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Fully summing mappings between Banach spaces

by

Mário C. Matos (Campinas) and
Daniel M. Pellegrino (João Pessoa)

Abstract. We introduce and investigate the non-n-linear concept of fully summing
mappings; if n = 1 this concept coincides with the notion of nonlinear absolutely summing
mappings and in this sense this article unifies these two theories. We also introduce a
non-n-linear definition of Hilbert–Schmidt mappings and sketch connections between this
concept and fully summing mappings.

1. Introduction. In the last years, several polynomial and multilinear
generalizations of the concept of absolutely summing operators between Ba-
nach spaces have been exhaustively investigated and several nice results have
appeared. Recently, a completely nonlinear approach to absolute summabil-
ity was introduced by Matos [4]; the notion of absolutely summing map-
pings proposed in [4] generalizes, to arbitrary mappings, the concepts of
absolutely summing operators and polynomials. If we consider an n-linear
mapping from E1 × · · · × En into F as a map (of one variable) from the
Banach space E = E1 × · · · × En to F , then [4] also generalizes the notion
of absolutely summing n-linear mappings. In some sense, in [4] we have a
unified concept for arbitrary absolutely summing mappings (in one vari-
able).

In this paper we revisit [4], introducing a general concept of fully sum-
ming mappings of several variables and, by using a unified treatment, we
extend the results of [4] to arbitrary mappings of several variables. Restrict-
ing our arguments to the case n = 1, we recover the results from [4]. We
also extend the concept of Hilbert–Schmidt operators to arbitrary mappings
and sketch connections between absolutely summing and Hilbert–Schmidt
mappings.
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2. Background and notation. Throughout this paper N denotes the
set of all positive integers, and E, E1, . . . , En, F represent Banach spaces
over K, where K represents the field of all scalars (complex or real). Given a
natural number n ≥ 2, the Banach space of all continuous n-linear mappings
from E1 × · · · × En into F endowed with the sup norm will be denoted by
L(E1, . . . , En; F ). For p > 0, the vector space of all sequences (xj)

∞

j=1 in

E such that ‖(xj)
∞

j=1‖p = (
∑

∞

j=1 ‖xj‖
p)1/p < ∞ is denoted by lp(E), and

lwp (E) represents the linear space of the sequences (xj)
∞

j=1 in E such that

(ϕ(xj))
∞

j=1 ∈ lp

for every continuous linear functional ϕ : E → K. In lwp (E) we consider
‖ · ‖w,p given by

‖(xj)
∞

j=1‖w,p = sup
ϕ∈BE′

‖(ϕ(xj))
∞

j=1‖p.

We also define lup (E) by

lup (E) = {(xj)
∞

j=1 ∈ lwp (E); lim
k→∞

‖(xj)
∞

j=k‖w,p = 0}.

Let us recall some fruitful nonlinear concepts related to absolute summa-
bility:

• An n-homogeneous polynomial P : E → F is called absolutely (p; q)-
summing (or (p; q)-summing) if (P (xj))

∞

j=1 ∈ lp(F ) for all (xj)
∞

j=1

∈ luq (E). Analogously, an n-linear mapping T : E1 × · · · × En →
F is absolutely (p; q1, . . . , qn)-summing (or (p; q1, . . . , qn)-summing) if

(T (x
(1)
j , . . . , x

(n)
j ))∞j=1 ∈ lp(F ) for all (x

(k)
j )∞j=1 ∈ luqk

(Ek), k = 1, . . . , n.
• If A ⊂ E is an open set, an arbitrary mapping f : A → F is said to

be absolutely (p; q)-summing at a ∈ A if (f(a+xj)− f(a))∞j=1 ∈ lp(F )
whenever (xj)

∞

j=1 ∈ luq (E) and a + xj ∈ A for each j ∈ N.
• An n-linear mapping T : E1 × · · · × En → F is fully (p; q1, . . . , qn)-

summing if

(T (x
(1)
j1

, . . . , x
(n)
jn

))∞j1,...,jn=1 ∈ lp(F )

for all (x
(k)
j )∞j=1 ∈ luqk

(Ek), k = 1, . . . , n.

The concept of absolutely summing mappings for scalar-valued mappings
is due to Pietsch, and the general case was first investigated by Alencar and
Matos in [1]. The general definition of absolutely summing mappings is due
to Matos [4] (see also [3] and [6]). The special case of fully summing multi-
linear mappings was introduced by Matos in [5] and independently by Bom-
bal, Pérez-Garćıa and Villanueva [2] with another name (“multiple summing
mappings”). The class of fully summing mappings enjoys several nice prop-
erties such as Grothendieck’s theorem, coincidence results, inclusion results,
etc. (see [5], [7]–[10]).
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Next, we introduce the concept of “fully summing” for arbitrary map-
pings of several variables and we obtain examples and characterizations of
arbitrary fully summing mappings.

Definition 1. Let E1, . . . , En and F be Banach spaces over K, p, qj ≥ 1,
j = 1, . . . , n, and A ⊂ E1 × · · · × En be an open set. A map f : A → F is
fully (p; q1, . . . , qn)-summing at a ∈ A if there exist δ1, . . . , δn > 0 with

Bδ1(a1) × · · · × Bδn
(an) ⊂ A

such that for every (x
(k)
j )∞j=1 ∈ luqk

(Ek) with ‖x
(k)
j ‖ ≤ δk, j ∈ N, k = 1, . . . , n,

we have

(f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,...,jn=1 ∈ lp(F ).

In this case we write f ∈ Ffs(a)(p;q1,...,qn)(A; F ).

The concept of “fully summing at a given point” is a local property and
there is no loss of generality if we deal with the case A = E1 × · · · × En,
since the values of f at points outside A are irrelevant.

If f is n-linear, A = E1×· · ·×En and a = 0, we write Lfs(p;q1,...,qn) instead
of Ffs(a)(p;q1,...,qn), since in this case we have the well known concept of fully
(multiple) (p; q1, . . . , qn)-summing mappings. For multilinear mappings, it is
not hard to prove that if T is fully (p; q1, . . . , qn)-summing at a 6= 0, then
T = 0. Our first example shows that this is no longer valid if T is not
n-linear:

Example 1. Let E be an infinite-dimensional Banach space and choose
0 6= e1, e2 ∈ E. Consider f : E ×E → K defined by f(x, y) = 1 except when
there are scalars λ1, λ2 so that x = e1 + λ1e2 and y = e1 + λ2e2; in this case
f(x, y) = 1 + λ1λ2. If (xj)

∞

j=1, (yj)
∞

j=1 ∈ lu1 (E), let us estimate

∞∑

j,k=1

|f(e1 + xj , e1 + yk) − f(e1, e1)|.

Note that we only have contributions to the sum when xj and yk belong to
G := 〈e2〉. So, there is no loss of generality in supposing (xj)

∞

j=1, (yj)
∞

j=1 ∈
lu1 (G). Since G is finite-dimensional, we have (xj)

∞

j=1, (yj)
∞

j=1 ∈ l1(G) with
xj = λje2 and yk = ηke2, and

∞∑

j,k=1

|f(e1 + xj , e1 + yk) − f(e1, e1)| =
∞∑

j,k=1

|1 + λjηk − 1|

=
∞∑

j=1

|λj|
∞∑

k=1

|ηk| < ∞.

Hence f is fully (1; 1, 1)-summing at (e1, e1).
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The next example shows that for maps of several variables, the concept
of fully summing mappings is interesting only in the nonlinear case, since
for linear maps we have a special behavior:

Example 2. Let p, qj ≥ 1 and n > 1 a natural number. If T : E1×· · ·×
En → K is linear (nonnull) in E = E1 × · · · × En, then T fails to be fully
(p; q1, . . . , qn)-summing at the origin. In fact, there are ϕk ∈ E′

k so that

T (x1, . . . , xn) = ϕ1(x1) + · · · + ϕn(xn).

Since T is nonnull, some of the ϕk are nonnull. Suppose, for example,
ϕ1 6= 0. Choose x ∈ E1 such that ϕ1(x) 6= 0, and for every 0 6= λ ∈ K, set

(x
(1)
j )∞j=1 = (λx, 0, 0, 0, . . . ),

(x
(k)
j )∞j=1 = (0, 0, . . . ) for every k = 2, . . . , n.

Hence
∞∑

j1,...,jn=1

|T (x
(1)
j1

, . . . , x
(n)
jn

)|p =
∞∑

j2,...,jn=1

|ϕ1(λx)|p = ∞.

Example 3. If f(x1, . . . , xn) = f1(x1) · · · fn−1(xn−1)fn(xn) with fj :
Ej → Fj absolutely (p; qj)-summing at zero, and fj(0) = 0, j = 1, . . . , n,
with Fj = K, j = 1, . . . , n−1, then f is fully (p; q1, . . . , qn)-summing at zero.

3. Regular and fully regularly summing mappings. Absolutely
summing operators, polynomials and multilinear mappings and also fully
summing multilinear mappings are characterized by means of inequalities.
In this section, adapting ideas from [4], we introduce some useful terminology
that will be used in Section 4 to obtain characterizations of fully summing
mappings by means of inequalities.

Definition 2. Let E1, . . . , En and F be Banach spaces over K and
A ⊂ E1×· · ·×En be an open set. A map f : A → F is (p; q1, . . . , qn)-regular

at a = (a1, . . . , an) ∈ A if there are r1, . . . , rn > 0 and M ≥ 0 such that

Br1
(a1) × · · · × Brn(an) ⊂ A

and

‖f(a + (x1, . . . , xn)) − f(a)‖p ≤ M‖x1‖
q1 . . . ‖xn‖

qn

for every xk ∈ Ek with ‖xk‖ ≤ rk, k = 1, . . . , n.

Note that regular mappings and fully summing mappings have natural
connections with cotype, as shown in the example below:

Example 4. If E1, . . . , En and F are Banach spaces, Ej has cotype qj

and f is (p; q1, . . . , qn)-regular at a, then f ∈ Ffs(a)(p;1,...,1)(A; F ). In fact, it
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suffices to observe that
∞∑

j1,...,jn=1

‖f(a+(x
(1)
j1

, . . . , x
(n)
jn

))−f(a)‖p ≤ M
( ∞∑

j=1

‖x
(1)
j ‖q1

)
· · ·

( ∞∑

j=1

‖x
(n)
j ‖qn

)

and recall that idEj
is (qj ; 1)-summing. One should not expect to obtain

similar coincidences for regular mappings f : E1×· · ·×En → F by exploring
the cotype of F . For example, f : c0 → K given by f(x) = ‖x‖ is (2; 2)-
regular at zero but is not (2; 1)-summing.

Example 5. Let fj : Aj → Fj be such that 0 ∈ Aj ⊂ Ej , Aj is open
and each fj is absolutely (p; qj)-summing at zero, fj(0) = 0, j = 1, . . . , n. If
T : F1 × · · · × Fn → F is (1; 1, . . . , 1)-regular at zero, then T (f1, . . . , fn) is
fully (p; q1, . . . , qn)-summing at zero.

Definition 3. Let E1, . . . , En and F be Banach spaces and A ⊂ E1 ×
· · · × En be an open set. A map f : A → F is fully regularly (p; q1, . . . , qn)-
summing at a = (a1, . . . , an) ∈ A if there exist δ1, . . . , δn > 0 with

Bδ1(a1) × · · · × Bδn
(an) ⊂ A

such that for every (x
(k)
j )∞j=1 ∈ lqk

(Ek) with ‖x
(k)
j ‖ ≤ δk, j ∈ N, k = 1, . . . , n,

we have

(f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,...,jn=1 ∈ lp(F ).

In this case we write f ∈ Ffrs(a)(p;q1,...,qn)(A; F ).

It is easy to prove that if f is (p; q1, . . . , qn)-regular at a, then f ∈
Ffrs(a)(p;q1,...,qn)(A; F ). The converse also holds, but we need some prelimi-
nary results to prove this.

If T is an n-linear mapping, multilinearity implies that T (a1, . . . , an) =
T (0, . . . , 0) = 0 if aj = 0 for some j, that is, the map is constant (zero) in
some directions. For nonlinear mappings which are (p; q1, . . . , qn)-summing
at a = (a1, . . . , an) we have a similar behavior:

Lemma 1. If f is fully regularly (p; q1, . . . , qn)-summing at (a1, . . . , an),
then there are ηk > 0, k = 1, . . . , n, such that

f(a1 + x1, . . . , an−1 + xn−1, an) = f(a1, a2, . . . , an),

...

f(a1, a2 + x2, . . . , an + xn) = f(a1, a2, . . . , an)

whenever ‖xk‖ ≤ ηk, k = 1, . . . , n.

Proof. Suppose, for example, that there exist x2, . . . , xn sufficiently small
so that

f(a1, a2 + x2, . . . , an + xn) 6= f(a1, a2, . . . , an).
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By defining (z
(1)
j ) = (0, 0, 0, . . . ) in E1 and (z

(r)
j ) = (xr, 0, 0, 0, . . . ) in Er,

r = 2, . . . , n, we would obtain
∞∑

j1,...,jn=1

‖f(a1 + z
(1)
j1

, . . . , an + z
(n)
jn

) − f(a1, a2, . . . , an)‖p

≥
∞∑

j1=1

‖f(a1, a2 + x2, . . . , an + xn) − f(a1, a2, . . . , an)‖p = ∞.

The next result extends [4, Theorem 2.5] to mappings of several variables.

Theorem 1. The following assertions are equivalent for f : A → F with

A open in E1 × · · · × En and a = (a1, . . . , an) ∈ A:

(a) f is fully regularly (p; q1, . . . , qn)-summing at a.
(b) There exist M, δ > 0 such that

‖(f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,...,jn=1‖
p
p

≤ M‖(x
(1)
j )∞j=1‖

q1

q1
. . . ‖(x

(n)
j )∞j=1‖

qn
qn

whenever ‖(x
(k)
j )∞j=1‖qk

≤ δ, k = 1, . . . , n.

(c) f is (p; q1, . . . , qn)-regular at a.

Proof. (a)⇒(b). Note that f is fully regularly (p; q1, . . . , qn)-summing
at (a1, . . . , an) if and only if g(x1, . . . , xn) := f(a1 + x1, . . . , an + xn) −
f(a1, . . . , an) is fully regularly (p; q1, . . . , qn)-summing at zero. So, for our
purposes, it suffices to deal with the case (a1, . . . , an) = (0, . . . , 0) and
f(0, . . . , 0) = 0.

From Lemma 1, we can find η1, . . . , ηn > 0 so that ‖xk‖ ≤ ηk implies

f(0, x2, . . . , xn) = 0,

...

f(x1, . . . , xn−1, 0) = 0.

If m ∈ N, X
(k)
m ∈ lqk

(Ek) and r
(k)
m ∈ N, k = 1, . . . , n, we define

X(k)
m = (x

(k)
m,1, . . . , x

(k)
m,j, . . . )

and

X(k)
m (r(k)

m ) = (x
(k)
m,1, . . . , x

(k)
m,1, x

(k)
m,2, . . . , x

(k)
m,2, . . . .),

where each x
(k)
m,j is repeated r

(k)
m times.

Now, suppose that the result is false. Then, for every m, there are X
(k)
m =

(x
(k)
m,j)

∞

j=1 so that

(3.1) ‖X(k)
m ‖qk

qk
< min{ηqk

k , m−(3n+1)}



Fully summing mappings 53

and

(3.2)
∑

(j1...,jn)∈Nn

‖f(x
(1)
m,j1

, . . . , x
(n)
m,jn

)‖p > mn+1‖X(1)
m ‖q1

q1
· · · ‖X(n)

m ‖qn
qn

.

Note that ‖X
(k)
m ‖qk

qk
6= 0 for every k and m, because

(3.3) ‖X(k)
m ‖qk

qk
< ηqk

k ⇒ ‖x
(k)
m,j‖

qk < ηqk

k ⇒ ‖x
(k)
m,j‖ < ηk.

In fact, if ‖X
(k)
m ‖qk

qk
= 0 for some k, (3.3) would imply f(x

(1)
m,j1

, . . . , x
(n)
m,jn

) = 0
and from (3.2) we would have 0 > 0.

Define ε = 1/n and

(3.4) r(k)
m =

[
1

m2+ε‖X
(k)
m ‖qk

qk

]
:= sup

{
r ∈ N; r ≤

1

m2+ε‖X
(k)
m ‖qk

qk

}
.

It is worth remarking that, for every m and k, the number r
(k)
m is in fact

greater than or equal to 1, because (3.1) implies that

1

m2+ε‖X
(k)
m ‖qk

qk

> m3n+1−2−ε ≥ 1.

Note that for our choice of r
(k)
m we have

∑

m∈N

‖X(k)
m (mr(k)

m )‖qk
qk

=
∑

m∈N

mr(k)
m ‖X(k)

m ‖qk
qk

≤
∑

m∈N

m
1

m2+ε‖X
(k)
m ‖qk

qk

‖X(k)
m ‖qk

qk
=

∑

m∈N

1

m1+ε
< ∞,

and, since f is fully regularly (p; q1, . . . , qn)-summing, we obtain
(3.5) ∑

(m1,...,mn,j1,...,jn)∈N2n

m1 · · ·mnr(1)
m1

· · · r(n)
mn

‖f(x
(1)
m1,j1

, . . . , x
(n)
mn,jn

)‖p < ∞.

Now, call on (3.2) and (3.5) to obtain

(3.6)
∑

m∈N

m2n+1r(1)
m · · · r(n)

m ‖X(1)
m ‖q1

q1
· · · ‖X(n)

m ‖qn
qn

=
∑

m∈N

mnmn+1r(1)
m · · · r(n)

m ‖X(1)
m ‖q1

q1
· · · ‖X(n)

m ‖qn
qn

(3.2)

≤
∑

m∈N

mnr(1)
m · · · r(n)

m

∑

(j1...,jn)∈Nn

‖f(x
(1)
m,j1

, . . . , x
(n)
m,jn

)‖p
(3.5)
< ∞.

On the other hand, for every k = 1, . . . , n and every m ∈ N,

(3.7)
1

m2+ε‖X
(k)
m ‖qk

qk

− 1 ≤ r(k)
m ≤

1

m2+ε‖X
(k)
m ‖qk

qk
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and multiplying (3.7) term by term, we have
∏n

k=1(1 − m2+ε‖X
(k)
m ‖qk

qk
)

m(2+ε)n‖X
(1)
m ‖q1

q1
· · · ‖X

(n)
m ‖qn

qn

≤
n∏

k=1

r(k)
m ≤

1

m(2+ε)n‖X
(1)
m ‖q1

q1
. . . ‖X

(n)
m ‖qn

qn

and so

(3.8)
n∏

k=1

(1 − m2+ε‖X(k)
m ‖qk

qk
) ≤ m(2+ε)n

n∏

k=1

(r(k)
m ‖X(k)

m ‖qk
qk

) ≤ 1.

From (3.1) we obtain, for every k = 1, . . . , n,

(3.9) lim
m→∞

m2+ε‖X(k)
m ‖qk

qk
≤ lim

m→∞

m2+εm−(3n+1) = lim
m→∞

m2+1/n−3n−1 = 0.

From (3.8) and (3.9), it follows that

lim
m→∞

r(1)
m · · · r(n)

m m(2+ε)n‖X(1)
m ‖q1

q1
· · · ‖X(n)

m ‖qn
qn

= 1,

that is,

(3.10) lim
m→∞

r(1)
m · · · r(n)

m m2n+1‖X(1)
m ‖q1

q1
. . . ‖X(n)

m ‖qn
qn

= 1,

and (3.10) contradicts the convergence of the series in (3.6).

(b)⇒(c). If xk ∈ Ek, k = 1, . . . , n, satisfy ‖xk‖ < δ, then consider

(x
(k)
j )∞j=1 = (xk, 0, 0, . . . ) for every k = 1, . . . , n.

Hence

‖f(a + (x1, . . . , xn)) − f(a)‖p ≤ ‖(f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,...,jn=1‖
p
p

≤ M‖(x
(1)
j )∞j=1‖

q1

q1
· · · ‖(x

(n)
j )∞j=1‖

qn
qn

= M‖x1‖
q1 · · · ‖xn‖

qn

when ‖xk‖ < δ, k = 1, . . . , n.

(c)⇒(a). If f is (p; q1, . . . , qn)-regular at a, then

(3.11) ‖f(a + (x1, . . . , xn)) − f(a)‖p ≤ M‖x1‖
q1 · · · ‖xn‖

qn

if ‖xk‖ < rk, k = 1, . . . , n. Hence, if ‖x
(k)
j ‖ < rk, j ∈ N, k = 1, . . . , n, from

(3.11) we obtain
∞∑

j1,...,jn=1

‖f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a)‖p ≤
∞∑

j1,...,jn=1

M‖x
(1)
j1

‖q1 · · · ‖x
(n)
jn

‖qn

and so f is fully regularly (p; q1, . . . , qn)-summing at a.

4. Characterization of fully summing mappings by inequalities.

If f : A → F is fully (p; q1, . . . , qn)-summing at a = (a1, . . . , an) ∈ A ⊂
E1 × · · · × En, let δ be so that Bδ(a1) × · · · × Bδ(an) ⊂ A and
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(x
(k)
j )∞j=1 ∈ luqk

(Ek) with ‖x
(k)
j ‖ < δ

⇒ (f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,...,jn=1 ∈ lp(F ).

We can consider the natural associated mapping

Ψf : Vq1,δ(E1) × · · · × Vqn,δ(En) → lp(F )

given by

Ψf ((x
(1)
j )∞j=1, . . . , (x

(n)
j )∞j=1) = (f(a + (x

(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,....,jn=1,

where

Vqk,δ(Ek) = {(x
(k)
j )∞j=1 ∈ luqk

(Ek); ‖x
(k)
j ‖ < δ for every j}, k = 1, . . . , n.

The next theorem shows nice useful connections between Ψf and f , which
will help us to characterize fully summing mappings.

Theorem 2. If A ⊂ E1 ×· · ·×En is an open set and f : A → F is fully

(p; q1, . . . , qn)-summing at a = (a1, . . . , an) ∈ A, then Ψf is fully regularly

(p; q1, . . . , qn)-summing at zero.

Proof. Let δ be such that Bδ(a1) × · · · × Bδ(an) ⊂ A and

(x
(l)
j )∞j=1 ∈ luql

(El) with ‖x
(l)
j ‖ < δ

⇒ (f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,...,jn=1 ∈ lp(F ).

If (X
(l)
j )∞j=1 ∈ lql

(luql
(El)) with X

(l)
j = (x

(l)
j,k)

∞

k=1 and ‖X
(l)
j ‖ < δ, l = 1, . . . , n,

then
(x

(l)
j,k)

∞

j,k=1 ∈ luql
(El) and ‖x

(l)
j,k‖ < δ.

Hence
∞∑

j1,...,jn=1

‖Ψf (X
(1)
j1

, . . . , X
(n)
jn

)‖p

=

∞∑

j1,...,jn=1

( ∞∑

k1,...,kn=1

‖f(a + (x
(1)
j1,k1

, . . . , x
(n)
jn,kn

)) − f(a)‖p
)

< ∞.

Now we state the main result of the paper:

Theorem 3. For an open set A ⊂ E1 × · · · × En, f : A → F and

a = (a1, . . . , an) ∈ A, the following statements are equivalent :

(a) f is fully (p; q1, . . . , qn)-summing at a.
(b) There exist M, δ > 0 such that Bδ(a1) × · · · × Bδ(an) ⊂ A and

‖(f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,...,jn=1‖
p
p

≤ M‖(x
(1)
j )∞j=1‖

q1

w,q1
· · · ‖(x

(n)
j )∞j=1‖

qn
w,qn

whenever (x
(k)
j )∞j=1 ∈ luqk

(Ek) and ‖(x
(k)
j )∞j=1‖w,qk

≤ δ, k = 1, . . . , n.
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Proof. (a)⇒(b). From Theorem 2, we know that Ψf is fully regularly
(p; q1, . . . , qn)-summing at zero and, from Theorem 1, Ψf is (p; q1, . . . , qn)-
regular at zero. Hence there exist M, δk > 0, k = 1, . . . , n, such that

(4.1) ‖Ψf (X(1), . . . , X(n))‖p
p ≤ M‖X(1)‖q1

w,q1
· · · ‖X(n)‖qn

w,qn

whenever X(k) = (x
(k)
j )∞j=1 ∈ luqk

(Ek) and ‖X(k)‖w,qk
≤ δk, k = 1, . . . , n.

Therefore

‖(f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,...,jn=1‖
p
p

≤ M‖(x
(1)
j )∞j=1‖

q1

w,q1
· · · ‖(x

(n)
j )∞j=1‖

qn
w,qn

when (x
(k)
j )∞j=1 ∈ luqk

(Ek) and ‖(x
(k)
j )∞j=1‖w,qk

≤ δk, k = 1, . . . , n.

(b)⇒(a). Let (x
(k)
j )∞j=1 ∈ luqk

(Ek) and ‖x
(k)
j ‖ < δ for every j and k.

We want to prove that the sequence (f(a + (x
(1)
j1

, . . . , x
(n)
jn

))− f(a))∞j1,...,jn=1

belongs to lp(F ). The idea of the proof is to divide this sequence into a finite
number of sequences and show that each one belongs to lp(F ).

Since (x
(k)
j )∞j=1 ∈ luqk

(Ek), there is a j0 such that

‖(x
(k)
j )∞j=j0‖w,qk

≤ δ, k = 1, . . . , n.

From (b) we have

(f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))∞j1,...,jn=j0 ∈ lp(F ).

It is also clear that

(f(a + (x
(1)
j1

, . . . , x
(n)
jn

)) − f(a))j0
j1,...,jn=1 ∈ lp(F )

and so it suffices to note that considering the other cases as situations of
the type “some jk fixed between 1 and j0 and other jk varying from j0

to infinity” we have a finite number of situations and the corresponding
sequences also belong to lp(F ). For example, in order to prove that

(4.2) (f(a + (x
(1)
1 , x

(2)
j2

, . . . , x
(n)
jn

)) − f(a))∞j2,...,jn=j0 ∈ lp(F )

it suffices to consider (yj)
∞

j=1 = (x
(1)
1 , 0, 0, . . . ) and hence ‖(yj)

∞

j=1‖w,q1
≤ δ

and (b) asserts that

‖(f(a + (yj1 , x
(2)
j2

, . . . , x
(n)
jn

)) − f(a))∞j1=1,j2,...,jn=j0‖
p
p

≤ M‖x
(1)
1 ‖q1‖(x

(2)
j )∞j=1‖

q2

w,q2
· · · ‖(x

(n)
j )∞j=1‖

qn
w,qn

.

Since

‖(f(a + (x
(1)
1 , x

(2)
j2

, . . . , x
(n)
jn

)) − f(a))∞j2,...,jn=j0‖
p
p

≤ ‖(f(a + (yj1 , x
(2)
j2

, . . . , x
(n)
jn

)) − f(a))∞j1=1,j2,...,jn=j0‖
p
p,

we obtain (4.2). The other cases are similar.
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5. Hilbert–Schmidt mappings. In the following, unless otherwise
stated, E and F will denote Hilbert spaces and A ⊂ E will be an open
set.

In order to motivate our definition of a general Hilbert–Schmidt mapping
from E to F at a point a, we recall the concept of Hilbert–Schmidt operator
and make some remarks.

A linear operator from E into F is Hilbert–Schmidt if, for each orthonor-
mal basis (ui)i∈I of E, it follows that (T (ui))i∈I ∈ l2(I; F ). Note that

∑

j∈J

‖T (λjuj)‖ =
∑

j∈J

|λj| ‖T (uj)‖ ≤
(∑

j∈J

|λj|
2
)1/2(∑

i∈J

‖T (ui)‖
2
)1/2

for all finite subsets J of I and λj ∈ K, j ∈ J . In particular, T is Hilbert–
Schmidt if and only if there exist δ, M > 0 such that

∑

j∈J

‖T (λjuj)‖ ≤ M
(∑

j∈J

|λj |
2
)1/2

for all finite subsets J of I and ‖(λj)j∈J‖2 ≤ δ.

The above remarks give the motivation for the following concept.

Definition 4. A mapping f defined in A ⊂ E with values in F is
Hilbert–Schmidt at a ∈ A if, for each orthonormal basis (ui)i∈I of E, there
are M ≥ 0 and δ > 0 such that Bδ(a) ⊂ A and

∑

j∈J

‖f(a + λjuj) − f(a)‖ ≤ M‖(λj)j∈J‖2

for all finite subsets J of I and λj ∈ K, j ∈ J, with ‖(λj)j∈J‖2 ≤ δ.

Remark 1. Note that, a priori, it is not natural to expect a constant
M which works for every orthonormal basis. In fact, if such an M exists,
considering J = {1}, we would have, for 0 6= x ∈ E with ‖x‖ < δ (and
considering x/‖x‖ as an element of an orthonormal basis),

‖f(a + x) − f(a)‖ =

∥∥∥∥f

(
a + ‖x‖

x

‖x‖

)
− f(a)

∥∥∥∥ ≤ M(‖x‖2)1/2 = M‖x‖,

and f would necessarily be 1-regular at a.

Example 6. If k ∈ N, k ≥ 2, then each continuous k-homogeneous
polynomial P from E into F is Hilbert–Schmidt at 0. In fact, if (ui)i∈I is
an orthonormal basis of E, then

∑

j∈J

‖P (λjuj)‖ ≤ ‖P‖
∑

j∈J

|λj |
k ≤ ‖P‖ ‖(λj)j∈J‖

k
2 ≤ ‖P‖ ‖(λj)j∈J‖2

for all finite subsets J of I and λj ∈ K, j ∈ J , with ‖(λj)j∈J‖2 ≤ 1.
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5.1. Hilbert–Schmidt mappings vs absolutely 1-summing mappings

Proposition 1. If f defined in A ⊂ E with values in F is absolutely

1-summing at a ∈ A, then f is Hilbert–Schmidt at a.

Proof. By hypothesis there are D ≥ 0 and d > 0 such that Bd(a) ⊂ A
and ∑

j∈J

‖f(a + xj) − f(a)‖ ≤ D‖(xj)j∈J‖w,1

for all finite sequences (xj)j∈J with ‖(xj)j∈J‖w,1 ≤ d. Since for each or-
thonormal basis (ui)i∈I of E we have

‖(λjuj)j∈J‖w,1 = ‖(λj)j∈J‖2,

it follows that f is Hilbert–Schmidt at a.

Theorem 4. If f is a C2 mapping defined on A ⊂ E with values in F ,
then f is Hilbert–Schmidt at a ∈ A if , and only if , f is absolutely 1-summing

at a.

Proof. In view of Proposition 1, it suffices to show that if f is Hilbert–
Schmidt at a, then f is absolutely 1-summing at a.

So, suppose that f is Hilbert–Schmidt at a. From Taylor’s formula, we
have

‖f(a + λjuj) − f(a) − df(a)(λjuj) − d̂2f(a)(λjuj)‖ ≤ ‖λjuj‖
2

if ‖λjuj‖ < ε. So, if ‖λjuj‖ < ε, we obtain

‖df(a)(λjuj)‖ ≤ ‖f(a + λjuj) − f(a)‖ + ‖d̂2f(a)(λjuj)‖ + ‖λjuj‖
2.

Since f is Hilbert–Schmidt at a and d̂2f(a) is a 2-homogeneous polynomial
(and hence Hilbert–Schmidt at zero), we can find positive constants M, N, δ
such that

∑

j∈J

‖df(a)(λjuj)‖

≤
∑

j∈J

‖f(a + λjuj) − f(a)‖ +
∑

j∈J

‖d̂2f(a)(λjuj)‖ +
∑

j∈J

‖λjuj‖
2

≤ M‖(λj)j∈J‖2 + N‖(λj)j∈J‖2 + ‖(λj)j∈J‖2

= (M + N + 1)‖(λj)j∈J‖2

if ‖(λj)j∈J‖2 < δ.

Hence df(a) is Hilbert–Schmidt and thus absolutely 1-summing (since
it is a linear mapping). Now, by invoking Taylor’s formula again, we can
conclude that f is absolutely 1-summing. In fact, Taylor’s formula says that
there exists ε > 0 such that
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‖f(a + x) − f(a)‖ ≤ ‖df(a)(x)‖ + ‖d̂2f(a)(x)‖ + ‖x‖2

for every x ∈ E with ‖x‖ < ε.
If (xj)

∞

j=1 ∈ lu1 (E), choose j0 so that j ≥ j0 ⇒ ‖xj‖ < ε. Hence

∞∑

j=j0

‖f(a + xj) − f(a)‖ ≤

∞∑

j=j0

‖df(a)(xj)‖ +

∞∑

j=j0

‖d̂2f(a)(xj)‖ +

∞∑

j=j0

‖xj‖
2.

But we know that df(a) and d̂2f(a) are absolutely 1-summing (see [4, Corol-
lary 4.4(2)]) and idE is (2; 1)-summing (since E is Hilbert) and hence we
conclude that

∞∑

j=j0

‖f(a + xj) − f(a)‖ < ∞.

As an immediate consequence, we obtain:

Corollary 1. If f is a holomorphic mapping defined on A with values

in F , then f is Hilbert–Schmidt at a ∈ A if , and only if , f is absolutely

1-summing at a.

The same use of Taylor’s formula gives us some variations of results of [4]:

Theorem 5. Let F be a Banach space, E be a Banach space with the

Orlicz property and A an open set in E. If f : A ⊂ E → F is of class C2 at

a ∈ A and df(a) is absolutely 1-summing , then f is absolutely 1-summing

at a.

Corollary 2. If A is open in l1 and a ∈ A, then every mapping f :
A → l2 of class C2 at a is absolutely 1-summing at a.

5.2. Hilbert–Schmidt vs absolutely p-summing mappings. We know that
every continuous 2-homogeneous polynomial P from l2 into K is Hilbert–
Schmidt at 0, but we will show that if 1 < p < ∞, there is a continuous
2-homogeneous polynomial P from l2 into K that fails to be absolutely
p-summing at zero.

We will consider the cases p ≥ 2 and 1 < p < 2. In both cases the
polynomial is given by

P ((ξj)j∈N) =
∑

j∈N

ξ2
j .

Case p ≥ 2. We know that the natural orthonormal basis (ej)j∈N is in
lw2 (l2), hence in lwp (l2) for p ≥ 2. Since P (ej) = 1 for all j ∈ N, we cannot
have (P (ej))j∈N ∈ lp.

Case 1 < p < 2. Set s = 2/(2 − p). Then 1 = 1/s + p/2 and ps > 2p.
Now choose (λj)j∈N in lps but not in l2p. By the Hölder inequality involving
s and 2/p, we show that (λjej)j∈N ∈ lwp (l2). Since P (λjej) = λ2

j for each
j ∈ N, it follows that (P (λjej))j∈N /∈ lp.
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Theorem 6. Let 0 < p < ∞. If f defined on A with values in F is

holomorphic and absolutely p-summing , then f is Hilbert–Schmidt at a.

Proof. In this case we know that (k!)−1d̂kf(a) is absolutely p-summing
at 0 for each k ∈ N, and there are D ≥ 0 and d > 0 satisfying

∥∥∥∥
1

k!
d̂kf(a)

∥∥∥∥
as,p

≤ Ddk for every k ∈ N.

If (ui)i∈I is an orthonormal basis in E and J is a finite subset of I, we can
write

∑

j∈J

‖f(a + λjuj) − f(a)‖ ≤
∑

j∈J

∞∑

k=1

∥∥∥∥
1

k!
d̂kf(a)(λjuj)

∥∥∥∥ = (∗).

By Example 6 and the fact that a linear absolutely p-summing operator is
Hilbert–Schmidt, we can write

(∗) ≤ ‖df(a)‖HS‖(λj)j∈J‖2 +

∞∑

k=2

∥∥∥∥
1

k!
d̂kf(a)

∥∥∥∥‖(λj)j∈J‖
k
2 = (∗∗)

for all ‖(λj)j∈J‖2 ≤ 1. Since
∥∥∥∥

1

k!
d̂kf(a)

∥∥∥∥ ≤

∥∥∥∥
1

k!
d̂kf(a)

∥∥∥∥
as,p

≤ Ddk

for every natural k, we can write

(∗∗) ≤ ‖df(a)‖HS‖(λj)j∈J‖2 + Dd‖(λj)j∈J‖2

∞∑

k=2

dk−1

(2d)k−1

= (‖df(a)‖HS + Dd)‖(λj)j∈J‖2

if ‖(λj)j∈J‖2 ≤ min{1, 1/2d}. This proves our result.

Remark 2. Our previous results show that the converse of Theorem 6
is not true for p > 1.

5.3. Hilbert–Schmidt mappings of several variables. Following the idea
of introducing the concept of absolute summability for arbitrary mappings
of several variables, in this section we define Hilbert–Schmidt mappings of
several variables and relate this concept to fully summing mappings.

Definition 5. Let E1, . . . , En and F be Hilbert spaces over K, and
A ⊂ E1 × · · · × En be an open set. A map f : A → F is Hilbert–Schmidt at

a = (a1, . . . , an) ∈ A if, for each orthonormal basis (u
(k)
i )i∈Ik

in Ek, there
exist M ≥ 0 and δ > 0 so that

Bδ(a1) × · · · × Bδ(an) ⊂ A

and
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∑

jk∈Jk,k=1,...,n

‖f(a1 + λ
(1)
j1

u
(1)
j1

, . . . , an + λ
(n)
jn

u
(n)
jn

) − f(a1, . . . , an)‖

≤ M‖(λ
(1)
j )j∈J1

‖2 · · · ‖(λ
(n)
j )j∈Jn

‖2

for all finite subsets Jk ⊂ Ik, λ
(k)
j ∈ K with ‖(λ

(k)
j )j∈Jk

‖2 < δ.

Proposition 2. If f : A ⊂ E1 × · · · × En → F is fully (1; 1, . . . , 1)-
summing at a ∈ A, then f is Hilbert–Schmidt at a.

Proof. Analogous to the proof of Proposition 1.

Example 7. If ϕj : Ej → K, j = 1, . . . , n−1, are continuous linear func-
tionals and g : En → F is absolutely 1-summing at 0, with g(0) = 0, then
f : E1 × · · · ×En → F given by f(x1, . . . , xn) = ϕ1(x1) · · ·ϕn−1(xn−1)g(xn)
is Hilbert–Schmidt at 0.

We thank the copy editor, Jerzy Trzeciak, for the improvements in the
presentation of the paper, and the referee for several helpful comments.
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