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A martingale approach to general Franklin systems

by

Anna Kamont (Sopot) and Paul F. X. Müller (Linz)

Abstract. We prove unconditionality of general Franklin systems in Lp(X), where
X is a UMD space and where the general Franklin system corresponds to a quasi-dyadic,
weakly regular sequence of knots.

1. INTRODUCTION

In this paper we continue the line of research that extends proper-
ties of biorthogonal systems from the case of scalar-valued function spaces
to their UMD-valued analogues. We are particularly concerned with the
Franklin system and its generalizations corresponding to non-dyadic parti-
tions. It is well known that the classical Franklin system is a basis in Lp[0, 1],
1 ≤ p <∞, and in C[0, 1], and it has been proved by S. V. Bochkarev [1]
that this basis is unconditional when 1 < p < ∞. Moreover, Z. Ciesielski,
P. Simon and P. Sjölin [5] have proved that the Franklin and Haar systems
are equivalent in Lp[0, 1] for 1 < p <∞.

In the vector-valued case, the problem of unconditionality of the Franklin
system in Lp(X) has been solved for UMD spaces by T. Figiel, who devel-
oped a general martingale approach to such problems in [6] and [7]. Sum-
maries of Figiel’s work appear in [8] and [13].

A general Franklin system on [0, 1] consists of piecewise linear functions
corresponding to an arbitrary sequence of knots, dense in [0, 1]. By the work
of Z. Ciesielski [4] from 1963, general Franklin systems are known to be bases
in Lp[0, 1], 1 ≤ p < ∞, and in C[0, 1] (the latter when all knots are simple,
i.e. all functions from the system in question are continuous). By contrast,
the problem of unconditionality for general Franklin systems has not been
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studied until a series of recent papers [10], [12], [11]. The final answer to
this problem is in [11]: for an arbitrary sequence of knots, the corresponding
general Franklin system is an unconditional basis in Lp[0, 1], 1 < p <∞.

In this paper, we are interested in the question of unconditionality of gen-
eral Franklin systems in Lp(X) = Lp([0, 1], X), where X is a UMD space.
We answer this question in the affirmative when the system corresponds to
a quasi-dyadic, weakly regular sequence of knots. The method of proof is
an extension of T. Figiel’s martingale approach. In this paper we exploit
J. Bourgain’s version of E. M. Stein’s martingale inequality to estimate the
martingales resulting from Figiel’s expansion of Franklin functions. Thus
Stein’s inequality replaces the use of explicit martingale transforms appear-
ing in Figiel’s original work [6].

2. THE MAIN RESULT

In this section we state the main result of this paper concerning Lp(X)
equivalence between the general Haar system and the general Franklin sys-
tem built on quasi-dyadic sequences of partitions. We first review these
notions and recall the relevant definitions.

Quasi-dyadic sequences of partitions. Let {Pj , j ≥ 0} be a quasi-dyadic

sequence of partitions of [0, 1]. This means that Pj = {tj,k, 0 ≤ k ≤ 2j} with

0 = tj,0 < tj,1 < · · · < tj,2j−1 < tj,2j = 1 and tj,k = tj+1,2k, 0 ≤ k ≤ 2j .

That is, Pj+1 is obtained from Pj by inserting a new point between any two
points of Pj . The following notation will be used:

Ij,k = [tj,k−1, tj,k], 1 ≤ k ≤ 2j ,(2.1)

Ij = {Ij,k, 1 ≤ k ≤ 2j}, I =
⋃

j≥0

Ij .(2.2)

For I = Ij,k we write I− = Ij,k−1, I
+ = Ij,k+1. Moreover, we enumerate the

intervals I by putting

(2.3) I2j+k = Ij,k, j ≥ 0, 1 ≤ k ≤ 2j .

General Franklin system corresponding to a quasi-dyadic sequence of

partitions. Let {Pj , j ≥ 0} be a quasi-dyadic sequence of partitions. Let
π1 = {0, 1}, t0 = 0, t1 = 1, and for n ≥ 2, n = 2j + k put tn = tj+1,2k−1,
πn = {t0, . . . , tn}; more precisely, πn is the partition of [0, 1] obtained by in-
creasing rearrangement of the points t0, . . . , tn, and the point tn = tj+1,2k−1

is inserted into the interval Ij,k. We denote by Sn the space of continu-
ous and piecewise linear functions on [0, 1] with knots πn. Since dimSn =
dimSn−1 + 1, for each n ≥ 2 there is a unique function fn ∈ Sn such that
fn is orthogonal (in L2[0, 1]) to Sn−1, ‖fn‖2 = 1 and fn(tn) > 0. Letting
f0 ≡ 1 and f1(t) =

√
3(2t − 1), we obtain a complete orthonormal system
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{fn, n ≥ 0}, which is called the general Franklin system corresponding to the

quasi-dyadic sequence of partitions {Pj , j ≥ 0}.
For convenience, we set φn = fn/‖fn‖∞, and we write φn = φj,k, where

n = 2j + k with j ≥ 0 and 1 ≤ k ≤ 2j . We also use the abbreviation
1j,k = 1Ij,k

.

General Haar system corresponding to a quasi-dyadic sequence of par-

titions. We will also need the general Haar system corresponding to {Pj ,
j ≥ 0}. For I ∈ I, I = Ij,k, denote by hI or hj,k the L∞ normalized
Haar function, supported on I = Ij,k, that corresponds to the splitting
Ij,k = Ij+1,2k−1 ∪ Ij+1,2k. Explicitly hIj,k

is given as

(2.4) hIj,k
=

|Ij+1,2k−1| ∧ |Ij+1,2k|
|Ij+1,2k−1|

1Ij+1,2k−1
−|Ij+1,2k−1| ∧ |Ij+1,2k|

|Ij+1,2k|
1Ij+1,2k

,

where 1A is the indicator function of the set A. In what follows, we use the
abbreviations hIj,k

= hj,k = hn with n = 2j + k.

Comment. The above extends the purely dyadic case: if we specialize
tj,k = k/2j, then Ij,k defined by (2.1) is just a dyadic interval, and hIj,k

defined by (2.4) is the L∞ normalized dyadic Haar function.

A dyadic Haar function is distinguished by the fact that its absolute
value is constant (and equal to 1) on its support. Next we impose a well
known regularity condition on the quasi-dyadic partition ensuring that the
moduli of the Haar functions defined by (2.4) satisfy uniform lower bounds
on their supports. This regularity condition arose in the study of martingale
inequalities associated to increasing sequences of σ-algebras through the
work of R. Gundy and D. L. Burkholder in the 1960’s (see for example
A. M. Garsia’s book [9]). Following the terminology used by approximation
theorists, we call this property the weak regularity condition.

Weak regularity condition for a quasi-dyadic sequence of partitions. For
our main result, we assume the following regularity condition (weak regular-

ity condition) for the sequence of partitions {Pj , j ≥ 0}: there is a parameter
γ ≥ 1 such that

(2.5)
1

γ
≤ |Ij+1,2k−1|

|Ij+1,2k|
≤ γ for all j ≥ 0, 1 ≤ k ≤ 2j .

This condition means that when Ij,k is split by the point tj+1,2k−1 into
Ij+1,2k−1 ∪ Ij+1,2k, then the lengths of Ij+1,2k−1 and Ij+1,2k are comparable.
In particular, the weak regularity condition with parameter γ implies that

(2.6)
1

γ + 1
|Ij,k| ≤ |Ij+1,2k−1|, |Ij+1,2k| ≤

γ

γ + 1
|Ij,k|.

The above definitions extend naturally the notion of dyadic intervals,
the dyadic Haar system and the classical Franklin system. The main results
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relating the Franklin system and the Haar system assert that the classical
Franklin system is an unconditional basis in Lp[0, 1], 1 < p < ∞ (Theorem
of S. V. Bochkarev [1]), and that furthermore the Franklin and Haar systems
form equivalent bases in the reflexive Lp[0, 1] spaces (Theorem of Z. Ciesiel-
ski, P. Simon and P. Sjölin [5]). Extending the classical results, T. Figiel
[6] showed that for any UMD space X the Franklin and Haar systems are
equivalent in the vector-valued Lp space Lp(X). Since the classical work
relied on tools that are strictly limited to the scalar case, T. Figiel had to
invent a new—martingale-based—approach to biorthogonal systems.

In a different direction, the results of S. V. Bochkarev and Z. Ciesielski,
P. Simon and P. Sjölin were extended to the case of general Franklin systems:
For quasi-dyadic partitions, and under the condition of weak regularity, it
was proved in [10] that unconditionality holds for {φn}∞n=0 in the reflexive
Lp[0, 1] spaces and moreover that {hn}∞n=1 and {φn}∞n=1 are equivalent there.
Later—even without imposing any regularity or structure conditions—it was
proved in [11] (with an important intermediate step [12]) that the general
Franklin system is unconditional in Lp[0, 1], 1 < p <∞, and equivalent to a
carefully selected subsequence of the Haar system.

In this paper we apply the martingale approach of T. Figiel [6] to the
general Franklin system and extend the results of [10] from the scalar case to
that of UMD spaces. Recall that a Banach space X has the UMD property
if in Lp(X), 1 < p < ∞, the vector-valued version of Burkholder’s theorem
holds true: If {dn} is a martingale difference sequence in Lp(X), 1 < p <∞,
then

∥∥∥
m∑

n=1

±dn

∥∥∥
Lp(X)

≤ Cp

∥∥∥
m∑

n=1

dn

∥∥∥
Lp(X)

, m ∈ N,

where Cp = Cp(X). Our reference for UMD spaces is [3].

Now, we formulate the main result of the paper:

Theorem 2.1. Let {Pj , j ≥ 0} be a sequence of quasi-dyadic parti-

tions satisfying the weak regularity condition with parameter γ > 1. Let

{φn, n ≥ 0} be the corresponding general Franklin system, normalized in

L∞. Let X be an UMD space, and let an ∈ X. Then for each 1 < p <∞,

(2.7)
1

C

∥∥∥
∞∑

n=1

anhn

∥∥∥
Lp(X)

≤
∥∥∥

∞∑

n=1

anφn

∥∥∥
Lp(X)

≤ C
∥∥∥

∞∑

n=1

anhn

∥∥∥
Lp(X)

,

where the constant C = Cγ,p,X depends on γ, p and X.

Comment. Since the general Haar functions {hn, n ≥ 1} form a mar-
tingale difference sequence, the UMD property of X implies that

∑∞
n=1 anhn

converges unconditionally, if it converges at all. By (2.7), the same assertion
holds for the general Franklin series

∑∞
n=0 anφn.
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3. PROOF OF THEOREM 2.1

The first step of T. Figiel’s approach to biorthogonal systems consists in
decomposing each individual Franklin function into a Haar series, rescaled to
a suitable dyadic level. Thus T. Figiel reduces the norm estimates for series
of Franklin functions to a sequence of norm estimates for basic operators,
splitting and rearranging the Haar system. The special symmetry in the
equations defining Figiel’s basic operators reflects directly the obvious fact
that each dyadic interval splits into two of equal length.

For quasi-dyadic partitions this symmetry does not hold any longer so
that in this paper we are led to analyze certain weighted forms of Figiel’s
basic operators. These are the operators Tm and Um defined below.

Let τm, m ∈ Z, be the rearrangement of I defined by

(3.1) τm(Ij,k) = Ij,k+m when 1 ≤ k, k +m ≤ 2j .

Let Tm denote the linear extension of a map given by

(3.2) TmhI = xI,τm(I)hτm(I) where |xI,τm(I)| ≤ B
|I|

|I| + |τm(I)| ,

and B is a constant.

Theorem 3.1. Let {Pj , j ≥ 0} be a sequence of quasi-dyadic parti-

tions satisfying the weak regularity condition with parameter γ. Then there

is C > 0, depending on X, p and γ, such that

‖Tm : Lp(X) → Lp(X)‖ ≤ CB log(|m| + 2),

where B is the constant from (3.2).

Define Um to be the linear extension of

(3.3) UmhI = yI,τm(I)gI,τm(I) where gI,τm(I) = 1τm(I) −
|τm(I)|
|I| 1I ,

and

(3.4) |yI,τm(I)| ≤ B
|I|

|I| + |τm(I)| .

Theorem 3.2. Let {Pj , j ≥ 0} be a sequence of quasi-dyadic parti-

tions satisfying the weak regularity condition with parameter γ. Then there

is C > 0, depending on X, p and γ, such that

‖Um : Lp(X) → Lp(X)‖ ≤ CB log(|m| + 2),

where B is the constant from (3.3)–(3.4).

Throughout the paper we exploit the UMD property of X using J. Bour-
gain’s version of E. M. Stein’s martingale inequality and J. P. Kahane’s
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contraction principle. Recall that J. Bourgain’s version of E. M. Stein’s
martingale inequality asserts that

(3.5)

1\
0

∥∥∥
∑

rj(t)Ej(fj)
∥∥∥

p

Lp(X)
dt ≤ Cp(X)

1\
0

∥∥∥
∑

rj(t)fj

∥∥∥
p

Lp(X)
dt,

for any fj ∈ Lp(X) and any sequence {Ej} of conditional expectation opera-
tors corresponding to an increasing sequence of σ-algebras; here {rj} denotes
the Rademacher functions. For Cp(X) to be finite, that is to say, for (3.5) to
hold, the Banach space X has to satisfy the UMD property. The origin of
(3.5) is J. Bourgain’s paper [2], where it is employed to show boundedness
of vector-valued, singular convolution operators. Later it played a decisive
role in the analysis of vector-valued paraproduct operators that appeared
in T. Figiel’s proof of the T (1) theorem [7]. In [14] the inequality (3.5) was
used to extend B. Maurey’s isomorphism to the UMD case. J. Bourgain’s
proof of (3.5) is recorded in [8].

J.-P. Kahane’s well known contraction principle asserts that in any Ba-
nach space X,

1\
0

∥∥∥
∑

rj(t)cjxj

∥∥∥
p

X
dt ≤ Cp sup

j
|cj|p

1\
0

∥∥∥
∑

rj(t)xj

∥∥∥
p

X
dt

for any bounded numerical sequence {cj} and any xj ∈ X; here again {rj}
denotes the Rademacher system.

Now, we proceed as follows. First, we show how Theorem 2.1 follows
from Theorems 3.1 and 3.2. This is done in Section 3.1. Then we give the
proof of Theorems 3.1 and 3.2 in Section 3.2.

3.1. Figiel’s non-standard expansion of φn. In this section we apply
Figiel’s expansion to our (general) Franklin systems and show that it yields
the proof of Theorem 2.1 assuming that Theorems 3.1 and 3.2 hold.

In order to prove (2.7), by a standard duality argument it suffices to
verify the right-hand inequality of (2.7).

Next we write down Figiel’s non-standard expansion of φn using general
Haar functions. In the present context, Figiel’s expansion is equation (3.11)
below. Since [10] contains explicit information on the pointwise decay of
φn’s (and consequently, also its derivatives), (3.11) forms the first step in
the proof of Theorem 2.1.

Figiel’s non-standard decomposition of φj,k. Set h∗j,k = hj,k/‖hj,k‖1. It
follows by the weak regularity of the sequence of partitions that |h∗j,k| ∼γ

1/|Ij,k| on Ij,k. Now, write
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(3.6) φj,k =
2j∑

l=1

φj,k · 1j,l,

and further

(3.7) φj,k · 1j,l = α(j,k),(j,l)1j,l +

∞∑

ξ=0

ψ(j,k);l;ξ,

with

(3.8) ψ(j,k);l;ξ =
∑

η: Ij+ξ,η⊂Ij,l

β(j,k),(ξ,η)hj+ξ,η

and

(3.9) α(j,k),(j,l) =
1

|Ij,l|
\

Ij,l

φj,k(s) ds, β(j,k),(ξ,η) =

1\
0

φj,k(s)h
∗
j+ξ,η(s) ds.

Taking ξ ≥ 0 and m = l − k, define

(3.10) Ψξ,m(hj,k) = ψ(j,k);m+k;ξ and Vmhj,k = α(j,k),(j,m+k)1j,m+k.

Clearly,

(3.11) φj,k =
∑

m

Vmhj,k +
∑

m

∞∑

ξ=0

Ψξ,mhj,k.

By (3.11) we can reduce the right-hand inequality in (2.7) to norm estimates
for the sequence of operators Vm and Ψξ,m. Precisely, for (2.7) to hold it is
enough that

(3.12)
∥∥∥

∑

m

Vm

∥∥∥
Lp(X)

+
∑

m

∑

ξ≥0

∥∥∥Ψξ,m

∥∥∥
Lp(X)

<∞.

We obtain good estimates for the operators Ψξ,m and Vm by using rather
precise inequalities for the coefficients α(j,k),(j,l), β(j,k),(ξ,η) appearing in Fi-
giel’s expansion. The inequalities are obtained from the next proposition
(cf. Proposition 2.9 of [10]; the estimate for φ′n follows from a pointwise
estimate for φn, piecewise linearity of φn and weak regularity of the sequence
of partitions).

Proposition 3.3. Let {Pj , j ≥ 0} be a quasi-dyadic sequence of par-

titions satisfying the weak regularity condition with parameter γ. Let {φn,
n ≥ 0} be the corresponding L∞-normalized Franklin system. Then:

(i) For each j ≥ 0, 1 ≤ k ≤ 2j and n = 2j + k, φn = φj,k is linear on

each interval Ij+1,l, 1 ≤ l ≤ 2j+1.

(ii) For each 1 ≤ p ≤ ∞ we have ‖φj,k‖p ∼γ |Ij,k|1/p. Moreover ,

φn(tn) ∼γ 1, and
T1
0 φn(s) ds = 0 for n ≥ 1.
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(iii) Pointwise estimates for φj,k and φ′j,k: there are Cγ and 0 < θ < 1

such that for all j and 1 ≤ k, l ≤ 2j ,

|φj,k(t)| ≤ Cγθ
|k−l| |Ij,k|

|Ij,k| + dist(Ij,k, Ij,l) + |Ij,l|
for t ∈ Ij,l.

|φ′j,k(t)| ≤ Cγ
θ|k−l|

|Ij,l|
|Ij,k|

|Ij,k| + dist(Ij,k, Ij,l) + |Ij,l|
for t ∈ Ij,l.

Next we obtain estimates for the coefficients α(j,k),(j,l) and β(j,k),(ξ,η). We
start with β(j,k),(ξ,η) using the Lipschitz properties of φj,k. It follows from

Proposition 3.3(iii), the condition Ij+ξ,η ⊂ Ij,l and
T1
0 h

∗
j+ξ,η(u) du = 0 that

|β(j,k),(ξ,η)| =
∣∣∣
\

Ij+ξ,η

(φj,k(u) − φj,k(tj+ξ,η))h
∗
j+ξ,η(u) du

∣∣∣

≤ Cγ |Ij+ξ,η| sup
u∈Ij+ξ,η

|φ′j,k(u)|

≤ Cγθ
|k−l| |Ij+ξ,η|

|Ij,l|
|Ij,k|

|Ij,k| + dist(Ij,k, Ij,l) + |Ij,l|
.

By weak regularity of the sequence of partitions (cf. (2.6)) we know that
|Ij+ξ,η|/|Ij,l| ≤ (γ/(γ + 1))ξ. Thus we get

|β(j,k),(ξ,η)| ≤ Cγθ
|k−l|

(
γ

γ + 1

)ξ |Ij,k|
|Ij,k| + |Ij,l||

,

and consequently

(3.13) |ψ(j,k);l;ξ| ≤ Cγθ
|k−l|

(
γ

γ + 1

)ξ |Ij,k|
|Ij,k| + |Ij,l||

|hj,l|.

Similarly, by using Proposition 3.3(ii), (iii) we find that

(3.14) |α(j,k),(j,l)| ≤ Cγθ
|k−l| |Ij,k|

|Ij,k| + |Ij,l||
and

2j∑

l=1

|Ij,l|α(j,k),(j,l) = 0.

Having obtained the inequalities for α(j,k),(j,l), β(j,k),(ξ,η), we now turn to
the norm estimates for Vm and Ψξ,m. These are based on the estimates for
Tm and Um established in Theorems 3.1 and 3.2.

The operators Ψξ,m. Consider the operator Tm given by

Tmhj,k =
|Ij,k|

|Ij,k| + |Ij,m+k|
hj,m+k.

It follows by (3.13) that

(3.15) |Ψξ,mhj,k| ≤ Cγθ
|m|

(
γ

γ + 1

)ξ

|Tmhj,k|.
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For fixed ξ and m, the sequence {Ψξ,mhj,k}(j,k) in lexicographical order is a
martingale difference sequence. Let aj,k ∈ X. Hence by the UMD property
of X, ∥∥∥

∑

j,k

aj,kΨξ,mhj,k

∥∥∥
Lp(X)

∼X,p

∥∥∥
∑

j,k

±aj,kΨξ,mhj,k

∥∥∥
Lp(X)

.

Averaging over ±, using (3.15) and applying Kahane’s contraction principle
we find that

∥∥∥
∑

j,k

aj,kΨξ,mhj,k

∥∥∥
Lp(X)

≤ Cγ,p,Xθ
|m|

(
γ

γ + 1

)ξ∥∥∥
∑

j,k

aj,kTmhj,k

∥∥∥
Lp(X)

.

Combining this with Theorem 3.1 we get

(3.16)
∑

ξ,m

‖Ψξ,m‖Lp(X) ≤ Cγ,p,X

∑

ξ,m

θ|m|

(
γ

γ + 1

)ξ

log(2 + |m|) <∞.

The operators Vm. Consider the operators Um given by

Umhj,k = α(j,k),(j,m+k)

(
1j,m+k − |Ij,m+k|

|Ij,k|
1j,k

)
.

It follows by (3.14) that
∑

m

Vmhj,k =
∑

m

Umhj,k.

Combining this with estimates from (3.14) and Theorem 3.2 we get
∥∥∥

∑

m

∑

j,k

aj,kVmhj,k

∥∥∥
Lp(X)

≤
∑

m

∥∥∥
∑

j,k

aj,kUmhj,k

∥∥∥
Lp(X)

≤ Cγ,p,X

∑

m

θ|m| log(2 + |m|)
∥∥∥

∑

j,k

aj,khj,k

∥∥∥
Lp(X)

≤ Cγ,p,X

∥∥∥
∑

j,k

aj,khj,k

∥∥∥
Lp(X)

.

Combining this with (3.16) we get (3.12), and consequently the right-hand
inequality in (2.7).

3.2. Boundedness of the rearrangement operators. In this section
we prove the norm estimates for the operators Tm. By combinatorial means
we provide a reduction to estimates for X-valued martingale differences, and
we control the latter using J. Bourgain’s version of E. M. Stein’s martingale
inequality and the contraction principle of J.-P. Kahane. The basic strategy
for proving ‖Tm‖p ≤ Cγ,p,X log(|m| + 2) consists in splitting I into at most
C log(|m| + 2) collections F such that Tm restricted to each of them is
bounded independently of m.
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3.2.1. A rough decomposition of I. As in [6], we start by separating the
orbit of τm and the levels of I.

For convenience, we introduce the following terminology: let K =⋃
k∈M Ij,k, L =

⋃
l∈P Ij,l, where M,P ⊂ {1, . . . , 2j}, and the sets M,P

are such that

|k − l| > 1 for all k ∈M, l ∈ P,

then we say that there is a gap of one Ij-interval between K and L.

Let ξm be the first level where τm is defined.

Proposition 3.4. There exists a decomposition of I into pairwise dis-

joint collections

{F (s,r) : s ≤ κ− 1, r ≤ r0}
where κ ∼ log(|m| + 2), r0 ≤ 8, so that :

(i) If I ∈ F (s,r), then τm(I) 6∈ F (s,r).

(ii) If I, J ∈ F (s,r), I ∈ Ii, J ∈ Ij and I ( J , then i ≥ j + κ.
(iii) If I, J ∈ F (s,r) ∩ Ij then

(3.17) dist(I ∪ τm(I), J ∪ τm(J)) > 0.

Remark 3.5. By modifying the decomposition outlined below we can
achieve that in addition to (3.17) we also have

(3.18) dist(I ∪ τm±1(I), J ∪ τm±1(J)) > 0.

Proof. We start by splitting each of the Ij with j ≥ ξm into disjoint
families Ij,r, 1 ≤ r ≤ 8, with the following properties:

(a) If Ij,k ∈ Ij,r, then τ(Ij,k) = Ij,k+m 6∈ Ij,r.
(b) If Ij,k, Ij,l ∈ Ij,r, k 6= l, then |k − l| > 1, |k + m − l| > 1 and

|l + m − k| > 1. In other words: there is a gap of one Ij-interval
between Ij,k ∪ τ(Ij,k) and Ij,l ∪ τ(Ij,l). Notice that this condition
means that Ij,k is not a neighbour of Ij,l or τ(Ij,l). Notice also that
only in case |m| = 1 does it happen that Ij,k is a neighbour of τ(Ij,k).

We get the splitting of Ij into the families Ij,r as follows:

(1) Split each Ij into the odd numbered intervals

Oj = {Ij,2k′+1 : 1 ≤ 2k′ + 1 ≤ 2j}
and into the even numbered intervals

Ej = {Ij,2k′ : 1 ≤ 2k′ ≤ 2j}.
Both these families have the property that if an interval is in one of

these families, then its neighbours are in the other family. Now we further
decompose the families Oj, Ej . Here the construction distinguishes between
the case when m is odd or even.
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(2) Let m be even. Consider first Oj . We decompose Oj along the orbit
of τm. Put

Om;j,1 = {τm·(2n)(I) : n ∈ Z, I = Ij,2k′+1 with 1 ≤ 2k′ + 1 ≤ |m|},
Om;j,2 = {τm·(2n+1)(I) : n ∈ Z, I = Ij,2k′+1 with 1 ≤ 2k′ + 1 ≤ |m|},

Clearly each of the collections Om;j,1, Om;j,2 satisfies (i) and (iii).

By the same procedure we decompose Ej along the orbits of τm obtaining
collections Em;j,1, Em;j,2 that satisfy (i) and (iii). Thus Em;j,1, Em;j,2, Om;j,1,
Om;j,2 is the required splitting of Ij for m even.

(3) For m odd with |m| > 1, Oj and Ej satisfy (i), but not (iii). Clearly
m− 1 and m+ 1 are even. Define the splitting of Oj into Om+1;j,1, Om+1;j,2

and simultaneously split Oj into Om−1;j,1, Om−1;j,2. Then form the intersec-
tions

Rm;j,α,β = Om+1;j,α ∩Om−1;j,β, α, β ∈ {1, 2}.
Each of the collections Rm;j,α,β, α, β ∈ {1, 2}, satisfies (i) and (iii). Thus
{Rm;j,α,β, α, β ∈ {1, 2}} forms the required splitting of Oj. The decomposi-
tion of Ej is defined analogously.

(4) For |m| = 1, take the splitting of Ij according to k mod 3.

Then take κ = κm, κ ∼ log(|m|+2). Write each j ≥ ξm as j = ξm+κl+s,
l ≥ 0, 0 ≤ s ≤ κ− 1. For fixed r, s, let

Bl = B(r,s)
l = Iξm+κl+s,r,(3.19)

F = F (s,r) =
⋃

l≥0

Bl.(3.20)

3.2.2. Constructing nested collections. Let F be one of the families ob-
tained in Proposition 3.4. We show below that Tm restricted to F is bounded.
We will do this by relating {I ∪ τm(I) : I ∈ F} to a nested collection of
measurable sets {A(I) : I ∈ F}, so that Tm can be controlled by a martin-
gale transform acting on {1A(I) : I ∈ F}. Thus the construction of a nested
family {A(I) : I ∈ F} so that A(I) stays close to I ∪ τm(I) is crucial for our
proof that Tm is bounded.

Theorem 3.6. Let m ∈ Z. Let τ = τm. Let F ⊆ I be one of the families

obtained in Proposition 3.4. Then for every I ∈ F there exists A(I) ⊆ [0, 1]
so that

(3.21) I ∪ τ(I) ⊆ A(I) ⊆ (I− ∪ I ∪ I+) ∪ (τ(I)− ∪ τ(I) ∪ τ(I)+),

and {A(I) : I ∈ F} is a nested collection of sets in the sense that

(3.22) A(I) ∩A(J) 6= 0 implies A(I) ⊆ A(J) or A(J) ⊆ A(I).
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Proof. We first define A(I) through an inductive procedure. Later we
will verify (3.21) and (3.22). For convenience, let

(3.23) jl = ξm + κl + s, where F = F (s,r).

The A(K, l) operation. LetK =
⋃

µ∈M Ijl−1,µ, whereM ⊂ {1, . . . , 2jl−1}.
For such K, define

C(K, l) = {I ∈ Bl : dist(I ∪ τ(I),K) = 0},
A(K, l) = K ∪

⋃

I∈C(K,l)

(I ∪ τ(I)).

Note that I ∈ C(K, l) iff either I ⊂ K, or τ(I) ⊂ K, or one of I, τ(I) has a
common endpoint with one of Ijl−1,µ, µ ∈M . Clearly A(K, l) can be written
as a union of intervals in Ijl

.

Defining the atom A(I). Let I ∈ F . Take l ≥ 0 such that I ∈ Bl (there
is only one such l). Then define inductively:

Al(I) = I ∪ τ(I),
An+1(I) = A(An(I), n+ 1) for n ≥ l,

A(I) =
⋃

n≥l

An(I).

Observe that each An(I) is a union of some intervals from Ijn . Hence the
operation A(·, n + 1) can be applied to An(I) so that (at least) A(I) is a
well defined measurable subset of the unit interval. Moreover it is immediate
that

(3.24) An(I) ⊂ An+1(I).

We start with a simple fact displaying the basic properties of the A(K, l)
operation.

Fact 3.7. Let J ∈ Bl. Then either J ∈ C(K, l), or there is a gap of at

least one Ijl
-interval between J and A(K, l), and between τ(J) and A(K, l).

Proof. Suppose that J 6∈ C(K, l). Let ∆ ∈ Ijl
, ∆ ⊂ A(K, l). It is enough

to check that there is a gap of one Ijl
-interval between J and∆, and between

τ(J) and ∆. That is, J, τ(J) 6= ∆,∆−, ∆+.
Consider the following cases:

(1) ∆ ⊂ K. As K is a union of intervals from the level Ijl−1
, there is

∆̃ ∈ Ijl−1
such that ∆ ⊂ ∆̃ ⊂ K. Note that J 6= ∆ and τ(J) 6= ∆—

otherwise, we would have J ∈ C(K, l). Next, if J = ∆−, ∆+, then

either J ⊂ ∆̃, or J and ∆̃ have a common endpoint—but then
J ∈ C(K, l); consequently, J 6= ∆−, ∆+. An analogous argument
gives τ(J) 6= ∆−, ∆+.
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(2) ∆ 6⊂ K, but ∆ ∈ C(K, l). Then ∆ ∈ Bl. Clearly, J 6= ∆, and by
condition (i) for the splittings Ij,r (see Proposition 3.4), τ(J) 6= ∆.
By condition (iii) for the splittings Ij,r, we get J, τ(J) 6= ∆−, ∆+.

(3) ∆ 6⊂ K and ∆ 6∈ C(K, l). Then there is I ∈ C(K, l) such that
∆ = τ(I). Observe that I ∈ Bl, and therefore there must be J 6= I
and τ(J) 6= τ(I) = ∆. Further, J 6= ∆ by condition (i) for splittings,
and J, τ(J) 6= ∆−, ∆+ by (iii).

The next lemma is crucial. In Tn (defined below) we gather the nth
approximation to the first n generations of the sets {A(I) : I ∈ F}. The
conclusion of Lemma 3.8 asserts that not only is Tn a nested collection of
sets but also disjoint sets in Tn have a strong separation property.

Lemma 3.8. For n ≥ 0, let

Tn = {An(I) : I ∈ Bl, 0 ≤ l ≤ n}.
Let K,L ∈ Tn. Then either K ⊂ L, or L ⊂ K, or there is a gap of at least

one Ijn-interval between K and L.

Proof. The proof is by induction with respect to n.

Step n = 0. For n = 0 we have

T0 = {A0(I) : I ∈ B0} and A0(I) = I ∪ τ(I) for I ∈ B0.

It follows from Proposition 3.4(iii) that if I, J ∈ B0, I 6= J , thenA0(I), A0(J)
are disjoint, and there is a gap of at least one Ij0-interval between A0(I)
and A0(J).

Step n+ 1. Suppose now that the conclusion of Lemma 3.8 is satisfied
for n; we check it for n+ 1. It follows from the definition of An(·) and Tn+1

that

Tn+1 = {An+1(I) : I ∈ Bl, 0 ≤ l ≤ n} ∪ {An+1(I) : I ∈ Bn+1}
= {A(K ′, n+ 1) : K ′ ∈ Tn} ∪ {I ∪ τ(I) : I ∈ Bn+1}.

Let K,L ∈ Tn+1. Consider the following cases:

(1) K = I ∪ τ(I), L = J ∪ τ(J) with I, J ∈ Bn+1.

If I = J , then K = L. If I 6= J , then K 6⊂ L, L 6⊂ K, and the required
separation of K and L follows from Proposition 3.4(iii).

(2) K = A(K ′, n+ 1) with K ′ ∈ Tn and L = J ∪ τ(J) with J ∈ Bn+1.

In this case, if J ∈ C(K ′, n+1), then by the definition of A(·, n+1) we have
L = J ∪ τ(J) ⊂ A(K ′, n+ 1) = K. If J 6∈ C(K ′, n+ 1), then the separation
of K and L by at least one Ijn+1-interval is a consequence of Fact 3.7.

(3) L = A(L′, n+ 1) with L′ ∈ Tn and K = I ∪ τ(I) with I ∈ Bn+1.

This case is symmetric to (2).
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(4) K = A(K ′, n+ 1) and L = A(L′, n+ 1) with K ′, L′ ∈ Tn.

By the induction hypothesis, either K ′ ⊂ L′, or L′ ⊂ K ′, or there is a gap
of at least one Ijn-interval between K ′ and L′. Consider now the following
subcases:

(4a) K ′ ⊂ L′.

The inclusion K ′ ⊂ L′ and the definition of C(·, n + 1) imply that C(K ′,
n+ 1) ⊂ C(L′, n+ 1). Consequently, K = A(K ′, n+ 1) ⊂ A(L′, n+ 1) = L.

(4b) L′ ⊂ K ′.

By an argument as in (4a), L ⊂ K.

(4c) There is a gap of at least one Ijn-interval between K ′ and L′.

Let I, J ∈ Ijn+1 , I ⊂ K, J ⊂ L. We check that there is a gap of at least one
Ijn+1-interval between I and J .

Consider first I and K ′. It follows by the definitions of A(·, n + 1) and

C(·, n+ 1) that there is Ĩ ∈ Ijn with Ĩ ⊂ K ′ such that one of the following
holds:

• I ⊂ Ĩ, or I ∈ Bn+1 and τ(I) ⊂ Ĩ,

• I ∈ Bn+1, and either I or τ(I) has a common endpoint with Ĩ,

• I = τ(I ′) where I ′ ∈ Bn+1 and either I ′ ⊂ Ĩ, or one of I ′, I = τ(I ′)

and Ĩ have a common endpoint.

Recall that jn+1 = jn+κ. Therefore, setting Ĩ=[tjn,k−1, tjn,k]=[tjn+1,2κ(k−1),
tjn+1,2κk], we find that in each of the above cases

I ⊂ [tjn+1,2κ(k−1)−|m|−1, tjn+1,2κk+|m|+1].

By similar considerations, setting J̃ = [tjn,l−1, tjn,l], we find that

J ⊂ [tjn+1,2κ(l−1)−|m|−1, tjn+1,2κl+|m|+1].

The induction hypothesis implies that |l− k| > 1; without loss of gener-
ality, suppose that l ≥ k + 2. Then by the choice of κ we have

(2κ(l − 1) − |m| − 1) − (2κk + |m| + 1) = 2κ(l − k − 1) − 2(|m| + 1)

≥ 2κ − 2(|m| + 1) > 1.

This implies that there is a gap of at least one Ijn+1-interval between I
and J .

Having analyzed the inductive procedures defining A(I) we continue with
the proof of Theorem 3.6. The following proposition contains the verification
of (3.22).

Proposition 3.9. Let I, J ∈ F . Then either A(I) ⊂ A(J), or A(J) ⊂
A(I), or A(I) ∩A(J) = ∅.
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Comment. The proof below yields more precise statements. If I, J ∈ Bl,
I 6= J , then A(I)∩A(J) = ∅. If I ∈ Bl1 and J ∈ Bl2 with l1 < l2, then either
A(J) ⊂ A(I), or A(I) ∩A(J) = ∅.

Proof. In the proof below, we refer to cases considered in the proof of
Lemma 3.8 above.

First, let I, J ∈ Bl, I 6= J . By (1), there is a gap of one Ijl
-interval

between Al(I) and Al(J). Then, by an inductive argument and (4c), for
each n > l, there is a gap of one Ijn-interval between An(I) and An(J).
This in particular implies that these sets are disjoint for each n ≥ l. As both
{An(I), n ≥ l} and {An(J), n ≥ l} are increasing sequences of sets, this
implies that A(I) ∩A(J) = ∅.

Consider now the case when I ∈ Bl1 and J ∈ Bl2 with l1 < l2. Then
there are two cases.

If J ∈ C(Al2−1(I), l2), then by (2) we have Al2(J) ⊂ Al2(I), and by (4a)
and an inductive argument, An(J) ⊂ An(I) for all n ≥ l2. This and the
definition of A(·) imply that A(J) ⊂ A(I).

If J 6∈ C(Al2−1(I), l2), then by (2) there is a gap of one Ijl2
-interval

between Al2(I) and Al2(J). Then by (4c) and an inductive argument, there
is a gap of one Ijn-interval between An(I) and An(J), for each n ≥ l2. By
an argument analogous to the above, this implies that A(I) ∩A(J) = ∅.

Having established that {A(I) : I ∈ F} is a nested collection it remains
to see that each A(I) is a sufficiently good approximation of I ∪ τ(I). This
is the content of (3.21).

Proposition 3.10. For I ∈ F , let

S(I) = I− ∪ I ∪ I+ ∪ τ(I)− ∪ τ(I) ∪ τ(I)+.
Then I ∪ τ(I) ⊂ A(I) ⊂ S(I).

Proof. For an interval ∆ ∈ Ijl
, let

A′
l(∆) = ∆, A′

n+1(∆) = A(A′
n(∆), n+ 1) for n ≥ l.

Observe that for I ∈ Bl and each n ≥ l we have An(I) = A′
n(I) ∪ A′

n(τ(I))
(proof by induction). Therefore, to prove the proposition, it is enough to
check that for each ∆ ∈ Ijl

and n ≥ l,

A′
n(∆) ⊂ ∆− ∪∆ ∪∆+.

Let k be such that

∆ = Ijl,k = [tjl,k−1, tjl,k].

Then

∆− ∪∆ ∪∆+ = [tjl,k−2, tjl,k+1] = [tjn,2κ(n−l)(k−2), tjn,2κ(n−l)(k+1)].
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Define
ηl = k − 1, ηn+1 = 2κηn − |m| − 1 for n ≥ l,

ξl = k, ξn+1 = 2κξn + |m| + 1 for n ≥ l.

By an inductive argument, essentially repeating the argument used al-
ready in (4c) of the proof of Lemma 3.8 we find that

(3.25) A′
n(∆) ⊂ [tjn,ηn , tjn,ξn

].

Moreover, by an inductive argument we check that

(3.26) ηn − 2κ(n−l)(k − 2) ≥ 1 and 2κ(n−l)(k + 1) − ξn ≥ 1 for n ≥ l.

Let us check this for the sequence ξn: for n = l inequality (3.26) is satisfied.
For n ≥ l, using the definition of κ we get

2κ(n+1−l)(k + 1) − ξn+1 = 2κ(n+1−l)(k + 1) − (2κξn + |m| + 1)

= 2κ(2κ(n−l)(k + 1) − ξn) − (|m| + 1)

≥ 2κ − (|m| + 1) > 1.

Combining (3.25) and (3.26) we get

A′
n(∆) ⊂ ∆− ∪∆ ∪∆+ for all n ≥ l.

3.2.3. Proof of Theorem 3.1. Let T = Tm be defined by (3.2). We con-
sider only the case where m > 0. The case m < 0 is symmetric and can be
treated analogously. We define two auxiliary mappings ̺1 and ̺2 acting on
the intervals of I, and hence on the associated general Haar functions.

Definition of ̺1: Take ∆ ∈ Ij , let ∆left, ∆right ∈ Ij+1 be its “children”,
∆left,left, ∆left,right ∈ Ij+2 the children of ∆left, and ∆right,left, ∆right,right ∈
Ij+2 the children of ∆right. Now put

̺1(h∆) = h∆right,left
.

Definition of ̺2: Let ∆ ∈ Ij , define

̺2(h∆left,right
) = h∆,

and set ̺2 equal to 0 for the Haar functions corresponding to the remaining
three “grandchildren” of ∆. Define

Z(hI) =

{
T4m−1(hI) when I = ∆right,left for some ∆,

0 otherwise.

Observe that

Tm = ̺2 ◦ Z ◦ ̺1.

Note that ‖̺1‖Lp(X), ‖̺2‖Lp(X) ≤ Cp,γ (by E. M. Stein’s martingale inequal-
ity and weak regularity of the sequence of partitions). Therefore, it remains
to check that

(3.27) ‖Z‖Lp(X) ≤ C log(|m| + 2).
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Next apply Proposition 3.4 with parameter 4m−1 and rearrangement τ4m−1.
Let {F (r,s)} denote the resulting splitting. Clearly the total number of pairs
(r, s) is ∼ κ4m−1 ∼ log(|m|+2). Fix (r, s) and put F = F (r,s). The estimate
(3.27) follows from our next claim: the linear extension of

(3.28) hI 7→ Z(hI), I ∈ F ,
has Lp(X) norm bounded by Cp, where Cp is independent of m. Recall
that we obtained F by applying Proposition 3.4 with 4m − 1 and τ4m−1.
Next apply Theorem 3.6 to F (with parameter 4m − 1 and rearrangement
σ = τ4m−1). Let {A(I) : I ∈ F} be the resulting nested collection. Next
define F ′ = F ∩ Iright,left. The following estimate is crucial:

(3.29) |A(I)| ∼γ |I| + |σ(I)|, I ∈ F ′.

To see this, note that for I ∈ Iright,left we have σ(I) ∈ Ileft,right. For fixed ∆,
we have

∆−
right,left ∪∆right,left ∪∆+

right,left ⊂ ∆,

∆−
left,right ∪∆left,right ∪∆+

left,right ⊂ ∆.

Now Proposition 3.10 and weak regularity imply (3.29).

By (3.29) we may rewrite the action of Z restricted to F ′. Let σ = τ4m−1.
Then

(3.30) Z(hI) = zI,σ(I)hσ(I) where |zI,σ(I)| ≤ C
|I|

|σ(I)| + |I| , I ∈ F ′.

It remains to fully exploit the content of (3.30) and turn it into a norm
estimate for the operator Z. The estimates for Z will be obtained as an appli-
cation of E. M. Stein’s martingale inequality. To prepare for its application
we let Hn be the algebra generated by the atoms A(I) with I ∈ F ′∩⋃

i≤jn
Ii,

and letEn be the conditional expectation with respect to Hn. For I ∈ F ′∩Ijn

we have

En1I =
|I|

|A(I)| 1A(I).

Therefore by (3.29) and (3.30),

|zI,σ(I)|1σ(I) ≤ |zI,σ(I)|1A(I) ≤ CγEn1I .

Let {rI : I ∈ F ′} be an enumeration of the Rademacher system. Then by the
UMD property, Kahane’s contraction principle and E. M. Stein’s martingale
inequality we obtain

∥∥∥
∑

I∈F ′

aIZ(hI)
∥∥∥

Lp(X)
≤ CpE

∥∥∥
∑

I∈F ′

aIrIzI,σ(I)hσ(I)

∥∥∥
Lp(X)

.

Applying twice the contraction principle of Kahane gives these bounds for
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the right hand side of the above estimate:

CpE
∥∥∥

∑

I∈F ′

aIrIzI,σ(I)1σ(I)

∥∥∥
Lp(X)

≤ Cp,γE
∥∥∥

∑

I∈F ′

aIrIEn1I

∥∥∥
Lp(X)

.

By J. Bourgain’s version of E. M. Stein’s martingale inequality, the last
expression is bounded as

Cp,γE
∥∥∥

∑

I∈F ′

aIrI1I

∥∥∥
Lp(X)

.

Again the contraction principle of Kahane and the UMD property of X
imply that the last term is bounded by ‖∑

I∈F ′ aIhI‖p. This gives (3.28)
and (3.27). To deduce (3.1) note that the length of an interval ∆ ∈ I is
comparable with the length of each of its “grandchildren”. So when we start
with T where xI,τ(I) satisfies (3.2), then the induced zI,σ(I) satisfies (3.30).

3.3. Boundedness of the splitting operator. In this section we
prove the norm estimates for Um. As in the treatment of Tm the upper
bound ‖Um‖Lp(X) ≤ C log(|m| + 2) follows from an application of J. Bour-
gain’s version of E. M. Stein’s martingale inequality. Here however we stay
much closer to Figiel’s original proof in Section 6 of [6].

Let U = Um be defined by (3.3). We consider only the case m > 0;
the case m < 0 is treated analogously. Let F be one of the collections F (r,s)

obtained from Proposition 3.4 with parameter m and rearrangement τm. We
assume that F satisfies (3.17) and (3.18). The norm estimates for U follow
below by showing that F can be further decomposed so that its components
either satisfy Figiel’s compatibility condition or can be related to it. We now
recall this notion.

3.3.1. Figiel’s compatibility condition.. For F0 ⊂ F we define

Ω(F0) = {I, τ(I) : I ∈ F0}.
Let ∆ ∈ Ω(F0). Then we define ∆∗ by the following rule:

∆∗ =

{
τ(∆) if ∆ ∈ F0,

τ−1(∆) if ∆ ∈ τ(F0).

We say that F0 ⊂ F satisfies Figiel’s compatibility condition if I ⊂ J and
I 6= J implies that I∗ ⊂ J, for any choice of I, J ∈ Ω(F0).

Recall that by (2.3) we imposed a canonical enumeration of the intervals
of I. Thus I = {In : n ∈ N}. Let {nk} be a subsequence such that F0 =
{Ink

: k ∈ N}. With this enumeration, we introduce the following sequence
of σ-algebras:
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T1 = σ({In1 ∪ τ(In1)}),
T2k = σ(T2k−1 ∪ {Ink

}), k ≥ 1,

T2k−1 = σ(T2k−2 ∪ {Ink
∪ τ(Ink

)}), k ≥ 2.

Recall also that we put

gI,τm(I) = 1τm(I) −
|τm(I)|
|I| 1I .

Since here we have already fixed m we simplify our notation to

gI = gI,τm(I).

The following fact is just a restatement of Figiel’s compatibility condition.

Fact 3.11. Let F0 ⊂ F and let {nk} be such that

F0 = {Ink
: k ∈ N}.

Assume that F0 satisfies Figiel’s compatibility condition. Then the sequence

{gI : I ∈ F0} = {gInk
: k ∈ N} is a martingale difference sequence with

respect to the σ-algebras T2k.

The next proposition reveals the significance of Figiel’s compatibility
condition.

Proposition 3.12. Let F0 ⊂ F satisfy Figiel’s compatibility condition.

Let aI ∈ X. Then∥∥∥
∑

I∈F0

aIUhI

∥∥∥
Lp(X)

≤ C
∥∥∥

∑

I∈F0

aIhI

∥∥∥
Lp(X)

.

Proof. Both {gI : I ∈ F0} and {hI : I ∈ F0} are martingale differences
(with respect to suitable σ-algebras). Let I ∈ F0. Hence there exists nk ∈ N

so that I = Ink
. Let EI denote the conditional expectation with respect to

the σ-algebra T2k−1. Then we have first the inequalities

Cγ
|I|

|I| + |τ(I)| 1I∪τ(I) ≤ EI |hI | ≤
|I|

|I| + |τ(I)| 1I∪τ(I),

which implies that

|yI,τ(I)1τ(I)| ≤ |yI,τ(I)1I∪τ(I)| ≤ CEI |hI |.
Notice also that

|yI,τ(I)|
|τ(I)|
|I| 1I ≤ C

|I|
|I| + |τ(I)| ·

|τ(I)|
|I| 1I ≤ Cγ |hI |.

Let {rI} denote an enumeration of the Rademacher system. Using the UMD
property we get

∥∥∥
∑

I∈F0

aIUhI

∥∥∥
Lp(X)

≤ CE
∥∥∥

∑

I∈F0

rIaIyI,τ(I)gI

∥∥∥
Lp(X)

.



270 A. Kamont and P. F. X. Müller

By the triangle inequality and the definition of gI the above is bounded by

CE
∥∥∥

∑

I∈F0

rIaIyI,τ(I)1τ(I)

∥∥∥
Lp(X)

+ CE
∥∥∥

∑

I∈F0

rIaIyI,τ(I)
|τ(I)|
|I| 1I

∥∥∥
Lp(X)

.

Next use Kahane’s contraction principle to further bound the above norms
by

CE
∥∥∥

∑

I∈F0

rIaIEI |hI |
∥∥∥

Lp(X)
+ CγE

∥∥∥
∑

I∈F0

rIaI |hI |
∥∥∥

Lp(X)
.

By the contraction principle and the UMD property of X the second term
of the last line is a constant multiple of ‖∑

I∈F0
aIhI‖p. It remains to treat

the first one. E. M. Stein’s martingale inequality yields

CE
∥∥∥

∑

I∈F0

rIaIEI |hI |
∥∥∥

Lp(X)
≤ CγE

∥∥∥
∑

I∈F0

rIaI |hI |
∥∥∥

Lp(X)
.

Combining the above remarks finishes the proof of the proposition.

3.3.2. Proof of Theorem 3.2. By the next proposition we are able to
extract three disjoint subcollections of F each of which satisfies Figiel’s
compatibility condition. We do this in such a way that the operator U re-
stricted to the remaining collection is bounded independently of m. Clearly
by Proposition 3.12 this implies that U restricted to span{hI : I ∈ F}
is bounded on Lp(X) independently of m. Since I is split into at most
C log(|m| + 2) collections such as F , verifying Proposition 3.13 below com-
pletes the proof of Theorem 3.2.

Proposition 3.13. There exists a decomposition of F as

F = E ∪ Geven ∪ Godd ∪ L,
so that

1. The collections E ,Geven,Godd satisfy Figiel’s compatibility condition.

2. The operator U restricted to span{hI : I ∈ L} is bounded on Lp(X)
(with norm estimates independent of m).

We obtain the proof of Proposition 3.13 by rewriting and rearranging
Figiel’s main combinatorial construction in [6, Section 6]. This is possible
since Figiel’s combinatorics exploits just the quasi-dyadic structure, and not
any of the more special properties of dyadic intervals.

Proof. Let κ = κm be as defined in the course of proving Proposition 3.4.
For I ∈ Ij denote by I(κ) the unique interval from Ij−κ containing I. By the

choice of κ, for each I, either I(κ) = (τ(I))(κ) or (I(κ))+ = (τ(I))(κ). In the
latter case, there are the following possibilities: none of I, τ(I) touches the
common endpoint of I(κ) and (τ(I))(κ), or exactly one of I, τ(I) touches the
common endpoint of I(κ) and (τ(I))(κ), or both I, τ(I) touch the common
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endpoint of I(κ) and (τ(I))(κ) (this can happen only when |m| = 1). Now,
define

E = {I ∈ F : I(κ) = (τ(I))(κ)},
G = {I ∈ F : (I(κ))+ = (τ(I))(κ), neither I nor τ(I)

touch the common endpoint of I(κ), (τ(I))(κ)},
L1,0 = {I ∈ F : (I(κ))+ = (τ(I))(κ), only I

touches the common endpoint of I(κ), (τ(I))(κ)},
L0,1 = {I ∈ F : (I(κ))+ = (τ(I))(κ), only τ(I)

touches the common endpoint of I(κ), (τ(I))(κ)},
L1,1 = {I ∈ F : (I(κ))+ = (τ(I))(κ), both I and τ(I)

touch the common endpoint of I(κ), (τ(I))(κ)},
L = L1,0 ∪ L0,1 ∪ L1,1.

Observe that for m > 1, the collection L1,1 is empty, while for m = 1 the
collections G,L1,0,L0,1 are empty.

In the following paragraphs we analyze—one by one—the collections
E , G, L. The simplest is E since almost by definition it satisfies Figiel’s
compatibility condition. The collection G is treated by first splitting it into
a sequence of generations that are not the usual ones. Indeed, we define
maximality with respect to I and τ(I). Finally, the collection L is treated
by relating it to a family that satisfies conditions analogous to the ones that
hold for G.

Collection E. The collection Ω(E) satisfies the compatibility condition.
Indeed, let I, J ∈ Ω(E) with I ⊂ J , I 6= J . Because of the vertical splittings
by κ quasi-dyadic levels, this implies I(κ) ⊂ J . Now, observe that I∗ ⊂
(I∗)(κ) = I(κ) ⊂ J .

Collection G. The collection G splits into the union of two collections
Geven, Godd such that both Ω(Geven) and Ω(Godd) satisfy the compatibility
condition. Now, we describe this splitting. In this description, we split Ω(G)
into successive generations with respect to ⊂.

Step 0. Let G0 be the collection of I ∈ G such that both I and τ(I)
are maximal in Ω(G) (with respect to ⊂). Then let G′

0 = G \ G0. Note that
Ω(G′

0) = Ω(G) \Ω(G0).

Step n + 1. Suppose that G0, . . . ,Gn have been defined. Then we let
Gn+1 be the collection of I ∈ G′

n such that both I and τ(I) are maximal in
Ω(G′

n). Then we let

G′
n+1 = G′

n \ Gn+1 = G \
n+1⋃

l=0

Gl.
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Observe that

Ω(G′
n+1) = Ω(G′

n) \Ω(Gn+1) = Ω(G) \
n+1⋃

l=0

Ω(Gl).

Recall that by the definition of τ , if I ∈ Ij , then τ(I) ∈ Ij as well. This
implies that each interval I ∈ Ijn ∩ G is in some Gl with l ≤ n. Therefore

G =
∞⋃

n=0

Gn and Ω(G) =
∞⋃

n=0

Ω(Gn).

Now, we let

Geven = {I ∈ G : I ∈ G2i, i ≥ 0},
Godd = {I ∈ G : I ∈ G2i+1, i ≥ 0}.

We check that Geven, Godd satisfy the compatibility condition. The proof is
split into Facts 3.14–3.16 below.

Fact 3.14. Let ∆ ∈ Ω(G). Then there is no other ∆′ ∈ Ω(G) having a

common endpoint with ∆.

Proof. Let α be an endpoint of an interval from Ω(G). Let J be a max-
imal such interval. Clearly there exists a unique index jn so that J ∈ Ijn .
It follows by condition (ii) for splittings of Ijn that J+, J− 6∈ Ω(G) (recall
that we assume m ≥ 2). Therefore there is no interval in Ijn ∩ Ω(G) other
than J which has α as its endpoint. Next, if J ′ ∈ Ijl

with l > n, and α is an

endpoint of J ′, then α is also an endpoint of (J ′)(κ). But this is impossible
for J ′ ∈ Ω(G): this is the defining property of the collection G.

Fact 3.15. Let I ∈ Ω(G). Let αI be the common endpoint of I(κ) and

(I∗)(κ). Suppose that J ∈ Ω(G) is such that I ⊂ J , I 6= J and I∗ 6⊂ J . Then

αI is an endpoint of J.

Proof. Before we give a detailed proof we point out that the conclusion
is indeed obvious (draw the picture). Let n, l be such that αI = tj,2k−1 with
jn < j ≤ jn+1 and I ∈ Ijl

. Then l > n+ 1. There are two cases to consider:
1) J ∈ Iz with j ≤ z ≤ jl−1 and 2) z ≤ jn.

If J ∈ Iz with j ≤ z ≤ jl−1 and αI is not an endpoint of J , then J
is disjoint from both I(κ) and (I∗)(κ). Consequently, J contains neither I
nor I∗.

If z ≤ jn, then αI is not a point from Pz. Consequently, if J ∈ Iz, then
either J contains both I(κ) and (I∗)(κ) (so also both I and I∗), or it is disjoint
from both I(κ) and (I∗)(κ) (in this case, J contains neither I nor I∗).

Fact 3.16. Let I, J ∈ Ω(G), and let αI be the common endpoint of I(κ)

and (I∗)(κ). If αI is an endpoint of J and J ∈ Ω(Gi), then I ∈ Ω(Gi+1).
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Proof. Recall first the conclusion of Fact 3.15. If αI is an endpoint of
J , then one of I(κ), (I∗)(κ) is included in J , and consequently one of I, I∗ is
a proper subset of J . Therefore, I, I∗ cannot both be maximal intervals in
Ω(G′

l) for l ≤ i− 1.

Let ∆ 6= J be an interval from Ω(G) containing one of I, I∗ as a proper
subset. Then it must contain either I(κ) or (I∗)(κ); in any case, αI ∈ ∆. By
Fact 3.14, αI is not an endpoint of ∆. This implies that αI 6∈ Pz, where z is
such that ∆ ∈ Iz. As αI is an endpoint of J , it follows that J ⊂ ∆, and J is a
proper subset of ∆. Since J is a maximal interval in Ω(G′

i−1), the last inclu-
sion implies that ∆ 6∈ Ω(G′

i−1), and consequently ∆ ∈ Ω(Gl) for some l < i.

The above considerations imply that both I and I∗ are maximal inter-
vals in Ω(G′

i). But this means that one of I, I∗ is in Gi+1, and both are in
Ω(Gi+1).

The compatibility condition for Geven,Godd is now a consequence of Facts
3.14–3.16.

Collection L1,0. Note that for I ∈ L1,0, I
− is the “dyadic brother” of

I in the sense that for I ∈ L1,0 the intervals I, I− have a common dyadic
predecessor within I. Observe further that τm(I) = τm+1(I

−), and if yI,τm(I)

satisfies (3.3) for τm, then yI−,τm+1(I−) = yI,τm(I) satisfies (3.4) for τm+1, with
the implied constant depending only on C from (3.4) and γ.

Observe that {I− : I ∈ L1,0} is a subset of the collection of type G for
τm+1. By weak regularity, the linear extension of the mapping

hI 7→ hI− , I ∈ L1,0,

is bounded on Lp(X). Therefore the linear extension of the mapping

hI 7→ yI,τm(I)gI−,τm+1(I−), I ∈ L1,0,

is bounded on Lp(X). Therefore, it remains to check the boundedness of

(3.31) hI → yI,τm(I) · (gI,τm(I) − gI−,τm+1(I−)) for I ∈ L1,0.

But since τm(I) = τm+1(I
−), we have

gI,τm(I) − gI−,τm+1(I−) =

(
1τm(I) −

|τm(I)|
|I| 1I

)

−
(

1τm+1(I−) −
|τm+1(I

−)|
|I−| 1I−

)

=
|τm(I)|
|I|

( |I|
|I−| 1I− − 1I

)

=
|τm(I)|
|I| cI,I− hI−∪I with |cI,I− | ∼γ const.

It follows by condition (3.4) that
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|yI,τm(I)| ·
|τm(I)|
|I| · |cI,I− | ≤ Cγ .

Hence (3.31) is bounded since we have just showed that it is dominated by
the rearrangement operator

hI 7→ CγhI−∪I , I ∈ L1,0.

Again by weak regularity of the partition the above rearrangement operator
is Lp(X) bounded.

Collection L0,1. Note that (τm(I))+ = τm+1(I), which implies that L0,1

is a subset of a collection of type G for τm+1. For I ∈ L0,1, τm(I) and τm+1(I)

are “dyadic brothers”. Therefore, yI,τm+1(I) = |τm(I)|
|τm+1(I)|yI,τm(I) satisfies (3.3),

and consequently

hI 7→ |τm(I)|
|τm+1(I)|

yI,τm(I)gI,τm+1(I) for I ∈ L0,1

is bounded on Lp(X). It remains to treat

(3.32) hI 7→ yI,τm(I)

(
gI,τm(I) −

|τm(I)|
|τm+1(I)|

gI,τm+1(I)

)
for I ∈ L0,1.

Applying just the definition of gI,τ(I) (cf. (3.3)) we find that

gI,τm(I) −
|τm(I)|
|τm+1(I)|

gI,τm+1 = 1τm(I) −
|τm(I)|

|τm+1(I)|
1τm+1(I)

= cτm(I),τm+1(I)hτm(I)∪τm+1(I),

with |cτm(I),τm+1(I)| ∼γ const. Thus we reduced the boundedness of (3.32)
to that of the rearrangement operator

hI 7→ cγhτm(I)∪τm+1(I), I ∈ L0,1.

Now, observe that L0,1 can be treated as a subset of one of the collections
F considered for boundedness of Tm or Tm+1. The estimate (3.3) for y·,·’s
implies the estimate (3.2) for the implied x·,·. Therefore the mapping (3.32)
can be obtained as a composition of suitable Tm (or Tm+1) and a mapping of
type ̺2, but considered for “children” of ∆ instead of “grandchildren” (that
is, “moving the Haar function one level up”). This implies the boundedness
of (3.32).

Collection L1,1. This collection, which appears only when m = 1, is
treated by combining the methods used for L1,0 and L0,1.
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