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Irreducible Markov systems on Polish spaces

by

Katarzyna Horbacz and Tomasz Szarek (Katowice)

Abstract. Contractive Markov systems on Polish spaces which arise from graph di-
rected constructions of iterated function systems with place dependent probabilities are
considered. It is shown that their stability may be studied using the concentrating meth-
ods developed by the second author [Dissert. Math. 415 (2003)]. In this way Werner’s
results obtained in a locally compact case [J. London Math. Soc. 71 (2005)] are extended
to a noncompact setting.

1. Introduction and notation. In [1] Barnsley et al. considered the
evolution of distributions due to the action of randomly chosen transforma-
tions—so-called iterated function systems with complete connections. In
their paper sufficient conditions for the existence of an invariant measure
and stability are formulated.

In [7] A. Lasota and J. Yorke generalized the results mentioned above.
The novelty of their study consists in the use of the lower bound technique
developed earlier for Markov operators acting on L1 spaces.

Recently Werner [13, 14] has extended iterated function systems with
complete connections to a more general setting. Indeed, he has studied graph
directed constructions on locally compact spaces with an open partition (see
also [8]).

Barnsley et al. and Werner tackled the problem of the existence of an
invariant measure from the probabilistic point of view. In this paper we
aim to show that Werner’s result may be obtained by functional analysis
methods even in the general case of complete separable metric spaces. In fact,
Werner’s assumption looks somewhat restrictive. For instance it rules out a
lot of processes defined on function spaces. Such spaces appear not only when
one studies Markov systems generated by partial differential equations (see
for instance [6]) but also in random processes describing various phenomena
in physics and biology (see for instance [5]). Although there are a huge
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number of results on Markov processes associated with random iteration of
maps (see [2–4, 9–11]), none of our results is covered by the existing theory.

Let (K, d) be a complete and separable metric space. Assume that K =⋃N
j=1 Kj , where K1, . . . , KN are such that inf{d(x, y) : x ∈ Km, y ∈ Kn} > 0

for m 6= n. We denote by L0(K) the space of all bounded Borel measurable
functions f : K → R, and by C(K) the subspace of all bounded continuous
functions. These spaces are equipped with the supremum norm. Moreover,
P (K) denotes the space of all Borel probability measures on K.

For each j ∈ {1, . . . , N}, let

wj1, . . . , wjLj
: Kj → K

be a family of Borel measurable maps such that for each m ∈ {1, . . . , Lj},
there exists n ∈ {1, . . . , N} such that wjm(Kj) ⊂ Kn. Furthermore, for each
j ∈ {1, . . . , N}, let

pj1, . . . , pjLj
: Kj → [0, 1]

be a family of Borel measurable probability functions, that is, pjm > 0 for

all j, m and
∑Lj

m=1 pjm(x) = 1 for all x ∈ Kj .
Following Werner (see [11]) we call V = {1, . . . , N} the set of vertices,

and the subsets K1, . . . , KN the vertex sets. Further, we call

E = {(j, nj) : j ∈ {1, . . . , N}, nj ∈ {1, . . . , Lj}}

the set of edges and we write

pe := pjn and we := wjn for e = (j, n) ∈ E.

For an edge e ∈ E we denote by i(e) the initial vertex of e, that is,
i(e) = j if and only if e = (j, k) for some k ∈ {1, . . . , Lj}. The terminal

vertex t(e) for e = (j, n) ∈ E is equal to k if and only if we(Kj) ⊂ Kk.
We recall that the quadruple G = (V, E, i, t) is called a directed multi-

graph or digraph. A sequence (finite or infinite) (. . . , e−1, e0, e1, . . .) of edges
is called a path if t(ek) = i(ek+1) for all k.

For every j ∈ V we denote by l(j) the smallest number, say k, such that
there is a path (e1, . . . , ek) with i(e1) = j and t(ek) = j.

A path c = (e1, . . . , em) is called a cycle if i(e1) = t(em). A cycle is called
simple if it does not contain any other cycle. Let l(c) denote the length of c,
i.e., l(c) = m if c = (e1, . . . , em).

We denote by [k1, . . . , kM ] the greatest common divisor of k1, . . . , kM ∈N.
We call the family (Ki(e), we, pe)e∈E a Markov system. A Markov system

is irreducible if and only if its directed graph is irreducible, that is, there is a
path from any vertex to any other. An irreducible Markov system is said to
have period p if the set of vertices can be partioned into p nonempty subsets
Ω1, . . . , Ωp such that

i(e) ∈ Ωj ⇒ t(e) ∈ Ωj+1 mod p
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for all e ∈ E, and p is the largest number with this property. An irreducible
Markov system with period 1 is called aperiodic.

Finally, C = {c1, . . . , cM} denotes the set of all simple cycles in
(Ki(e), we, pe)e∈E .

Remark 1. If an irreducible Markov system (Ki(e), we, pe)e∈E is aperi-
odic, then

[l(c1), . . . , l(cM )] = 1.

Indeed, assume contrary to our claim that [l(c1), . . . , l(cM )] > 1. Let p > 1
be a prime number dividing each l(cj). By a simple induction on the number
of cycles we then show that the system is periodic with period p.

To define a Markov operator on L0(K) associated with the Markov sys-
tem under consideration we extend pjm onto the whole space K by zero; the
maps wjm are extended arbitrarily.

We define a Markov operator on L0(K) by

(1.1) Uf :=
∑

e∈E

pef ◦ we for all f ∈ L0(K)

and its adjoint operator on P (K) by

(1.2)
\
K

f dU∗ν =
\
K

Uf dν for all f ∈ L0(K) and ν ∈ P (K).

Remark 2. Observe that by the Lebesgue monotone convergence theo-
rem, U may be extended to all nonnegative Borel measurable functions (not
necessarily bounded).

For K unbounded, a continuous function L : K → [0,∞) is called a
Lyapunov function if

lim
̺(x,x0)→∞

L(x) = ∞

for some x0 ∈ X.
An irreducible Markov system (Ki(e), we, pe)e∈E is called weakly asymp-

totically stable if there exists an invariant measure µ0 ∈ P (K), i.e., U∗µ0 =
µ0 and

lim
n→∞

\
K

Unf(x)µ(dx) =
\
K

f(x)µ0(dx)

for all f ∈ C(K) and µ ∈ P (K).
For µ ∈ P (K) we denote by ω(µ) the set of all weak limits of subse-

quences of (U∗nµ)n≥1.
We will assume that the Markov system (Ki(e), we, pe) is contractive, i.e.,

there exists 0 < a < 1 such that

(1.3)
∑

e∈E

pe(x)d(we(x), we(y)) ≤ ad(x, y)
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for all x, y ∈ Kj and j ∈ {1, . . . , N}. Finally, recall that a function f :
(K, d) → R is called Dini continuous if there is c > 0 such that

c\
0

Φ(t)

t
dt < ∞,

where Φ is the modulus of uniform continuity of f , that is,

Φ(t) = sup{|f(x) − f(y)| : d(x, y) ≤ t, x, y ∈ K}.

Our main results concerning irreducible Markov systems defined on Pol-
ish spaces are the following:

Theorem 1.1. Let (Ki(e), we, pe)e∈E be a contractive Markov system

such that every pe is Dini continuous on Ki(e). Then the system has an

invariant measure µ0 ∈ P (K). Moreover the set ω(µ) is nonempty for each

µ ∈ P (K) and the set
⋃

µ∈P (K) ω(µ) is tight.

Theorem 1.2. Let (Ki(e), we, pe)e∈E be an irreducible contractive Mar-

kov system such that pe|Ki(e)
is Dini continuous and there exists δ > 0 such

that pe|Ki(e)
≥ δ for all e ∈ E. If , in addition, the system is aperiodic, then

it is weakly asymptotically stable.

2. Auxiliary lemmas. We start with two definitions. An irreducible
Markov system (Ki(e), we, pe)e∈E is called globally concentrating if for every
ε > 0 and every bounded Borel set A ⊂ K there exist a bounded Borel set
B ⊂ K and n0 ∈ N such that

(2.1) U∗nµ(B) ≥ 1 − ε for n ≥ n0, µ ∈ P (A),

where U∗ is given by (1.2).
The following lemma gives a condition which ensures that an irreducible

Markov system is globally concentrating. Its proof may be found in [12,
Lemma 2.4.2] where general Markov operators were considered.

Lemma 2.1. An irreducible Markov system (Ki(e), we, pe)e∈E is globally

concentrating if there exists a Lyapunov function L, bounded on bounded

sets, such that

(2.2) UL(x) ≤ aL(x) + b for x ∈ K,

where a, b are nonnegative constants and a < 1.

An irreducible Markov system (Ki(e), we, pe)e∈E is called semi-concen-

trating if for every ε > 0 there exist α > 0 and {x1, . . . , xs} ⊂ K such
that

(2.3) lim inf
n→∞

U∗nµ
( s⋃

j=1

B(xj, ε)
)
≥ α for µ ∈ P (K).



Irreducible Markov systems on Polish spaces 289

Lemma 2.2. Suppose that (Ki(e), we, pe)e∈E is a contractive Markov sys-

tem with an average contracting rate 0 < a < 1 such that the family

{K1, . . . , KN} is an open partition of K. Then (Ki(e), we, pe)e∈E is glob-

ally concentrating. Moreover for every ε > 0 there exists a bounded Borel

set B ⊂ K such that

lim inf
n→∞

U∗nµ(B) ≥ 1 − ε for all µ ∈ P (K).

Proof. We show that the assumptions of Lemma 2.1 are satisfied. Choose
xj ∈ Kj for j = 1, . . . , N . Set L(x) = d(x, x1) for x ∈ K. Then

UL(x) =
∑

e∈E

pe(x)d(we(x), x1)

≤
∑

e∈E

pe(x)(d(we(x), we(xi(e))) + d(we(xi(e)), x1))

≤ ad(x, x1) + amax
j∈V

d(xj, x1) + max
e∈E, j∈V

d(we(xj), x1) for x ∈ K.

Hence (2.2) holds with

b = amax
j∈V

d(xj , x1) + max
e∈E, j∈V

d(we(xj), x1).

Now we may formulate the following corollary:

Corollary 2.1. Let (Ki(e), we, pe)e∈E satisfy the hypotheses of Lem-

ma 2.2. If (K, d) is a metric space in which sets of finite diameter are rela-

tively compact , then:

(i) the sequence (U∗kµ)k≥1 is tight for all µ ∈ P (K);
(ii) the Markov system (Ki(e), we, pe)e∈E has an invariant Borel proba-

bility measure µ0;
(iii) the invariant probability measure µ0 is unique if and only if

lim
n→∞

1

n

n∑

k=1

Ukg(x) =
\
K

g dµ0 for all x ∈ K and g ∈ C(K);

(iv) we have

N∑

j=1

\
K

d(x, xj)µ0(dx) < ∞ for all xj ∈ Kj , j = 1, . . . , N .

Proof. (i)–(iii) easily follow from Lemma 2.1 and from Lemma 2.4.2 and
Theorem 5.1 in [12]. On the other hand, from the proof of Lemma 2.1 and
an induction argument it follows that for fixed xj ∈ Kj ,

UnL(x) ≤ anL(x) +
b

1 − a
,
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where L(x) = d(x, xj) and n ∈ N. Let µ0 ∈ P (K) be a unique invariant
measure. Then\
K

d(x, xj)µ0(dx) = lim sup
n→∞

\
K

d(x, xj)U
∗n µ0(dx)

= lim sup
n→∞

\
K

UnL(x)µ0(dx) ≤ lim sup
n→∞

\
K

[
anL(x) +

b

1 − a

]
µ0(dx)

≤
b

1 − a
< ∞,

by the Lebesgue monotone convergence theorem. Hence (iv) follows.

From now on we will assume that pe, e ∈ E, is Dini continuous and let
Φe be its modulus of uniform continuity. Set Φ =

∑
e∈E Φe and observe that

c\
0

Φ(t)

t
dt < ∞ for every c > 0.

Then the function ϕ : [0,∞) → [0,∞) given by

ϕ(t) = t +

∞∑

n=0

Φ(ant)

satisfies

Φ(t) + ϕ(at) ≤ ϕ(t) for t ≥ 0.

Moreover, we easily check that:

• ϕ is continuous and ϕ(0) = 0;
• ϕ is nondecreasing and concave;
• ϕ(t) > 0 for t > 0 and limt→∞ ϕ(t) = ∞.

We denote by Fϕ the family of all continuous functions f : K → R such

that |f(x)| ≤ 1 and |f(x) − f(y)| ≤ ϕ(d̃(x, y)) for all x, y ∈ K, where

d̃(x, y) =

{
d(x, y) if x, y ∈ Kj for j ∈ {1, . . . , N},

max(c, d(x, y)) otherwise,

with c > 0 such that ϕ(c) > 2. It is obvious that d̃ is a metric on K equivalent

to d. The definition of d̃ looks somewhat sophisticated but it allows us to
verify nonexpansiveness merely on one element of the partition of K.

Lemma 2.3. Let the assumptions of Theorem 1.1 hold. Then the operator

U given by (1.1) satisfies U(Fϕ) ⊂ Fϕ.

Proof. Fix f ∈ Fϕ. We have

|Uf(x)| =
∣∣∣
∑

e∈E

pe(x)f(we(x))
∣∣∣ ≤

∑

e∈E

pe(x) = 1 for x ∈ K.
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Further, from (1.3) it follows that

|Uf(x) − Uf(y)| =
∣∣∣
∑

e∈E

pe(x)f(we(x)) −
∑

e∈E

pe(y)f(we(y))
∣∣∣

≤
∑

e∈E

|pe(x) − pe(y)| +
∑

e∈E

pe(x)|f(we(x)) − f(we(y))|

≤ Φ(d(x, y)) +
∑

e∈E

pe(x)ϕ(d(we(x), we(y)))

for x, y ∈ Kj , j = 1, . . . , N . Since ϕ is concave and nondecreasing,

|Uf(x) − Uf(y)| ≤ Φ(d(x, y)) + ϕ(ad(x, y)) ≤ ϕ(d(x, y)) = ϕ(d̃(x, y))

for x, y ∈ Kj , j = 1, . . . , N .

If x and y are in different Kj , then

|Uf(x) − Uf(y)| ≤ 2 ≤ ϕ(c) ≤ ϕ(d̃(x, y)),

which finishes the proof that U(Fϕ) ⊂ Fϕ.

Lemma 2.4. Let the assumptions of Theorem 1.2 hold. Then the irre-

ducible Markov system (Ki(e), we, pe)e∈E is semi-concentrating.

Proof. Lemma 2.2 shows that there exists a bounded Borel set B ⊂ K
such that

lim inf
n→∞

U∗nµ(B) > 1/2 for all µ ∈ P (K).

Without loss of generality we may assume that Bj = B ∩ Kj 6= ∅ for j =
1, . . . , N . Fix ε > 0. Choose an integer m ∈ N such that am(diamB) < ε.
Further, let η > 0 be such that

(1 + η)mam diam B ≤ ε.

Fix xj ∈ Bj , j = 1, . . . , N, and define C ⊂ K by

C =
N⋃

j=1

⋃

e1,...,em∈E

B(wem ◦ · · · ◦ we1(xj), ε).

Now (1.3) implies that for every y ∈ Kj there exists Iy ⊂ Em such that

d(wem ◦ · · · ◦ we1(xj), wem ◦ · · · ◦ we1(y)) ≤ (1 + η)mamd(xj , y)

for (e1, . . . , em) ∈ Iy and

∑

(e1,...,em)∈Iy

pe1(y)pe2(we1(y)) · · · pem(wem−1 ◦ · · · ◦ we1(y)) ≥

(
η

1 + η

)m

.

This can be shown by an analysis similar to that in the proof of Lem-



292 K. Horbacz and T. Szarek

ma 6.3.1 in [12]. Observe that for every y ∈ Bj and (e1, . . . , em) ∈ Iy we
have wem ◦ · · · ◦ we1(y) ∈ C. Set

α =
1

2

(
η

1 + η

)m

.

By induction and the definition of C for each n ∈ N we obtain

U∗(m+n)µ(C) ≥
\
K

1C(wem ◦ · · · ◦ we1(y))

×
∑

(e1,...,em)∈Iy

pe1(y) · · · pem(wem−1 ◦ · · · ◦ we1(y))U∗nµ(dy)

≥

(
η

1 + η

)m

U∗nµ(B) for µ ∈ P (K)

and consequently

lim inf
n→∞

U∗nµ(C) ≥ α for µ ∈ P (K),

which finishes the proof.

Lemma 2.5. If an irreducible Markov system is aperiodic, then for every

k, l ∈ V there exist m ∈ N and (e1, . . . , em), (ẽ1, . . . , ẽm) such that i(e1) = k,
i(ẽ1) = l and t(em) = t(ẽm).

Proof. Fix k, l ∈ V. Let (ek
1, . . . , e

k
p) and (el

1, . . . , e
l
q) be paths in (V, E, i, t)

starting from k, l, respectively and containing all successive cycles from C.
Assume that t(ek

p) = t(el
q). If p = q, then the proof is complete. Con-

versely, assume that p > q. Since [l(c1), . . . , l(cM )] = 1, there exist integers
m1, . . . , mM such that

M∑

j=1

mjl(cj) = p − q.

Let J ⊂ {1, . . . , M} be such that mj < 0 for j ∈ J and mj ≥ 0 for
j ∈ {1, . . . , M} \ J . Adding to (ek

1, . . . , e
k
p) the cycle composed of the cycles

cj taken mj times for j ∈ J , and similarly adding to (el
1, . . . , e

l
q) the cycle

composed of the cycles cj taken mj times for j ∈ {1, . . . , M} \ J , we finish
the proof of the lemma.

3. Proofs

Proof of Theorem 1.1. From Lemma 2.3 it follows that the Markov sys-
tem (Ki(e), we, pe)e∈E is semi-concentrating. Thus the statement of Theo-
rem 1.1 follows from Theorem 5.5 in [12] and Lemma 2.1.

Proof of Theorem 1.2. From Theorem 1.1 it follows that U∗ admits an
invariant probability measure. In view of Lemma 2.4, from Theorem 5.4 and
Remark 5.1 in [12] it follows that to finish the proof of stability it remains to
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show that for every ε > 0 there is β > 0 such that for every µ1, µ2 ∈ P (K)
there exist a bounded Borel set A ⊂ K with diamA ≤ ε and n ∈ N satisfying

(3.1) U∗nµj(A) ≥ β for j = 1, 2.

Fix ε > 0. According to Theorem 1.1 there is a compact set K0 ⊂ K
such that

µ̃(K0) ≥ 4/5 for all µ̃ ∈
⋃

µ∈P (K)

ω(µ).

By the Aleksandrov theorem there exists a sequence (mn)n≥1 such that for
each open set G with K0 ⊂ G,

lim inf
n→∞

U∗mnµj(G) > 1/2 for j = 1, 2.

Consequently, there exist k, l ∈ V and a subsequence (m̃n)n≥1 of (mn)n≥1

such that

(3.2) lim inf
n→∞

U∗m̃nµ1(G1) >
1

2N

and

(3.3) lim inf
n→∞

U∗m̃nµ2(G2) >
1

2N

for arbitrary open neighbourhoods G1, G2 of K̃k = K0 ∩Kk, K̃l = K0 ∩Kl,
respectively. By Lemma 2.3 we choose m̃ ∈ N such that for k, l ∈ V there
exist paths (ê1, . . . , êm), (ẽ1, . . . , ẽm) satisfying i(ê1) = k, i(ẽ1) = l, t(êm) =

t(ẽm) and m ≤ m̃. Let Fk = wêm
◦· · ·◦wê1

(K̃k) and Fl = wẽm
◦· · ·◦wẽ1

(K̃l).
Set F0 = Fk ∪ Fl and observe that F0 ⊂ Kt(êm). We easily check that

(3.4) lim inf
n→∞

U∗mn+mµj(G̃) >
1

2N
δm ≥

1

2N
δm̃ for j = 1, 2

and for every open neighbourhood G̃ of F0.

Choose an integer n ∈ N such that

an diam F0 ≤ ε/3.

For every path (e1, . . . , en) in the given diagraph define

π(e1,...,en)(x) = pe1(x) · · · pen(wen−1 ◦ · · · ◦ we1(x)) for x ∈ K.

For x ∈ F0 and (e1, . . . , en) such that i(e1) = t(êm) we define

O(e1,...,en)(x) = {y ∈ Kt(em) : d(wen ◦ · · · ◦ we1(x), wen ◦ · · · ◦ we1(y)) < ε/3}.

Define

Ox =
⋂

O(e1,...,en)(x) for x ∈ F0,

where the intersection is taken over all paths (e1, . . . , en) in the directed
graph (Ki(e), we, pe) starting from t(em). Since F0 is a compact set there is
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a finite covering

F0 ⊂

q⋃

j=1

Oxj
.

Set G̃=
⋃q

j=1 Oxj
. We are going to show that (3.1) holds with β=δn+m̃/(2Nq).

Indeed, by (3.4) there exists M ∈ N such that

U∗M+mµj(G̃) >
1

2N
δm̃ for j = 1, 2.

Therefore there exist O1 = Oxk
and O2 = Oxl

such that

U∗M+mµj(Oj) >
1

2N

δm̃

q
.

By (1.3) and the definition of O1 and O2 we find a path (e′1, . . . , e
′
n) such

that
A = we′n

◦ · · · ◦ we′1
(O1) ∪ we′n

◦ · · · ◦ we′1
(O2)

satisfies diamA < ε. Finally,

U∗M+m+nµj(A)

=
∑

(e1,...,en)

\
K

1A(wen ◦ · · · ◦ we1(y))π(ẽ1,...,ẽn)(y)U∗M+mµj(dy)

≥ δn ·
1

2N
δm̃/q =

δn+m̃

2Nq
= β for j = 1, 2,

which finishes the proof.
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