
STUDIA MATHEMATICA 178 (1) (2007)

Absolutely (r, p, q)-summing inlusionsbyCarsten Mihels (Oldenburg)Abstrat. As a ontinuation of the work of Bennett and Carl for the ase q = ∞, weonsider absolutely (r, p, q)-summing inlusion maps between Minkowski sequene spaes,
1 ≤ p, q ≤ 2. Using these results we dedue parts of the limit orders of the orrespond-ing operator ideals and an inlusion theorem between the ideals of (u, s, t)-nulear andof absolutely (r, p, q)-summing operators, whih gives a new proof of a result of Carl onShatten lass operators. Furthermore, we also onsider inlusions between arbitrary Ba-nah sequene spaes and inlusions between �nite-dimensional Shatten lasses. Finally,appliations to Hilbert numbers of inlusions are given.1. Introdution and basi tools. Let 1 ≤ r, p, q ≤ ∞ be suh that
1/p + 1/q ≥ 1/r. Aording to Pietsh [31, 17.1.1℄, an operator T : X → Ybetween Banah spaes X and Y is alled absolutely (r, p, q)-summing ifthere exists a onstant C > 0 suh that for any hoie of x1, . . . , xn ∈ X and
y′1, . . . , y

′
n ∈ Y ′, the inequality

( n∑

k=1

|y′k(Txk)|r
)1/r

≤ C sup
x′∈BX′

( n∑

k=1

|x′(xk)|p
)1/p

sup
y∈BY

( n∑

k=1

|y′k(y)|q
)1/q

holds. We put πr,p,q(T ) := inf C with C as above. In this way, we obtain themaximal Banah operator ideal (Πr,p,q, πr,p,q). Let us list the most prominentspeial ases whih have been dealt with in the literature so far:
• Πr,p := Πr,p,∞, the ideal of all absolutely (r, p)-summing operators;
• Πp := Πp,p = Πp,p,∞, the ideal of all absolutely p-summing operators;
• Dp,q := Πr,p,q with r, p, q suh that 1/r = 1/p + 1/q, the ideal of all

(p, q)-dominated operators;
• Dp := Dp,p = Π1,p,p′ , the ideal of all p-dominated operators.In this paper we deal with the ideal Πr,p,q where 1 ≤ p, q ≤ 2. For thespeial ase r = p = 1 and q = 2, this ideal has beome of interest re-ently in an artile of Bu [4℄, where the author has shown that a Banah2000 Mathematis Subjet Classi�ation: 47B10, 46M35, 47B06.Key words and phrases: absolutely summing operators, Shatten lasses, limit orders,Hilbert numbers, interpolation. [19℄



20 C. Mihelsspae X of otype 2 is a G.T. spae (i.e., L(X, ℓ2) = Π1(X, ℓ2)) if and onlyif X ⊗̃ε ℓ1 ⊆ X ⊗̃π ℓ2, i.e., the identity map on X is absolutely (1, 1, 2)-summing.Bennett [2℄ and Carl [6℄ independently suessfully investigated underwhih assumptions on the indies involved the inlusion mapping id : ℓu →֒ ℓvis in Πq,p. In this artile, we present analogs of their results for the Banahoperator ideal Πr,p,q and then derive in parts the limit order of these ideals.This an also be used to give an alternative proof of a result due to Carl[5℄ on Shatten lass operators. Furthermore, in the spirit of [13℄ and [16℄,we also onsider inlusions E →֒ F , E and F arbitrary Banah sequenespaes, and Snu →֒ Snv . Finally, we give appliations to Hilbert numbers ofinlusions.We start with some basi notations. For 1 ≤ p ≤ ∞, its onjugate number
p′ is de�ned by 1/p+1/p′ = 1. For two real sequenes (an) and (bn) we meanby an ≺ bn that there exists C > 0 suh that an ≤ Cbn for all n ∈ N, andby an ≻ bn that bn ≺ an. If an ≺ bn and an ≻ bn simultaneously, then wewrite an ≍ bn.We shall use standard notation and notions from Banah spae theory,as presented e.g. in [10, 19℄. If X is a Banah spae, then BX is its (losed)unit ball and X ′ its dual. As usual L(X,Y ) denotes the Banah spae of all(bounded linear) operators from X into Y endowed with the operator norm
‖ · ‖, where X and Y are Banah spaes, and N (X,Y ) the Banah spae ofall nulear operators endowed with the nulear norm N(·). By X ⊗ε Y and
X ⊗π Y we denote their injetive and projetive tensor produts, respe-tively, and by X ⊗̃ε Y and X ⊗̃π Y the respetive ompletions. If one of thespaes involved is �nite-dimensional, we an identify L(X,Y ) = X ′⊗εY and
N (X,Y ) = X ′ ⊗π Y isometrially. Furthermore, if X is �nite-dimensional,the tensor norm∆2 on ℓ2⊗X is given by the identi�ation ℓ2⊗∆2

X = ℓ2(X),where the latter is as usual the orresponding Köthe�Bohner spae. Forthis and more information on tensor produts of Banah spaes we referto [10℄.For 1 ≤ r <∞ we denote by Sr the Banah spae of all ompat operators
T : ℓ2 → ℓ2 for whih the sequene of singular numbers is in ℓr. We put
S∞ := L(ℓ2).Standard tehniques (see, e.g., [19℄ or [10℄) allow us to formulate thefollowing useful haraterization.Proposition 1.1. Let 1 ≤ p, q, r ≤ ∞ suh that 1/r ≤ 1/p+ 1/q. Thenfor an operator T : X → Y between Banah spaes X and Y , the followingare equivalent :(i) T is absolutely (r, p, q)-summing ;



Absolutely (r, p, q)-summing inlusions 21(ii) the bilinear mappings ϕn : X ⊗ε ℓ
n
p × Y ′ ⊗ε ℓ

n
q → ℓnr , de�ned by

ϕn((x1, . . . , xn), (y
′
1, . . . , y

′
n)) := (y′1(Tx1), . . . , y

′
n(Txn)), are uni-formly bounded.In this ase, πr,p,q(T ) = supn ‖ϕn‖. If r = 1, then the above is equivalent to(iii) the mappings T ⊗ idnpq′ : X ⊗ε ℓ

n
p → Y ⊗π ℓ

n
q′ are uniformly bounded.In this ase, π1,p,q(T ) = supn ‖T ⊗ idnpq′‖.The following inlusion an be found in [31, 17.1.4℄.Proposition 1.2. Let r0 ≤ r1, p0 ≤ p1 and q0 ≤ q1. Suppose that

0 ≤ 1/p0 + 1/q0 − 1/r0 ≤ 1/p1 + 1/q1 − 1/r1. Then Πr0,p0,q0 ⊆ Πr1,p1,q1 .2. Interpolation of summing norms. Basis on interpolation theoryof Banah spaes an be found in [3℄. Let us just introdue our notation forthe omplex interpolation method. For a given ompatible Banah ouple
(X0, X1) and 0 < θ < 1, we denote by [X0, X1]θ the resulting omplexinterpolation spae. We will frequently use the fat that for 1 ≤ p0, p1 ≤ ∞and 0 < θ < 1 one has(2.1) [ℓp0, ℓp1 ]θ = ℓp,where p is determined by 1/p = (1 − θ)/p0 + θ/p1. The following ruialinterpolation tool is due to Kouba [25℄.Proposition 2.1. Let 1 ≤ p0, p1, q0, q1 ≤ 2, 0 < θ < 1 and 1 ≤ p, q ≤ 2with 1/p = (1 − θ)/p0 + θ/p1 and 1/q = (1− θ)/q0 + θ/q1. Then [ℓp0 ⊗̃ε ℓq0 ,
ℓp1 ⊗̃ε ℓq1 ]θ = ℓp ⊗̃ε ℓq. In partiular ,

sup
n,m

‖ℓmp ⊗ε ℓ
n
q →֒ [ℓmp0 ⊗ε ℓ

n
q0 , ℓ

m
p1 ⊗ε ℓ

n
q1 ]θ‖ <∞.The following one-sided interpolation formula an be found in [29℄.Proposition 2.2. Let 1 ≤ p0 < p1 < 2, 1 ≤ r < p′1, 0 < θ < 1 and

1 ≤ p < p1 with 1/p = (1−θ)/p0+θ/p1. Then [ℓr ⊗̃εℓp0 , ℓr ⊗̃ε ℓp1 ]θ = ℓr ⊗̃εℓp.In partiular ,
sup
n,m

‖ℓmr ⊗̃ε ℓ
n
p →֒ [ℓmr ⊗̃ε ℓ

n
p0 , ℓ

m
r ⊗̃ε ℓ

n
p1 ]θ‖ <∞.To simplify our statements, we denote for 1 ≤ u ≤ v ≤ ∞ the inlusionmap id : ℓu →֒ ℓv by iduv, and by idnuv the �nite-dimensional inlusion mapid : ℓnu →֒ ℓnv (for u and v not neessarily ordered as above).Lemma 2.3. Let 1 ≤ u0, u1 ≤ 2, u0 ≤ v0 ≤ ∞, u1 ≤ v1 ≤ ∞, 1 ≤

r0, r1 ≤ ∞ and 1 ≤ s0, s1, t0, t1 ≤ 2. Then for all 0 < θ < 1, there exists
C > 0 suh that

πr,s,t(idnuv) ≤ Cπr0,s0,t0(idnu0v0)
1−θπr1,s1,t1(idnu1v1)

θ,



22 C. Mihelswhere 1/u = (1−θ)/u0+θ/u1, 1/v = (1−θ)/v0+θ/v1, 1/r = (1−θ)/r0+θ/r1,
1/s = (1− θ)/s0 + θ/s1 and 1/t = (1− θ)/t0 + θ/t1, in eah of the followingases:(i) 2 ≤ v0, v1 ≤ ∞;(ii) v = v0 = v1 and t = t0 = t1;(iii) max(t0, t1) < v = v0 = v1.In partiular , in all of these ases, idu0v0 ∈ Πr0,s0,t0 and idu1v1 ∈ Πr1,s1,t1imply iduv ∈ Πr,s,t.Proof. We de�ne the bilinear mappings

ψn,m : K
n ⊗ K

m × K
n ⊗ K

m → K
m, ((xk), (y

′
k)) 7→ (y′k(xk)).Then the mappings

ψn,m : ℓnui ⊗ε ℓ
m
si × ℓnv′i

⊗ε ℓ
m
ti → ℓmriare bounded from above by πri,si,ti(idnuivi), i = 0, 1. Thus, by bilinear inter-polation (see, e.g., [3, 4.4.1℄), the mappings

ψn,m : [ℓnu0
⊗ε ℓ

m
s0 , ℓ

n
u1

⊗ε ℓ
m
s1 ]θ × [ℓnv′

0

⊗ε ℓ
m
t0 , ℓ

n
v′
1

⊗ε ℓ
m
t1 ]θ → [ℓmr0 , ℓ

m
r1]θare bounded from above by πr0,s0,t0(idnu0v0)

1−θπr1,s1,t1(idnu1v1)
θ. Clearly, by(2.1) we have [ℓmr0, ℓ

m
r1 ]θ = ℓmr isometrially. By Proposition 2.1,

sup
n,m

‖id : ℓnu ⊗ε ℓ
m
s →֒ [ℓnu0

⊗ε ℓ
m
s0 , ℓ

n
u1

⊗ε ℓ
m
s1 ]θ‖ <∞and by [3, 4.5.2℄ together with Proposition 2.1 in ase (i), [3, 4.2.1()℄ inase (ii), and Proposition 2.2 in ase (iii),

sup
n,m

‖id : ℓnv′ ⊗ε ℓ
m
t →֒ [ℓnv′

0

⊗ε ℓ
m
t0 , ℓ

n
v′
1

⊗ε ℓ
m
t1 ]θ‖ <∞.Thus, the mappings

ψn,m : ℓnu ⊗ε ℓ
m
s × ℓnv′ ⊗ε ℓ

m
t → ℓmrhave norm less than or equal to Cπr0,s0,t0(idnu0v0)

1−θπr1,s1,t1(idnu1v1)
θ for some

C > 0 not depending on m and n. The �nal assertion then follows by themaximality of the operator ideal Πr,s,t and by density.3. Absolutely summing inlusion maps. To apply the above lemma,we need some extreme ases.Lemma 3.1. The following hold true:(i) id22 ∈ Π1,1,1;(ii) id1∞ ∈ Π1,2,2;(iii) id12 ∈ Π1,1,2 ∩Π1,2,1;(iv) id2∞ ∈ Π1,1,2 ∩Π1,2,1.



Absolutely (r, p, q)-summing inlusions 23Proof. (i) is lear as Π1,1,1 = L. This means that
sup
n,m

‖id⊗ id : ℓm2 ⊗ε ℓ
n
1 → ℓm2 ⊗π ℓ

n
∞‖ = 1,whih also gives id1∞ ∈ Π1,2,2. Furthermore, by Grothendiek, id12 ∈ Π2implies id12 ∈ Π1, i.e.,

sup
n,m

‖id⊗ id : ℓn1 ⊗ε ℓ
m
1 → ℓn2 ⊗π ℓ

m
1 ‖ <∞.Thus, by fatorization,

sup
n,m

‖id⊗ id : ℓn1 ⊗ε ℓ
m
1 → ℓn2 ⊗π ℓ

m
2 ‖ <∞,whih yields id12 ∈ Π1,1,2 and id2∞ ∈ Π1,2,1 (by duality).By [31, 22.4.8℄ it is known that π2(idn12) = π2,2,∞(idn12) = 1, i.e.,

sup
n,m

‖id⊗ id : ℓm2 ⊗ε ℓ
n
1 → ℓm2 ⊗∆2

ℓn2‖ = 1.Sine εt = ε, and ∆t
2 = ∆2 on the tensor produt of two Hilbert spaes, italso follows that

sup
n,m

‖id⊗ id : ℓm1 ⊗ε ℓ
n
2 → ℓm2 ⊗∆2

ℓn2‖ = 1.Furthermore, by duality,
sup
n,m

‖id⊗ id : ℓm2 ⊗∆2
ℓn2 → ℓm2 ⊗π ℓ

n
∞‖ = 1.Thus, by fatorization,

sup
n,m

‖id⊗ id : ℓm1 ⊗ε ℓ
n
2 → ℓm2 ⊗π ℓ

n
∞‖ = 1,whih gives id12 ∈ Π1,2,1 and id2∞ ∈ Π1,1,2.Theorem 3.2. Let 1 ≤ p, q ≤ 2 and 1 ≤ u ≤ 2 ≤ v ≤ ∞ with 1/u −

1/v ≥ 2 − 1/p− 1/q. Then iduv ∈ Π1,p,q.Proof. We start by applying Lemma 2.3(i) for r = r0 = r1 and usingLemma 3.1 to obtain more extreme ases. Fix 1 ≤ q ≤ 2 and de�ne 1 ≤ q̃ ≤
2 ≤ q ≤ ∞ by 1/q̃ = 3/2 − 1/q and 1/q = 1/q − 1/2. Then we obtain thefollowing (taking θ := 2/q in Lemma 2.3(i) whenever 1 < q < 2):

u0 v0 u1 v1 s0 t0 s1 t1

1 2 1 2 1 2 2 1 id12 ∈Π1,q̃,q (i)
2 ∞ 2 ∞ 1 2 2 1 id2∞ ∈Π1,q̃,q (ii)
1 2 2 2 1 2 1 1 idq̃2 ∈Π1,1,q (iii)
2 ∞ 2 2 1 2 1 1 id2q ∈Π1,1,q (iv)
1 ∞ 2 ∞ 2 2 2 1 idq̃∞ ∈Π1,2,q (v)
1 ∞ 1 2 2 2 2 1 id1q ∈Π1,2,q (vi)



24 C. MihelsComing to the parameter p, we have to onsider two ases, where we useagain Lemma 2.3(i) (taking θ = q̃′/u′0, θ = q/v0, θ = q′(1/u1 − 1/2) and
θ = q′(1/2 − 1/v1), respetively) together with the results from the abovetable:

• 1 ≤ p < q̃: (i) and (iii) giveidu02 ∈ Π1,p,q, where 1/u0 = 5/2 − 1/p− 1/q,and (ii) and (iv) giveid2v0 ∈ Π1,p,q, where 1/v0 = 1/p+ 1/q − 3/2.

• q̃ ≤ p ≤ 2: (ii) and (v) giveidu1∞ ∈ Π1,p,q, where 1/u1 = 2 − 1/p− 1/q,and (i) and (vi) giveid1v1 ∈ Π1,p,q, where 1/v1 = 1/p+ 1/q − 1.If we take s0 = s1 = p and t0 = t1 = q, Lemma 2.3(i) applied to these asesfor all 0 < θ < 1 gives iduv ∈ Π1,p,q for all those 1 ≤ u ≤ 2 ≤ v ≤ ∞ suhthat 1/u− 1/v = 2 − 1/p− 1/q. The rest is lear by fatorization.The above an be extended to the general ase of absolutely (r, p, q)-summing operators. When onsidering limit orders in the next setion, wewill see that the assumption 1/u−1/v ≥ 1+1/r−1/p−1/q in the orollarybelow annot be weakened.Corollary 3.3. Let 1 ≤ p, q ≤ 2, 1 ≤ r ≤ ∞ and 1 ≤ u ≤ 2 ≤ v ≤ ∞with 1/u− 1/v ≥ 1 + 1/r − 1/p− 1/q ≥ 0. Then iduv ∈ Πr,p,q.Proof. The idea is to �nd p0 ≤ p and q0 ≤ q suh that 1/p0 + 1/q0 − 1 =
1/p + 1/q − 1/r. Then 2 − 1/p0 − 1/q0 = 1/u, so that the above theoremtogether with Proposition 1.2 givesiduv ∈ Π1,p0,q0 ⊆ Πr,p,q.We have to onsider several ases, for whih we simply list our hoies of
p0, q0 and leave the veri�ation to the reader:

• r ≥ max(p, q): q0 = 1 and p0 suh that 1/p0 = 1/p+ 1/q − 1/r;
• r ≤ q: p0 = p and q0 suh that 1/q0 = 1 − 1/r + 1/q;
• r ≤ p: q0 = q and p0 suh that 1/p0 = 1 − 1/r + 1/p.The situation in the ases other than 1 ≤ u ≤ 2 ≤ v ≤ ∞ seems to bemore ompliated. We an give the following partial result for 1 ≤ u ≤ v ≤ 2.It will turn out later on that (i) is optimal in the ase q = 2 and that (ii)is almost optimal in the ase p = 1 (that is, the only improvement possiblein this ase is to replae �>� by �≥�). However, (iii) shows that (i) is notoptimal in general.



Absolutely (r, p, q)-summing inlusions 25Proposition 3.4. Let 1 ≤ p, q ≤ 2, 1 ≤ r ≤ ∞ and 1 ≤ u < v ≤ 2.(i) iduv ∈ Πr,p,q whenever 1/r ≤ 1/p− v′/u′q′;(ii) iduv ∈ Πp,p,q whenever 1/u− 1/v > 1/q′;(iii) iduv ∈ Πr,p,q whenever v > q and 1/r < 1/p − (v′/q′)(1/q′ + 1/v −
1/u).Proof. (i) Sine id11 ∈ Π1,1,2, it follows that id1v ∈ Π1,1,2 ⊆ Π1,1,q ⊆

Πp,p,q. Furthermore, idvv ∈ Πr̃,p,q, where 1/r̃ = 1/p+1/q−1. Set θ := v′/u′.Then 1/u = (1−θ)/1+θ/v. Now Lemma 2.3(ii) implies iduv ∈ Πr,p,q, where
1

r
=

1 − θ

p
+
θ

p
+
θ

q
− θ =

1

p
− θ

q′
=

1

p
− v′

u′q′
.(ii) Let t < v be arbitrary. Then as above, id1v ∈ Π1,1,t and idtv ∈ Π1,1,1.Set θ := t′/u′; then 1/u = (1 − θ)/1 + θ/t. Now Lemma 2.3(iii) impliesiduv ∈ Π1,1,q, where

1

q
=

1 − θ

t
+
θ

1
=

1

t
+
θ

t′
=

1

t
+

1

u′
>

1

v
+

1

u′
.The laim for p arbitrary follows by Proposition 1.2.(iii) Let ũ < u be suh that 1/ũ > 1/q′ + 1/v. Then (ii) implies idũv ∈

Πp,p,q, and one again idvv ∈ Πr̃,p,q with 1/r̃ = 1/p + 1/q − 1. Set θ =
v′(1/ũ − 1/u); then 1/u = (1 − θ)/ũ + θ/v. Now Lemma 2.3(ii) impliesiduv ∈ Πr,p,q, where

1

r
=

1 − θ

p
+
θ

p
+
θ

q
− θ =

1

p
− v′

q′

(
1

ũ
− 1

u

)
<

1

p
− v′

q′

(
1

q′
+

1

v
− 1

u

)
,whih gives the laim.4. Limit orders. We ontinue with a result on limit orders. For thede�nition and basi fats mentioned subsequently, we refer to [31, 14.4℄.Let 1 ≤ u, v ≤ ∞ and σ = (σn) ∈ ℓ∞ be suh that the diagonal operator

Dσ : ℓu → ℓv, (xn) 7→ (σnxn), is de�ned (and ontinuous). Then for a Banahoperator ideal (A,A), its limit order λ(A, u, v) is de�ned by
λ(A, u, v) := inf{1/r ≥ 0; Dσ ∈ A(ℓu, ℓv) for all σ ∈ ℓr}.Very useful in omputing speial limit orders is the following formula:
λ(A, u, v) = inf{λ ≥ 0; ∃̺ ≥ 0 suh that A(idnuv) ≤ ̺nλ}.König [24℄ in a famous paper proved an important onnetion to embeddingmaps of Sobolev spaes and weakly singular integral operators (see also [31,22.7℄).Before stating our partial result for the limit order of Πr,p,q, we prove aminor lemma �rst.Lemma 4.1. Let 1 ≤ r ≤ p ≤ 2. Then πr,p,2(idn11) ≺ n1/r−1/p.



26 C. MihelsProof. We start with the ase r = 1. Sine L(ℓ1, ℓ2) = Π1(ℓ1, ℓ2) byGrothendiek (see, e.g., [31, 22.4.4℄), we have id12 ∈ Π1, hene
‖id⊗ id : ℓ1 ⊗ε ℓ

n
1 → ℓ2 ⊗π ℓ

n
1‖ ≤ π1(id12) ≺ 1,whih gives id11 ∈ Π1,1,2. Furthermore, π2(idn12) = 1, and π2(idn∞2) = n1/2(see, e.g., [31, 22.4.9℄), hene,

‖id⊗ id : ℓ2 ⊗ε ℓ
n
1 → ℓ2 ⊗∆2

ℓn2‖ = 1and (by duality)
‖id⊗ id : ℓ2 ⊗∆2

ℓn2 → ℓ2 ⊗π ℓ
n
1‖ ≤ n1/2.Thus, by fatorization,

‖id⊗ id : ℓ2 ⊗ε ℓ
n
1 → ℓ2 ⊗π ℓ

n
1‖ ≤ n1/2,whih gives π1,2,2(idn11) ≤ n1/2. The laim for 1 < p < 2 now follows byLemma 2.3(ii) with r0 = r1 = 1, s0 = 1, s1 = 2, s = p and θ = 2/p′.Coming to the general ase r ≤ p, we observe that Π1,1,2 ⊆ Πp,p,2 byProposition 1.2. Hene, id11 ∈ Πp,p,2, whih implies πp,p,2(idn11) ≺ 1. Bythe above, π1,p,2(idn11) ≺ n1−1/p. Thus, Lemma 2.3(ii) with r0 = 1, r1 = p,

s0 = s1 = p and θ = p′/r′ gives the laim.We now get the following partial result for the limit order of Πr,p,q:Theorem 4.2. Let 1 ≤ r ≤ p, q ≤ 2 with 1/p + 1/q ≤ 1/2 + 1/r.Then Πr,p,q(idnuv) ≍ nαr,p,q(u,v), where αr,p,q(u, v) is given by the following(inomplete) diagram:

�
�

�
��

0

1 + 1
r − 1

q − 1
p

+1
v − 1

u

1 + 1
r − 1

p − 1
u

1
r + 1

v

−1
q

?

1 + 1
r − 1

p − 1
q

1
q

1
p + 1

q − 1
r

1
p′

1/v

1/uIn partiular , λ(Πr,p,q, u, v) = αr,p,q(u, v). In the ase r = 1, the diagraman be ompleted by substituting �1� for �?� in the upper left quadrant. Inpartiular ,
π1,p,q(idnuv) ≍ ‖id⊗ id : ℓnu ⊗ε ℓ

n
p → ℓnv ⊗π ℓ

n
q′‖ ≍ max

(
1,
N(idnv′q′)
‖idnu′p‖ )

for all 1 ≤ u, v ≤ ∞ whenever 1 ≤ p, q ≤ 2 are suh that 1/p+ 1/q ≤ 3/2.



Absolutely (r, p, q)-summing inlusions 27Proof. Consider the standard unit vetors e1, . . . , en in ℓnu and ℓnv′ , re-spetively. Then
sup

x′∈Bℓ′u

( n∑

k=1

|x′(ek)|p
)1/p

= ‖idnu′p‖, sup
y∈Bℓv

( n∑

k=1

|ek(y)|q
)1/q

= ‖idnq′v′‖and
( n∑

k=1

|ek(iduv(ek))|r)1/r
= n1/r.Thus,

πr,p,q(idnuv) ≥ max

(
1,

n1/r

‖idnu′p‖ ‖idnq′v′‖)
,whih gives the lower estimates.Conerning the upper ones, Corollary 3.3 gives the part of the diagramwhere we have a �0�, so we are left with the remaining four parts. Sine

(N ,N) is the smallest operator ideal, we have Πr,p,q(idnuv) ≤ N(idnuv) ≤ n,whih gives the exat estimate in the ase r = 1 for the �?�-part. The upperestimates for the part above the �0� follow by fatorization from Corol-lary 3.3. For the last two parts, observe that by Lemma 4.1,
πr,p,q(idn11) ≤ πr,p,2(idn11) ≺ n1/r−1/p,and by duality,
πr,p,q(idn∞∞) = πr,q,p(idn11) ≺ n1/r−1/q.The remaining estimates then follow by fatorization from these ornerases.Remark 4.3.(a) For the ase 1 ≤ p, q ≤ 2 and 1/p+ 1/q > 3/2, the same tehniquesgive the following inomplete piture for the limit order of Π1,p,q:
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28 C. Mihels(b) Apart from the gaps in the above (whih, as we onjeture, may be�lled aording to the �rst diagram), there is not muh hope thatthe �easy� formula
π1,p,q(ℓ

n
u →֒ ℓnv ) ≍ max(1,N(idnv′q′)/‖idnu′p‖)or the (weaker) formula for the limit order hold whenever one ofthe indies p and q is stritly greater than 2; e.g., they do nothold for the ideals Dp = Π1,p,p′ whenever p 6= 2 (see, e.g., [31,22.5℄).An immediate onsequene of the above onsiderations (the ase r = 1)for the norms of tensor produt identities is the following:Corollary 4.4. Let 1 ≤ p, q ≤ 2 ≤ r, s ≤ ∞. Then

‖id⊗ id : ℓnp ⊗ε ℓ
m
q → ℓnr ⊗π ℓ

m
s ‖ ≍ min(n,m)max(0,1−1/p−1/q+1/r+1/s).Let Hr and Hr,∞ denote the operator ideals of all operators T with

(hn(T )) ∈ ℓr and (hn(T )) ∈ ℓr,∞, respetively (for the de�nition of Hilbertnumbers and the fats mentioned here we refer to the very last setion).By the fat that Πr,2,2 is the largest extension of Sr and by (8.1) we knowthat Hr ⊆ Πr,2,2 ⊆ Hr,∞, hene for all 1 ≤ u, v, r ≤ ∞ it follows that
λ(Hr, u, v) = λ(Πr,2,2, u, v). Thus, the diagrams for the limit order of Hrgiven in [20℄ give the following ones for Πr,2,2:
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Note that the speial ase iduv ∈ Πr,2,2 whenever 1 ≤ u < v ≤ 2 and
1/r ≤ (v′/2)(1/u− 1/v) has also been proved in Proposition 3.4(i).Proposition 3.4 an be used to give more results for the limit order of
Πr,p,q; as an example we will validate the following two diagrams, whih maygive some impression how diverse the limit orders of Πr,p,q may be:
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Π2,2,q1 < q < 2

By what has been done before, we an exlude the ase 1 ≤ u ≤ 2 ≤ v ≤ ∞.Now let 1 ≤ u < v ≤ 2. Then by Proposition 3.4(ii) we know that iduv ∈
Πp,p,q whenever 1/u− 1/v > 1/q′. This gives, by symmetry, the diagram for
Πq,q,q, and the right-hand side of the diagram for Π2,2,q. For the left-handside, onsider the ideal Π2,q,2. By Proposition 3.4(i) we have iduv ∈ Π2,q,2whenever 1 ≤ u < v ≤ 2 and 1/q′ ≤ (v′/2)(1/u − 1/v). By duality, thisgives iduv ∈ Π2,2,q whenever 2 ≤ u < v ≤ ∞ and 1/q′ ≤ (u/2)(1/u − 1/v).Fatorization now gives the upper estimates for the left-hand side of the dia-gram for Π2,2,q, and the lower ones follow from the diagram for Πq′,2,2, sine
Π2,2,q ⊂ Πq′,2,2.5. Connetions to nulear operators and Shatten lasses. Goingbak to the de�nition, it is not lear (and very often false) whether for agiven Banah operator ideal (A,A) its limit order is attained, i.e., whether
Dσ ∈ A(ℓu, ℓv) for all σ ∈ ℓ1/λ(A,u,v). For speial hoies of the indiesinvolved, we an on�rm this. The proof goes along similar lines to the oneof [11, Lemma 3℄, but we give the details for the onveniene of the reader.Let us �rst reall a result of [7, 1.4.3℄, for whih we introdue the followingtemporary notation: Let x1, . . . , xn ∈ ℓmu . Then for 1 ≤ p ≤ ∞ we set

wp(xi) := sup
x′∈Bℓm

u′

( n∑

i=1

|x′(xi)|p
)1/p

.

Lemma 5.1. Let 1 ≤ p, u ≤ ∞. Then there exists a onstant C > 0 suhthat for all x1, . . . , xn, y1, . . . , yn ∈ ℓmu ,
wp(xi ⊗ yj ; ℓ

m2

u ) ≤ Cwp(xi; ℓ
m
u )wp(yj ; ℓ

m
u )whenever either 1 ≤ p′ ≤ u ≤ ∞, 1 ≤ u ≤ p′ = 2, or 1 ≤ u ≤ 2 < p′ ≤ ∞.In partiular , suh a onstant exists for all u whenever p ∈ {2,∞}.Proposition 5.2. Let 1 ≤ p, q, r ≤ ∞ with 1/p + 1/q ≥ 1/r. Then for

1 ≤ u, v ≤ ∞, the limit order λ(Πr,p,q, u, v) is attained whenever 1 ≤ u, p ≤ 2



30 C. Mihelsor 1 ≤ p′ ≤ u ≤ ∞, and 1 ≤ q ≤ 2 ≤ v ≤ ∞ or 1 ≤ v ≤ q ≤ ∞. Inpartiular , it is attained for all u, v whenever p, q ∈ {2,∞}.Proof. First we show that under the given assumptions, there exists aonstant C > 0 suh that for all σ1, . . . , σm ∈ K,(5.1) πr,p,q(Dσ : ℓmu → ℓmv )2 ≤ Cπr,p,q(Dσ ⊗Dσ : ℓm
2

u → ℓm
2

v ).Let x1, . . . , xn ∈ ℓmu and y1, . . . , yn ∈ ℓmv′ . Then
(( n∑

k=1

|y′k(Dσxk)|r
)1/r)2

=
(( n∑

k=1

|y′k(Dσxk)|r
)2)1/r

=
( n∑

k,l=1

(|y′k(Dσxk)| |y′l(Dσxl)|)r
)1/r

=
( n∑

k,l=1

|(y′k ⊗ y′ℓ)(Dσ ⊗Dσ)(xk ⊗ xl)|r
)1/r

≤ πr,p,q(Dσ ⊗Dσ)wp(xk ⊗ xl; ℓ
m2

u )wq(y
′
k ⊗ y′l; ℓ

m2

v′ ).Thus, the assumptions together with the lemma above give (5.1).Now set λ := λ(Πr,p,q, u, v). Then for all ε > 0 su�iently small and all
σ ∈ ℓ(λ+ε)−1 we have Dσ ∈ Πr,p,q(ℓu, ℓv), i.e.,

πr,p,q(Dσ : ℓu → ℓv) ≤ c(ε)‖σ‖(λ+ε)−1.Denote by D the set of all �nite-dimensional diagonal operators Dσ : K
m →

K
m, m arbitrary. Obviously, Dσ ⊗Dσ ∈ D for all σ ∈ K

m. De�ne on D twofuntions A and B by
A(Dσ : K

m → K
m) := πr,p,q(Dσ : ℓmu → ℓmv ),

B(Dσ : K
m → K

m) := ‖σ‖ℓ
λ−1

.Then it follows from the above that for all σ ∈ K
m and ε > 0 su�ientlysmall,

A(Dσ) ≤ c(ε)‖σ‖(λ+ε)−1 ≤ c̃(ε)mε‖σ‖λ−1 .Clearly, B(Dσ ⊗ Dσ) = B(Dσ)
2 and, by (5.1), A(Dσ)

2 ≤ CA(Dσ ⊗ Dσ).Hene, an appliation of [7, 1.3.1℄ yields, for all σ ∈ K
m,

πr,p,q(Dσ) = A(Dσ) ≤ CB(Dσ) = C‖σ‖λ−1 ,whih by an obvious ontinuity argument gives the laim.Corollary 5.3. Let 1 ≤ r ≤ ∞ and 1 ≤ p, q, u ≤ 2 ≤ v ≤ ∞, andde�ne 1 ≤ s ≤ ∞ by 1/s := max(0, 1 + 1/r − 1/q − 1/p+ 1/v − 1/u). Then
Dσ ∈ Πr,p,q(ℓu, ℓv) for all σ ∈ ℓs.



Absolutely (r, p, q)-summing inlusions 31Proof. This is now a diret onsequene of Proposition 5.2 and our dia-grams in the previous setion.The above result for diagonal operators has deep onsequenes for theonnetion to nulear operators. Let 0 < u ≤ ∞ and 1 ≤ s, t ≤ ∞ with
1+1/u ≥ 1/s+1/t. Then an operator T : X → Y between Banah spaes Xand Y is alled (u, s, t)-nulear (shorthand: T ∈ Nu,s,t(X,Y )) if T fatorizesthrough a diagonal operator Dσ : ℓt′ → ℓs with σ ∈ ℓu if u <∞, and σ ∈ c0if u = ∞ (see, e.g., [31, 18.1℄). We start by realling a useful inlusion resultrelated to Proposition 1.2 (see, e.g., [31, 18.1.5℄).Proposition 5.4. Let 0 < u0 ≤ u1 ≤ ∞, 1 ≤ s0 ≤ s1 ≤ ∞ and
1 ≤ t0 ≤ t1 ≤ ∞ with 1/s0 + 1/t0 − 1/u0 ≤ 1/s1 + 1/t1 − 1/u1 ≤ 1. Then
Nu0,s0,t0 ⊆ Nu1,s1,t1.Proposition 5.5. Let 1 ≤ u, r ≤ ∞, and either 1 ≤ s, t ≤ 2 or 2 ≤
s, t ≤ ∞ or 1/min(s, t)−1/u ≤ 1/2, and either 1 ≤ p, q ≤ 2 or 2 ≤ p, q ≤ ∞or 1/r − 1/max(p, q) ≤ 1/2, and 0 ≤ 1/p+ 1/q − 1/r ≤ 1. Then

Nu,s,t ⊆ Πr,p,qwhenever 1/s+ 1/t− 1/u ≤ 1/p+ 1/q − 1/r.Proof. The ase 1 ≤ p, q ≤ 2 ≤ s, t ≤ ∞ follows from the orollary aboveby de�nition.Now let 1 ≤ s, t ≤ 2. Choose u ≤ u0 ≤ ∞ suh that 1/u0 = 1 + 1/u −
1/s− 1/t, i.e., 1/s+ 1/t− 1/u = 1/2 + 1/2− 1/u0. Then by Proposition 5.4we have Nu,s,t ⊆ Nu0,2,2. If 1 ≤ s ≤ 2 ≤ ∞ and 1/s− 1/u ≤ 1/2, then de�ne
u ≤ u0 by 1/u0 = 1/u+1/2−1/s. Proposition 5.4 then gives Nu,s,t ⊆ Nu0,2,t.The ase 1 ≤ t ≤ 2 ≤ s ≤ ∞ goes similarly.For 2 ≤ p ≤ q ≤ ∞, we let r ≤ r0 ≤ ∞ be de�ned by 1/r0 = 1 + 1/r −
1/p − 1/q, i.e., 1/2 + 1/2 − 1/r0 = 1/p + 1/q − 1/r. Thus, Proposition 1.2gives Πr0,2,2 ⊆ Πr,p,q. Now, if 1 ≤ p ≤ 2 ≤ q ≤ ∞ and 1/r − 1/q ≤ 1/2,then we de�ne r0 ≤ r by 1/r0 = 1/r+ 1/2− 1/q. Proposition 1.2 then gives
Πr0,p,2 ⊆ Πr,p,q. The ase 1 ≤ q ≤ 2 ≤ p ≤ ∞ and 1/r − 1/p ≤ 1/2 goessimilarly.Combining all these observations with the ase 1 ≤ p, q ≤ 2 ≤ s, t ≤ ∞gives the laim.Our exposition now ulminates in the on�rmation of a result of [5℄ forabsolutely (r, p, q)-summing operators on ℓ2 as well as of a related result for
(u, s, t)-nulear operators on ℓ2 (see also [22, 2.7℄). It also shows that theabove inlusion result in the ase 1 ≤ p, q ≤ 2 ≤ s, t ≤ ∞ is optimal.Corollary 5.6. Let 1 ≤ u, r ≤ ∞ and 1 ≤ p, q ≤ 2 ≤ s, t ≤ ∞ with
1/s+ 1/t− 1/u = 1/p+ 1/q − 1/r < 1. Then
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Nu,s,t(ℓ2) = Πr,p,q(ℓ2) = Sv,where 1/v = 1 + 1/u− 1/s− 1/t = 1 + 1/r − 1/p− 1/q.Proof. By Propositions 5.4, 1.2 and 5.5,

Nv,2,2 ⊆ Nu,s,t ⊆ Πr,p,q ⊆ Πv,2,2.Thus, by [31, 17.5.2, 18.5.4℄,
Sv = Nv,2,2(ℓ2) ⊆ Nu,s,t(ℓ2) ⊆ Πr,p,q(ℓ2) ⊆ Πv,2,2(ℓ2) = Sv,whih gives the laim.

6. Inlusions between arbitrary sequene spaes. In this setionwe need to extend the de�nition of absolutely (r, p, q)-summing operators.For tehnial reasons we will only onsider the ase p = q = 2, and the
r-norm replaed by a sequene spae norm.We refer to [26℄ for all notation and information on symmetri Banahsequene spaes and reall only brie�y the notions needed here. For a sym-metri Banah sequene spae E, its fundamental sequene (λE(n)) is de�nedby λE(n) := ‖∑n

i=1 ei‖E , where ei is the ith standard unit vetor. The spanof the �rst n standard unit vetors, equipped with the norm indued by E, isdenoted by En. If E× denotes the Köthe dual of E, then λE×(n) = n/λE(n).For two symmetri Banah sequene spaes E and F , we de�ne the spae ofmultipliers M(E,F ) by
M(E,F ) := {λ ∈ ℓ∞; λµ ∈ F for all µ ∈ E},equipped with the norm ‖λ‖M(E,F ) := sup‖µ‖E≤1 ‖λµ‖F . If E is 2-onaveand F is 2-onvex (for these notions, we refer to [26℄), then the followinghold (see, e.g., [18, 2.1℄):

‖id : ℓn2 →֒ En‖ ≍ λE(n)/
√
n;(6.1)

‖id : Fn →֒ ℓn2‖ ≍ √
n/λF (n);(6.2)

λM(F,E)(n) ≍ λE(n)/λF (n).(6.3)For a symmetri Banah sequene spae E we denote by SE the Banahspae of all ompat operators T : ℓ2 → ℓ2 for whih the sequene ofsingular numbers is ontained in E, equipped with the norm ‖T‖SE :=
‖∑∞

i=1 si(T )ei‖E . By SnE we denote the spae L(ℓn2 ) equipped with the norm
‖T‖Sn

E
:= ‖∑n

i=1 si(T )ei‖E .Let E be a maximal symmetri Banah sequene spae. We all an opera-tor T : X → Y between Banah spaesX and Y absolutely (E, 2, 2)-summingif there exists a onstant C > 0 suh that for any hoie of x1, . . . , xn ∈ X



Absolutely (r, p, q)-summing inlusions 33and y′1, . . . , y′n ∈ Y ′, the inequality
∥∥∥

n∑

k=1

y′k(Txk)ek

∥∥∥
E
≤ C sup

x′∈BX′

( n∑

k=1

|x′(xk)|2
)1/2

sup
y∈BY

( n∑

k=1

|y′k(y)|2
)1/2

holds. We put πE,2,2(T ) := inf C with C as above. In this way, we obtainthe maximal Banah operator ideal (ΠE,2,2, πE,2,2).Lemma 6.1. Let E0 and E1 be symmetri Banah sequene spaes and
F an exat interpolation funtor. Then

F(ΠE0,2,2(X,Y ), ΠE1,2,2(X,Y )) ⊆ ΠF(E0,E1),2,2(X,Y )for any �xed pair of Banah spaes X and Y .Proof. Fix x1, . . . , xn ∈ X, y′1, . . . , y′n ∈ Y ′. For T ∈ L(X,Y ) onsiderthe mapping ψn(T ) := (y′1(Tx1), . . . y
′
n(Txn)). Then by de�nition

‖ψn : ΠEi,2,2(X,Y ) → Ei‖ ≤ w2(xk)w2(y
′
k), i = 0, 1.Thus, interpolation and the de�nition give the laim.The following result for operators on a Hilbert spae is an extension of[31, 17.5.2℄.Proposition 6.2. Let E be a maximal symmetri Banah sequene spaesuh that E 6= ℓ∞. Then ΠE,2,2(ℓ2) = SE. Moreover , ΠE,2,2 is the largestBanah operator ideal extending SE to the lass of all Banah spaes.Proof. By Mityagin [30℄ (see also [24, 1.b.10℄) there exists an exat in-terpolation funtor F suh that E = F(ℓ1, ℓ∞). Sine S1 = Π1,2,2(ℓ2) and

S∞ ⊆ Π∞,2,2(ℓ2), the above lemma together with [1℄ yields
SE = F(S1,S∞) ⊆ F(Π1,2,2(ℓ2), Π∞,2,2) ⊆ ΠE,2,2(ℓ2).Conversely, we have πE,2,2(idn22) ≥ λE(n). Thus, id22 6∈ ΠE,2,2. Now proeedas in [31, 17.5.2℄ to obtain ΠE,2,2(ℓ2) ⊆ SE . For the last part, note thatby [31, 15.6℄ an operator T : X → Y belongs to the largest extension of

SE whenever RTS ∈ SE for all S ∈ L(ℓ2, X) and R ∈ L(Y, ℓ2). By thede�nition of ΠE,2,2 it follows that suh an operator T also belongs to ΠE,2,2.Sine ΠE,2,2(ℓ2) = SE by the above, the laim follows.We now fous again on inlusion maps. As before, we denote for simpliityby idEF the identity map id : E →֒ F whenever E and F are symmetriBanah sequene spaes suh that E is ontinuously embedded in F . If E =
ℓp (F = ℓp, respetively), we write idpF (idEp, respetively) instead of idℓpF(idEℓp , respetively).Lemma 6.3. Let E and F be symmetri Banah sequene spaes both notisomorphi to ℓ2 suh that E is 2-onave, and F is maximal and 2-onvex.Then SM(F,ℓ2) ◦ SM(ℓ2,E) ⊆ SM(F,E).



34 C. MihelsProof. Simply imitate the �rst part of the proof of [19, 6.3℄.This now gives the following more general result.Proposition 6.4. Let E and F be symmetri Banah sequene spaessuh that E is 2-onave, and F is maximal and 2-onvex. Then idEF ∈
ΠM(F,E),2,2.Proof. If F = ℓ2, then by [13℄ it is known that idE2 ∈ ΠM(ℓ2,E),2 ⊆
ΠM(ℓ2,E),2,2. If E = ℓ2, then idF×2 ∈ ΠM(ℓ2,F×),2 ⊂ ΠM(F,ℓ2),2,2, hene byduality also id2F ∈ ΠM(F,ℓ2),2,2. Thus assume that both spaes involved arenot isomorphi to ℓ2. The proof is then only a slight modi�ation of one in[15℄, but we give the details for the onveniene of the reader. It is su�ientto show that R◦idEF ◦S ∈ SM(F,E) whenever R ∈ L(F, ℓ2) and S ∈ L(ℓ2, E).By [13℄ it is known that idE2 ∈ ΠM(ℓ2,E),2, thus idE2 ◦ S ∈ ΠM(ℓ2,E),2(ℓ2) =
SM(ℓ2,E). Similarly, idF×2◦R′ ∈ SM(ℓ2,F×). Hene, R◦ id2F ∈ SM(F,ℓ2). Thus,by the lemma above, R ◦ idEF ◦ S = R ◦ id2F ◦ idE2 ◦ S ∈ SM(F,E), whihgives the laim.This result is best possible in the following sense: Let G be a symmetriBanah sequene spae suh that idEF ∈ ΠG,2,2, where E and F are asabove. Then λG(n) ≺ λM(F,E)(n). Indeed, as in the proof of Theorem 4.2and with the help of (6.1)�(6.3), we dedue that

πG,2,2(idEF ) ≥ λG(n)

‖idn2E‖ ‖idnF2‖
≻ λG(n)

λE(n)
λF (n)

≥ λG(n)

λM(F,E)(n)
.

Clearly, the above result inludes the ase iduv with 1 ≤ u ≤ 2 ≤ v ≤ ∞.The ase 1 ≤ u < v < 2 or 2 < u < v ≤ ∞ turned out to be moreompliated, whih is also the ase in this more general setting.Proposition 6.5. Let E and F be 2-onave symmetri Banah se-quene spaes and F an exat interpolation funtor suh that
sup
n,m

‖L(ℓm2 , E
n) →֒ F(L(ℓm2 , ℓ

n
1 ),L(ℓm2 , F

n))‖ <∞.Then idEF ∈ ΠF(ℓ2,ℓ∞),2,2.Proof. Fix y′1, . . . , y′m ∈ Fn and onsider the mappings
ψn,m : K

m ⊗ K
n → K

m, ψn,m((x1, . . . , xm)) := (y′1(x1), . . . , y
′
m(xm)).Sine id11 ∈ Π2,2,2, it follows that id1F ∈ Π2,2,2, thus

‖ψn,m : L(ℓm2 , ℓ
n
1 ) → ℓm2 ‖ ≤ Cw2(y

′
i)for some C > 0 independent of n and m. Trivially, idFF ∈ Π∞,2,2 with normequal to 1, that is,

‖ψn,m : L(ℓm2 , F
n) → ℓm∞‖ ≤ w2(y

′
i).



Absolutely (r, p, q)-summing inlusions 35Then the assumption and interpolation give
‖ψn,m : L(ℓm2 , E

n) → F(ℓm2 , ℓ
m
∞)‖ ≤ C̃w2(y

′
i),where C̃ > 0 is some other onstant independent of n and m. This �nishesthe proof.We refer the reader to [26℄ for the proper de�nition of Lorentz and Orlizsequene spaes.Corollary 6.6.(i) Let 1 ≤ u < v < 2. Then iduv ∈ Πr,2,2, where 1/r = (v′/2)(1/u −

1/v).(ii) Let 1 < p < r < 2 and 1 ≤ q, s ≤ 2. Then idℓp,qℓr,s ∈ Πℓt,q̃,2,2, where
1/t = (r′/2)(1/p− 1/r) and 1/q̃ = 1/q − 1/2.(iii) Let ϕ and ψ be Orliz funtions suh that the funtions t 7→ ϕ(

√
t)and t 7→ ψ(

√
t) are equivalent to onave funtions. If ϕ−1(t) =

t̺(ψ−1(t)/t) for some ontinuous and onave funtion ̺ : [0,∞) →
[0,∞) whih is positive on (0,∞), then idℓϕℓψ ∈ Πλ,2,2, where λ−1(t)

= t1/2̺(t−1/2).Proof. (i) This is already inluded in Proposition 3.4(i).(ii) In [28, 2.1℄ it was shown that under the assumptions above,
sup
n,m

‖L(ℓm2 , ℓ
n
p,q) →֒ (L(ℓm2 , ℓ

n
1 ),L(ℓm2 , ℓ

n
r ))θ,q̃‖ <∞,where θ = r′/p′. A quik inspetion of the proof shows that ℓnr an be replaedby ℓnr,s. Thus, the above proposition applies with the interpolation funtor

F = (·, ·)θ,q̃. Furthermore, (ℓ2, ℓ∞)θ,q̃ = ℓt,q̃, whih gives the laim.(iii) The assumptions on ϕ and ψ ensure that ℓϕ and ℓψ are 2-onave(see, e.g., [23℄). Let ̺ℓ be the lower Ovhinnikov funtor assoiated to ̺ (see,e.g., [14℄ for more details and referenes). Then (see, e.g., [27, p. 179℄) wehave ̺ℓ(ℓ1, ℓψ) = ℓϕ, and by [14, Proposition 3℄,
sup
n,m

‖L(ℓm2 , ℓ
n
ϕ) →֒ ̺ℓ(L(ℓm2 , ℓ

n
1 ),L(ℓm2 , ℓ

n
ψ))‖ <∞.Thus, the above proposition applies, and ̺ℓ(ℓ2, ℓ∞) = ℓλ (see, e.g., [27,p. 178℄), whih gives the laim.7. Inlusions between �nite-dimensional Shatten lasses. We�nally onsider inlusions id : SnE →֒ SnF , where E and F are symmetriBanah sequene spaes. Sine both unitary ideals involved ontain ℓn2 , itfollows that

πr,p,q(id : SnE →֒ SnF ) ≥ πr,p,q(idn22) = nmax(0,1+1/r−1/p−1/q)and
πG,2,2(id : SnE →֒ SnF ) ≥ πG,2,2(idn22) = λG(n)



36 C. Mihelsfor all 1 ≤ p, q ≤ 2, 1 ≤ r ≤ ∞ and every symmetri Banah sequenespae G. To give an analogue of Corollary 3.3, we need some more interpo-lation formulas.Proposition 7.1. Let 1 ≤ p0, p1, q0, q1 ≤ 2, 0 < θ < 1 and 1 ≤ p, q ≤ 2with 1/p = (1 − θ)/p0 + θ/p1 and 1/q = (1 − θ)/q0 + θ/q1. Then
sup
n,m

‖ℓmp ⊗ε Snq →֒ [ℓmp0 ⊗ε Snq0 , ℓmp1 ⊗ε Snq1 ]θ‖ <∞and
sup
n,m

‖Snp ⊗ε Smq →֒ [Snp0 ⊗ε Smq0 ,Snp1 ⊗ε Smq1 ]θ‖ <∞.Proof. This follows from the ases q0 = q1 = q = 2 (Proposition 2.1) and
p0 = p1 = p = 2 ([16, 4.3℄) by applying [17, Lemma 9℄ together with Pisier'sfatorization theorem as in [17, p. 450℄.Lemma 7.2. Let 1 ≤ u0, u1 ≤ 2 ≤ v0, v1 ≤ ∞, 1 ≤ r0, r1 ≤ ∞ and
1 ≤ s0, s1, t0, t1 ≤ 2. Then for all 0 < θ < 1,
πr,s,t(id : Snu →֒ Snv ) ≤ πr0,s0,t0(id : Snu0

→֒ Snv0)1−θπr1,s1,t1(id : Snu1
→֒ Snv1)θ,where 1/u = (1−θ)/u0+θ/u1, 1/v = (1−θ)/v0+θ/v1, 1/r = (1−θ)/r0+θ/r1,

1/s = (1 − θ)/s0 + θ/s1 and 1/t = (1 − θ)/t0 + θ/t1.Proof. The proof goes along similar lines to the one of Lemma 2.3(i),using the above proposition.As before, we have to verify some extreme ases.Lemma 7.3. The following hold true:(i) π1,1,1(id : Sn2 →֒ Sn2 ) = 1;(ii) π1,2,2(id : Sn1 →֒ Sn∞) = n;(iii) π1,2,1(id : Sn1 →֒ Sn2 ) = π1,1,2(id : Sn2 →֒ Sn∞) ≍ √
n;(iv) π1,1,2(id : Sn1 →֒ Sn2 ) = π1,2,1(id : Sn2 →֒ Sn∞) ≍ √
n.Proof. (i) is lear as Π1,1,1 = L. Sine π2(id : Sn1 →֒ Sn2 ) =

√
n (see, e.g.,[16, 5.2℄), we have(7.1) sup

m
‖id⊗ id : Sn1 ⊗ε ℓ

m
2 → ℓn

2m
2 ‖ =

√
n.Thus, by duality,

sup
m

‖id⊗ id : ℓn
2m

2 → Sn∞ ⊗π ℓ
m
2 ‖ =

√
n.Hene, by fatorization,

sup
m

‖id⊗ id : Sn1 ⊗ε ℓ
m
2 → Sn∞ ⊗π ℓ

m
2 ‖ = n,whih means π1,2,2(id : Sn1 →֒ Sn∞) = n. Next, the identity map idS2

isabsolutely (2, 1)-summing, that is,(7.2) sup
m

‖id⊗ id : Sn2 ⊗ε ℓ
m
1 → ℓn

2m
2 ‖ <∞.



Absolutely (r, p, q)-summing inlusions 37By duality and fatorization, this together with (7.1) yields
sup
m

‖id⊗ id : Sn1 ⊗ε ℓ
m
2 → Sn2 ⊗π ℓ

m
∞‖ ≍ √

n,whih gives π1,2,1(id : Sn1 →֒ Sn2 ) ≍ π1,1,2(id : Sn2 →֒ Sn∞) ≍ √
n. Finally,sine Π1(X,Y ) = Π2(X,Y ) whenever X is of otype 2, we have π1(id :

Sn1 →֒ Sn2 ) ≍ π2(id : Sn1 →֒ Sn2 ) ≍ √
n. Thus,

sup
m

‖id⊗ id : Sn1 ⊗ε ℓ
m
1 → Sn2 ⊗π ℓ

m
1 ‖ ≍ √

n,whih by fatorization gives
sup
m

‖id⊗ id : Sn1 ⊗ε ℓ
m
1 → Sn2 ⊗π ℓ

m
2 ‖ ≍ √

n.Hene, π1,1,2(id : Sn1 →֒ Sn2 ) ≍ π1,2,1(id : Sn2 →֒ Sn∞) ≍ √
n, whih �nishesthe proof.Proposition 7.4. Let 1 ≤ p, q ≤ 2, 1 ≤ r ≤ ∞ and 1 ≤ u ≤ 2 ≤ v ≤ ∞with 1/u− 1/v = 1 + 1/r − 1/p− 1/q. Then

πr,p,q(id : Snu →֒ Snv ) ≍ n1/u−1/v.Proof. As in the proof of Theorem 3.2, we �x 1 ≤ q ≤ 2 and de�ne q̃and q aordingly. Using Lemmas 7.2 and 7.3, we arrive at the following sixases (ordered aording to the proof of Theorem 3.2):
• π1,q̃,q(id : Sn1 →֒ Sn2 ) ≍ π1,q̃,q(id : Sn2 →֒ Sn∞) ≍ √

n;
• π1,1,q(id : Snq̃ →֒ Sn2 ) ≍ π1,1,q(id : Sn2 →֒ Snq ) ≍ n1/q′ ;
• π1,2,q(id : Snq̃ →֒ Sn∞) ≍ π1,2,q(id : Sn1 →֒ Snq ) ≍ n1/q̃.Then proeed by interpolation as in the proof of Theorem 3.2 to obtain thestatement in the ase r = 1. The general ase then follows as in the proof ofCorollary 3.3.Corollary 7.5. Let 1 ≤ p, q ≤ 2 and 1 ≤ r ≤ ∞ with 1/p+ 1/q − 1/r

≤ 1. Then for all 1 ≤ u ≤ 2 ≤ v ≤ ∞,
πr,p,q(id : Snu →֒ Snv ) ≍ n1+1/r−1/p−1/qπr,p,q(id : ℓnu →֒ ℓnv ).Moreover , for 2 ≤ r, s ≤ ∞,

‖id⊗ id : Snp ⊗ε ℓ
n2

q → Snr ⊗π ℓ
n2

s ‖ ≍ n2−1/p−1/q+max(0,2−1/p−1/q+1/r+1/s).Proof. Appropriate fatorizations give the upper estimates. For the lowerestimates observe �rst that
πr,p,q(id : Snu →֒ Snv ) ≥ πr,p,q(idn22) = n1/t,where 1/t = 1 + 1/r − 1/p − 1/q. By (8.1) and the lower estimate fromCorollary 8.8 below,



38 C. Mihels
πr,p,q(id : Snu →֒ Snv ) ≥ πt,2,2(id : Snu →֒ Snv ) ≥ π

(n2)
t,2,2(id : Snu →֒ Snv )

≥ n2/thn2(id : Snu →֒ Snv )

≻ n2/tn1/v−1/u = n2+2/r−2/p−2/q+1/v−1/u.This alulation also gives the last part of the statement on taking r = 1.Mathematial routine lets us formulate and prove an analogue of Corol-lary 4.4:Proposition 7.6. Let 1 ≤ p, q ≤ 2 ≤ r, s ≤ ∞. Then
‖id⊗ id : Snp ⊗ε Snq → Snr ⊗π Sns ‖ ≍ n‖id⊗ id : ℓnp ⊗ε ℓ

m
q → ℓnr ⊗π ℓ

m
s ‖.Proof. We have to show that

‖id⊗ id : Snp ⊗ε Snq → Snr ⊗π Sns ‖ ≍ n1+max(0,1−1/p−1/q+1/r+1/s).Again, we �rst establish the ases where the norm is asymptotially equiva-lent to n�note that this behaviour is best possible, sine all spaes involvedontain ℓn2 .By [18, 11.4℄,
‖id⊗ id : Sn1 ⊗ε Sn2 → Sn2

2 ‖ ≍ √
n.Thus, by duality and fatorization the following identities have norms asymp-totially equivalent to n:id⊗ id : Sn1 ⊗ε Sn2 → Sn∞ ⊗π Sn2 , id⊗ id : Sn1 ⊗ε Sn2 → Sn2 ⊗π Sn∞.Furthermore, by [18, 11.3℄ we have

‖id⊗ id : Sn1 ⊗ε Sn1 → Sn2 ⊗π Sn2 ‖ ≍ nand, by duality,
‖id⊗ id : Sn2 ⊗ε Sn2 → Sn∞ ⊗π Sn∞‖ ≍ n.Now an interpolation strategy similar to the one in the proof of Theorem 3.2together with Proposition 7.1 establishes
‖id⊗ id : Snp ⊗ε Snq → Snr ⊗π Sns ‖ ≍ nwhenever 1/p + 1/q − 1/r − 1/s = 1. The upper estimates now follow byappropriate fatorizations. For the lower ones, reall that by [10, p. 35℄ wehave N(idE) = dimE for all �nite-dimensional Banah spaes E. Thus,N(id : Snr′ →֒ Sns ) ≥ n2

n1/r′−1/s
= n1+1/r+1/s.Hene,

‖id⊗ id : Snp ⊗ε Snq → Snr ⊗π Sns ‖ ≥ N(id : Snr′ →֒ Sns )

‖id : Snp′ →֒ Snq ‖
≥ n2−1/p−1/q+1/r+1/s,whih together with the general lower bound n gives the laim.



Absolutely (r, p, q)-summing inlusions 39To formulate an analogue of Proposition 6.4 auses some problems. Sofar, we are only able to state the following; the proof is similar to the one ofProposition 6.4. We leave the details to the reader.Proposition 7.7. Let E0, E1 be 2-onave symmetri Banah sequenespaes suh that(7.3) πM(ℓ2,Ei),2(id : SnEi →֒ Sn2 ) ≍ λEi(n)√
n

, i = 0, 1.Then
πM(E×

1
,E0),2,2(id : SnE0

→֒ Sn
E×

1

) ≍ λE0
(n)λE1

(n)

n
.In [16, 5.3℄ the following examples of spaes satisfying (7.3) were given:

• ℓp, where 1 ≤ p ≤ 2;
• ℓp,q, where 1 < p < 2 and 1 ≤ q ≤ 2;
• ℓϕ, where ϕ(t) is a submultipliative Orliz funtion not equivalent to
t2 in a neighbourhood of zero, suh that the funtion t 7→ ϕ(

√
t) isequivalent to a onave funtion in a neighbourhood of zero.However, they also gave examples of Lorentz and Orliz sequene spaesthat are 2-onave but do not satisfy (7.3), whih makes it impossible tostate a more general result in the spirit of Proposition 6.4.8. Appliations to Hilbert numbers. We refer to [24℄ and [32℄ forthe general theory of s-numbers of operators. For an operator T : X → Ybetween Banah spaesX and Y reall the de�nition of its kth approximationnumber

ak(T ) := inf{‖T − S‖; S ∈ L(X,Y ) with ‖S‖ ≤ 1 and rank S < k},and its kth Hilbert number
hk(T ) := sup{ak(RTS); R ∈ L(Y, ℓ2), S ∈ L(ℓ2, X), ‖S‖, ‖R‖ ≤ 1}.It is lear from the de�nition that a1(T ) ≥ a2(T ) ≥ · · · ≥ 0 and h1(T ) ≥

h2(T ) ≥ · · · ≥ 0. Furthermore, for a ompat operator between Hilbertspaes, the sequenes of approximation and Hilbert numbers oinide withthe sequene of singular numbers.An important inequality due to König (see, e.g., [24, 2.a.3℄) states that
k1/rxk(T ) ≤ πr,2(T ) for all T ∈ Πr,2, where xk(T ) denotes the kth Weylnumber of T (see, e.g., [32℄). We now provide an analogue for Hilbert numbersand (E, 2, 2)-summing operators.For an operator T denote by π(k)

E,2,2(T ) the (E, 2, 2)-summing norm of Tomputed with at most k vetors x1, . . . , xk and k vetors y′1, . . . , y′k.



40 C. MihelsProposition 8.1. Let E be a maximal symmetri sequene spae. Then(8.1) λE(k)hk(T ) ≤ π
(k)
E,2,2(T )for all operators T ∈ L.Proof. Let T ∈ L(X,Y ) where X and Y are Banah spaes. By Bau-hardt's haraterization of Hilbert numbers (see, e.g., [31, 11.4.3℄) there existoperators S : ℓk2 → X and R : Y → ℓk2 suh that ‖S‖, ‖R‖ ≤ 1 and

RTS = (1 + ε)−1hk(T )idk22.Equivalently, this means that there exist x1, . . . , xk ∈ X and y′1, . . . , y′k ∈ Y ′suh that w2(xi) ≤ 1, w2(y
′
i) ≤ 1 and y′i(Txi) = (1+ε)−1hk(T ), i = 1, . . . , k.Then by the de�nition of π(k)
E,2,2(T ),

(1 + ε)−1hk(T )λE(k) =
∥∥∥

k∑

i=1

|y′i(Txi)|ei
∥∥∥
E
≤ π

(k)
E,2,2(T ),whih gives the laim.For a symmetri Banah sequene spae E, denote by λ(E) andm(E) theLorentz and Marinkiewiz spaes assoiated to the fundamental funtion λEof E, respetively, in the sense of [12, p. 59℄. Furthermore, for a sale s of

s-numbers in the sense of [32℄ and a symmetri Banah sequene spae F ,we de�ne LsF to be the lass of all operators T between Banah spaes suhthat (sn(T )) ∈ F , equipped with the norm sF (T ) := ‖(sn(T ))‖F , T ∈ LsF .In [12, 3.1℄ the authors proved the following:For every symmetri Banah sequene spae E suh that ℓ2 →֒ E, wehave ΠE,2 →֒ Lxm(E). If in addition E is an interpolation spae with respetto the ouple (ℓ2, ℓ∞), then Lxλ(E) →֒ ΠE,2.Moreover, for r > 2 Pietsh [32, 2.7.5℄ showed that Lr ⊆ Πr,2 ⊆ Lr,∞.The above proposition together with Proposition 6.2 now yields the followinganalogue for the sale of Hilbert numbers and (E, 2, 2)-summing operators:Corollary 8.2. Let E 6= ℓ∞ be a maximal symmetri Banah sequenespae. Then
LhE →֒ ΠE,2,2 →֒ Lhm(E).A �rst appliation to inlusion maps is the following:Proposition 8.3. Let E and F be symmetri Banah sequene spaessuh that E is 2-onave, and F is 2-onvex and maximal. Then
hk(idEF ) ≍ λF (k)

λE(k)
.



Absolutely (r, p, q)-summing inlusions 41Proof. We have hk(idk22) = 1, hene by fatorization,
hk(idEF ) ≥ hk(idkEF ) ≥ ‖idk2E‖

‖idkF2‖
≍ λF (k)

λE(k)
.Conversely, by Proposition 6.4 we know that idEF ∈ ΠM(F,E),2,2. Thus,the proposition above gives hk(idEF ) ≺ 1/λM(F,E)(k). By [18℄, we have

λM(F,E)(k) ≍ λE(k)/λF (k), whih gives the laim.Now the above and the results from the previous setion give the followingexamples. We guess that (i) is already known; however, we have not founda soure where it is written up in this form.Corollary 8.4.(i) Let 1 ≤ u ≤ v ≤ ∞. Then
hk(iduv) ≍





k(v′/2)(1/v−1/u), 1 ≤ u < v < 2;

k(u/2)(1/v−1/u), 2 < u < v ≤ ∞;

k1/v−1/u, 1 ≤ u ≤ 2 ≤ v ≤ ∞;

k−1/2, u = v = 1 or u = v = ∞;

1, 1 < u = v <∞.(ii) Let 1 < p ≤ r <∞ and 1 ≤ q, s ≤ ∞. Then
hk(idℓp,qℓr,s)≍





k(r′/2)(1/r−1/p), 1<p<r < 2, p≤ q≤ 2 and 1≤ s≤ r;

k(p/2)(1/r−1/p), 2<p<r <∞, 2≤ q≤ p and r≤ s≤∞;

k1/r−1/p, 1<p< 2<r <∞ and 1≤ q≤ 2≤ s≤∞;

1, p= r and 1<q= s<∞.(iii) Let 1 < p < 2 ≤ q < ∞ and w be a Lorentz sequene suh that
nw

2/(2−p)
n ≍ ∑n

i=1w
2/(2−p)
i . Then

hk(idd(w,p)d(w,q)) ≍ (kwk)
1/q−1/p.(iv) Let ϕ and ψ be Orliz funtions suh that t 7→ ϕ(

√
t) and t 7→ √

ψ(t)are equivalent to onave and onvex funtions, respetively , and ψsatis�es the ∆2-ondition. Then
hk(idℓϕℓψ) ≍ ϕ−1(1/k)

ψ−1(1/k)
.(v) Let ϕ and ψ be Orliz funtions suh that t 7→ ϕ(

√
t) and t 7→

ψ(
√
t) are equivalent to onave funtions, respetively. If ϕ−1(t) =

t̺(ψ−1(t)/t) for some ontinuous and onave funtion ̺ : [0,∞) →
[0,∞) whih is positive on (0,∞), then

hk(idℓϕℓψ) ≺ ̺(k1/2)

k1/2
.



42 C. MihelsProof. (i) The ase 1 ≤ u ≤ 2 ≤ v ≤ ∞ is ontained in the aboveproposition. Now let 1 ≤ u < v < 2. Then the upper estimate follows from(8.1) together with Corollary 6.6(i). For the lower estimate, hoose m ∈ Nsuh that m2/v′/2 ≤ k ≤ m2/v′. Now [20, Proposition (2)℄ gives
hk(iduv) ≥ hk(idmuv) ≻ m1/v−1/u ≥ 2−1k(v′/2)(1/v−1/u),whih gives the lower estimate. The ase 2 < u < v ≤ ∞ then follows byduality. Sine id11 ∈ Π2,2,2, we have hk(id11) ≺ k−1/2 by (8.1); the lower esti-mate follows by fatorizing idk22 through id11 (see also [32, 2.9.19℄). The laimfor id∞∞ then follows by duality. Finally, any K-onvex in�nite-dimensionalBanah spae (for this notion see, e.g., [19℄) ontains a omplemented opyof ℓk2 (see, e.g., [19, 19.3℄). Thus, hk(idX) ≍ 1 for any K-onvex in�nite-dimensional Banah spae X, in partiular for X = ℓu, 1 < u <∞.(ii) This follows as in (i) together with Corollary 6.6(ii)�note that λℓt,q̃(k)

≍ k1/t�and the lower estimate for hk(idpr) in (i).(iii) The assumption on w implies that d(w, p) is 2-onave (see, e.g., [33℄),and d(w, q) for q ≥ 2 is always 2-onvex (and maximal). Thus, the aboveproposition gives the laim, if we take into aount that λd(w,r)(k) ≍ (kwk)
1/rfor any 1 < r <∞.(iv) The assumptions ensure that ℓϕ is 2-onave and that ℓψ is 2-onvexand maximal. Hene, the laim follows from the proposition above�notethat λℓϕ(k) ≍ 1/ϕ−1(1/k) for any Orliz sequene spae ℓϕ.(v) This follows from (8.1) together with Corollary 6.6(iii).We now show that one an even obtain all asymptotially exat upperestimates for the Hilbert numbers of the �nite-dimensional inlusions idnuvby using (8.1). The lower ones an be found in [20℄. Note that the ase

1 ≤ v < u′ ≤ ∞ follows from the one below by the duality of Hilbertnumbers.Proposition 8.5. Let 1 ≤ u′ ≤ v ≤ ∞ and 1 ≤ k ≤ n. Then
hk(idnuv) ≍





min(n1/v−1/u, n1/vk−1/2, nk−1), 1 ≤ u′ ≤ v ≤ 2,
min(n1/v−1/u, n1/vk−1/2), 2 ≤ v ≤ u ≤ ∞,
min(k(u/2)(1/v−1/u), n1/vk−1/2), 2 ≤ u < v ≤ ∞,
k1/v−1/u, 2 ≤ u′ ≤ v ≤ ∞.Proof. Let 1 ≤ u′ ≤ v ≤ 2. Then π2,2,2(idnuv) ≍ n1/v, hene hk(idnuv) ≺

n1/vk−1/2. Moreover, π1,2,2(idnuv) ≍ n, whih gives hk(idnuv) ≺ nk−1. Finally,by the monotoniity of Hilbert numbers, hk(idnuv) ≤ h1(idnuv) = n1/v−1/u.Let 2 ≤ u, v ≤ ∞. Then π2,2,2(idnuv) ≍ n1/v, and therefore hk(idnuv) ≺
n1/vk−1/2. If v ≤ u, then as before hk(idnuv) ≤ h1(idnuv) = n1/v−1/u. If u < v,then hk(idnuv) ≤ hk(iduv) ≺ k(u/2)(1/v−1/u) as already seen in the aboveorollary. The lower estimate in this speial ase also follows similarly to the



Absolutely (r, p, q)-summing inlusions 43above: if k ≤ n2/u, then hoose 1 ≤ ℓ ≤ m suh that ℓ2/u/2 ≤ k ≤ ℓ2/u.Then again [20, Proposition (2)℄ gives
hk(idnuv) ≥ hk(idℓuv) ≻ ℓ1/v−1/u ≥ 2−1k(u/2)(1/v−1/u).The estimate hk(idnuv) ≻ n1/vk−1/2 for all n2/u ≤ k ≤ m from [20, Proposi-tion (2)℄ gives the remaining lower estimate in this ase.Let 2 ≤ u′ ≤ v ≤ ∞. Then iduv ∈ Πr,2,2, where 1/r = 1/u− 1/v. Hene,

hk(idnuv) ≺ k1/v−1/u.We �nish with inlusions between �nite-dimensional Shatten lasses.Sine ℓn2 is ontained in both spaes involved, hk(id : SnE →֒ SnF ) = 1 when-ever E is ontinuously embedded into F , and 1 ≤ k ≤ n. Proposition 7.7together with (8.1) gives the following upper estimate:Proposition 8.6. Let E0, E1 be 2-onave symmetri Banah sequenespaes satisfying (7.3). Then for n ≤ k ≤ n2,
hk(id : SnE0

→֒ Sn
E×

1

) ≺ k

n

λE0
(n)λE1

(n)

λE0
(k)λE1

(k)
.The situation for the lower estimate is more satisfatory. Here, for asymmetri Banah sequene spae G let λG : [1,∞) → [1,∞) be a monotonefuntion extending λG : N → [1,∞).Proposition 8.7. Let E and F be symmetri Banah sequene spaessuh that E is 2-onave and F is 2-onvex. Then for n ≤ k ≤ n2,

hk(id : SnE →֒ SnF ) ≻ λF (k/n)

λE(k/n)
.Proof. We proeed similarly to the proof of [21, 4.2℄. Choose 1 ≤ h ≤ nsuh that nh − 1 ≤ k ≤ nh. Identify L(ℓn2 , ℓ

h
2) and L(ℓn2 , ℓ

n
2 ) with thesets of all n × h-matries and n × n-matries, respetively. Furthermore,denote the spae L(ℓn2 , ℓ

h
2) equipped with the Hilbert�Shmidt norm by

S2(ℓ
n
2 , ℓ

h
2), and de�ne SF (ℓn2 , ℓ

h
2) likewise. Clearly, the natural injetion i2E :

S2(ℓ
n
2 , ℓ

h
2) →֒ SnE has norm asymptotially equivalent to λE(h)/

√
h. Nowlet PF2 : SnF → S2(ℓ

n
2 , ℓ

h
2) be the natural projetion whih uts o� thelast n − h + 1 rows. Observe that any matrix in L(ℓn2 , ℓ

h
2) has at most hnonzero singular values. Sine sk(PF2A) ≤ sk(A) for all A ∈ L(ℓn2 ), we have

‖PF2 : SnF → SF (ℓn2 , ℓ
h
2)‖ ≤ 1. Hene, for A ∈ L(ℓn2 ) and σ = (σ1, . . . , σℓ) thenonzero singular values of PF2A, with ℓ ≤ h,

‖PF2A | S2(ℓ
n
2 , ℓ

h
2)‖ = ‖σ‖2 ≤ ‖idhF2‖ ‖σ‖F ≤ λF (h)√

h
‖A | SnF ‖.Thus, sine idS2(ℓn

2
,ℓh

2
) = PF2◦(id : SnE →֒ SnF )◦i2E , it follows by the de�nition



44 C. Mihelsof hk that
hk(id : SnE →֒ SnF ) ≥

ak(idS2(ℓn
2
,ℓh

2
))

λE(h)/λF (h)
=
λF (h)

λE(h)
≥ 1

2

λF (k/n)

λE(k/n)
,whih gives the desired estimate.All the above together now gives the following examples. As usual, weset Snp,q := Snℓp,q .Corollary 8.8. Let n ≤ k ≤ n2.(i) Let 1 ≤ u ≤ 2 ≤ v ≤ ∞. Then

hk(id : Snu →֒ Snv ) ≍ (n/k)1/u−1/v.(ii) Let 1 < u < 2 < v <∞ and 1 ≤ r ≤ 2 ≤ s ≤ ∞. Then
hk(id : Snu,r →֒ Snv,s) ≍ (n/k)1/u−1/v.
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