Γ∪Γ0

gn(α)(α− a)
−1 dα

=
1

2πi

\
Γ∪Γ0

g(α)(α− a)−1 dα = akaD.

Thus, if the Drazin index of a is k, then k is an integer such that the limit
limλ→0(a − λ)

−1ak exists. Suppose now that limλ→0(a − λ)
−1al = b exists

for some l < k. Then it follows easily that al = ab = ba and also that

lim
λ→0
(a− λ)−1alak−l = bak−l = akaD.
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Hence alak−l−1 = baak−l−1 = bak−l = akaD, from which we obtain ak−1 =
akaD. But since akaD is group invertible we have a contradiction, because
k is the least integer such that ak is group invertible.
⇐ Suppose k is the least integer such that limλ→0(a − λ)

−1ak exists,
but that a has Drazin index l < k. By the first part of the proof it follows
that limλ→0(a − λ)

−1al = alaD, which contradicts our assumption. Thus,
under the above hypothesis, a must have Drazin index k.

3. Rank and continuity. Continuity properties of the Drazin inverse
were studied by several authors ([6], [8], [10], [11]), and in particular Koliha
and Rakočević obtained an operator-theoretic generalization ([8, The-
orem 5.1]) of a well known criterion ([6, Theorem 10.7.1]) for continuity
of the Drazin inverse for matrices. Of course, their result implies Camp-
bell and Meyer’s theorem. We show here (Corollary 3.4) that with Aupetit
and Mouton’s spectral rank characterization, Campbell and Meyer’s result
can be extended to the socle of an arbitrary semisimple Banach algebra.
We shall need the following lemma and then first prove the special case for
group invertibility:

Lemma 3.1. Let A be a semisimple Banach algebra. If an, a ∈ Soc(A)
are maximal rank with an → a and there exists n0 ∈ N such that rank(an) =
rank(a) for n ≥ n0 then a

D
n → a

D.

Proof. For n ≥ n0 we have rank(an) = #σ
′(an) = #σ

′(a) = rank(a).
By continuity of the spectrum on Soc(A) we have infn d(0, σ

′(an)) > 0. It
follows from [8, Theorem 2.4] that aDn → a

D.

Theorem 3.2. Let an and a be group invertible elements belonging to
Soc(A) with an → a. Then a

D
n → a

D if and only if there exists n0 ∈ N such

that rank(an) = rank(a) for all n ≥ n0.

Proof. ⇒ If aDn → a
D then ana

D
n → aa

D and hence by [11, Lemma 12]
for some n0 ∈ N the elements ana

D
n and aa

D are similar for n ≥ n0, that
is, there are xn ∈ A

−1 such that xnana
D
n x
−1
n = aa

D. By the rank def-
inition rank(ana

D
n ) = rank(aa

D) for n ≥ n0. A simple argument, using
an = ana

D
n an and a = aa

Da, implies rank(an) = rank(a) for n ≥ n0.
⇐ Set the idempotents ana

D
n = qn and aa

D = q and consider the
finite-dimensional, semisimple and unital Banach algebras Bn = qnAqn and
B = qAq. Using Baire’s theorem we can find x ∈ A such that rank(an) =
#σ′(anx) = #σ

′(ax) = rank(a). Now, for n ≥ n0 we have

rank(an) = #σ
′(an(qnxqn)) = #σ

′(a(qxq)) = rank(a).

By the above equation and the fact that an and a are invertible in the alge-
bras Bn and B respectively, the elements qnxqn and qxq are also invertible
in Bn and B (for all n ≥ n0). Moreover, the inverses of qnxqn and qxq in
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Bn and B are just the Drazin (group) inverses (qnxqn)
D and (qxq)D. We

now show that qnxqn → qxq and that (qnxqn)
D → (qxq)D:

Since an → a we have anxan = an(qnxqn)an → a(qxq)a = axa. Since
an(qnxqn)an and a(qxq)a are maximal rank (n ≥ n0) it follows from Lem-
ma 3.1 that [an(qnxqn)an]

D → [a(qxq)a]D. By the invertibility of an and
qnxqn in Bn and of a and qxq in B we can apply the inverse formula with D,
that is, aDn (qnxqn)

DaDn → a
D(qxq)DaD. Now, multiplying by an and a

on both sides yields ana
D
n (qnxqn)

DaDn an → aa
D(qxq)DaDa, which implies

(qnxqn)
D → (qxq)D because ana

D
n and aa

D are the identities in Bn and
B respectively. From Lemma 3.1 together with [(qnxqn)

D]D = qnxqn and
[(qxq)D]D = qxq it follows that qnxqn → qxq. To complete the proof notice
that (qnxqn)(qnxqn)

D = ana
D
n and qxq(qxq)

D = aaD, so that ana
D
n → aa

D.
The result now follows from [10, Theorem 4.1].

Corollary 3.3. Let an, a ∈ Soc(A) be such that an → a and suppose
the Drazin indices of the an’s are bounded. Denote by can and ca the core
elements of an and a respectively. Then a

D
n → a

D if and only if there exists

n0 ∈ N such that rank(can) = rank(ca) for all n ≥ n0.

Proof. ⇒ Since rank(ca = aa
Da) = rank(aaD) for socle elements, the

result follows by consideration of the first part of the proof of Theorem 3.2.
⇐ Let kn, k denote the Drazin indices of an, a. Since kn, k are bounded

there existsm ∈ N such that amn , a
m are group invertible. So, as rank(can) =

rank(ca) for all n ≥ n0, we have rank(a
m
n ) = rank(a

m) for n ≥ n0. From
Theorem 3.2 we obtain (amn )

D → (am)D and since amn → a
m it follows that

ana
D
n → aa

D. Thus [10, Theorem 4.1] implies aDn → a
D.
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[4] M. Brešar and P. Šemrl, Finite rank elements in semisimple Banach algebras, ibid.

128 (1998), 287–298.
[5] R. Brits, L. Lindeboom and H. Raubenheimer, On ideals of generalized invertible

elements in Banach algebras, Math. Proc. Roy. Irish Acad. Sect. A 105 (2005), 1–10.
[6] S. L. Campbell and C. D. Meyer, Generalized Inverses of Linear Transformations,

Dover, New York, 1991.
[7] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367–381.
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