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The Daugavet equation for polynomials

by

Yun Sung Choi (Pohang), Domingo Garćıa (Valencia),
Manuel Maestre (Valencia) and Miguel Mart́ın (Granada)

Abstract. We study when the Daugavet equation is satisfied for weakly compact
polynomials on a Banach space X, i.e. when the equality

‖Id + P‖ = 1 + ‖P‖

is satisfied for all weakly compact polynomials P : X → X. We show that this is the case
when X = C(K), the real or complex space of continuous functions on a compact space
K without isolated points. We also study the alternative Daugavet equation

max
|ω|=1

‖Id + ωP‖ = 1 + ‖P‖

for polynomials P : X → X. We show that this equation holds for every polynomial on
the complex space X = C(K) (K arbitrary) with values in X. This result is not true in
the real case. Finally, we study the Daugavet and the alternative Daugavet equations for
k-homogeneous polynomials.

In 1963, I. K. Daugavet [13] showed that every compact linear operator
T on C[0, 1] satisfies

‖Id + T‖ = 1 + ‖T‖,

a norm equality which has become known as the Daugavet equation. Over the
years, the validity of the above equality has been established for many classes
of operators on many Banach spaces. For instance, weakly compact linear
operators on C(K), K perfect, and L1(µ), µ atomless, satisfy the Daugavet
equation (see [25] for an elementary approach). We refer the reader to the
books [1, 2] and papers [20, 26] for more information and background. It
is also a remarkable result given in 1970 by J. Duncan et al. [16] that, for
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Andalućıa grant FQM-185.

[63]



64 Y. S. Choi et al.

every compact Hausdorff space K and every bounded linear operator T on
C(K), the equality

max
ω∈T

‖Id + ωT‖ = 1 + ‖T‖

holds, where we use T to denote the unit sphere of the base field. The above
norm equality is now known as the alternative Daugavet equation [22], and
it is satisfied by all bounded linear operators on C(K) and L1(µ), K and
µ arbitrary. We refer the reader to [16, 21, 22] and references therein for
background. The aim of this paper is to study the Daugavet equation and
the alternative Daugavet equation for polynomials in Banach spaces.

There is a concept, the numerical range of an operator (see below for
the definition), intimately related to the Daugavet and alternative Daugavet
equations. The definition of numerical range for bounded linear operators on
Banach spaces was given in 1962 by F. Bauer [5] (see [8, 9] for background)
extending the 1918 classical definition of numerical range (or field of values)
of a matrix given by O. Toeplitz [24]. In 1968, the concept of numerical
range was extended to arbitrary continuous functions from the unit sphere
of a real or complex Banach space into the space by F. Bonsall, B. Cain,
and H. Schneider [7]. In the seventies, L. Harris [17, 18] showed that a good
setting to deal with numerical ranges is the space of bounded uniformly
continuous functions on the unit sphere of a Banach space with values in
the space (see also Rodŕıguez-Palacios [23]). Once we give up the linearity,
we realize that also the study of the Daugavet and alternative Daugavet
equations is clarified if it is done for bounded uniformly continuous functions
on the unit ball of a Banach space with values in the space.

Let us introduce the necessary definitions and notations.

Throughout the article, all the Banach spaces considered will be real
or complex unless the scalar field is specified, and all polynomials will be
continuous. Let X be a Banach space. By BX we denote the closed unit
ball and by SX the unit sphere of X. Given k ≥ 0, we denote by P(kX; X)
the space of all k-homogeneous polynomials from X to X, and by P(kX)
the space of all k-homogeneous scalar polynomials. If k = 0, we identify
P(0X; X) with the space of constant functions, i.e. P(0X; X)≡X; for k = 1,
P(1X; X) is equal to L(X), the algebra of all bounded linear operators on
X. We say that P : X → X is a polynomial on X, and write P ∈ P(X; X),
if P is a finite sum of homogeneous polynomials from X to X. We use P(X)
to denote the space of all finite sums of homogeneous scalar polynomials.
Let us recall that P(X; X) is a normed space if we endow it with the norm

‖P‖ := sup{‖P (x)‖ : x ∈ BX}.

Therefore, P(X; X) embeds isometrically into ℓ∞(BX , X), the Banach space
of all bounded functions from BX to X endowed with the supremum norm.
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We will write ℓ∞(BX) when only scalar-valued functions are considered.
Analogous definitions will be used for BX replaced by SX .

Generalizing the linear case, we say that Φ ∈ ℓ∞(BX , X) satisfies the
Daugavet equation if the norm equality

(DE) ‖Id + Φ‖ = 1 + ‖Φ‖

holds, and we say that Φ satisfies the alternative Daugavet equation if there
exists ω ∈ T such that ωΦ satisfies (DE) or, equivalently, if

(ADE) max
|ω|=1

‖Id + ωΦ‖ = 1 + ‖Φ‖.

It is clear that (DE) implies (ADE) but, in general, they are not the same
(−Id always satisfies (ADE) but never (DE)). Let us mention that a func-
tion Φ satisfies (DE) (resp. (ADE)) if and only if so does αΦ for every α ∈ R

+
0

(see [3, Lemma 2.2], for instance), a fact that we will use in the following
without explicit mention. We say that a Banach space X has the k-order

Daugavet property (k-DP for short) if all rank-one k-homogeneous polyno-
mials satisfy (DE). When k = 1, we simply say that X has the Daugavet
property. Analogously, X has the k-order alternative Daugavet property (k-

ADP for short) if all rank-one k-homogeneous polynomials satisfy (ADE),
and we use the name alternative Daugavet property in the linear case.

If X is a Banach space, we denote by Cu(BX , X) the Banach space
of all uniformly continuous X-valued functions on BX endowed with the
supremum norm. Note that since BX is convex and bounded, every function
in Cu(BX , X) is also bounded. If X is a complex Banach space, we denote by
A∞(BX) (resp. A∞(BX , X)) the Banach space of all complex-valued (resp.
X-valued) functions on BX which are holomorphic in the open unit ball,
and bounded and continuous in BX . A∞(BX , X) embeds isometrically into
ℓ∞(SX , X). Au(BX) (resp. Au(BX , X)) will stand for the closed subspace
of A∞(BX) (resp. A∞(BX , X)) formed by the functions which admit (a
unique) uniformly continuous extension to the closed unit ball of X.

For a Banach space X, we set

Π(X) := {(x, x∗) ∈ X × X∗ : x ∈ SX , x∗ ∈ SX∗ , x∗(x) = 1}.

Given a bounded function Φ : SX → X, its numerical range is

V (Φ) := {x∗(Φ(x)) : (x, x∗) ∈ Π(X)}

and the associated numerical radius is

v(Φ) := sup{|λ| : λ ∈ V (Φ)}.

For a bounded function Φ : Ω → X, where SX ⊂ Ω ⊂ X, the above
definitions apply by just considering V (Φ) := V (Φ|SX

).
The outline of the paper is as follows. In the first section we give pre-

liminary results about (DE) and (ADE) for arbitrary bounded functions on
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the unit ball of a Banach space with values in the space, analogous to those
given in [20, Lemma 2.2 and Theorem 2.3] and [22, Proposition 2.1 and
Theorem 2.2] for bounded linear operators. We also relate both equations
to numerical ranges in the case of bounded and uniformly continuous func-
tions. We devote Section 2 to (non-homogeneous) polynomials. We prove
that every weakly compact polynomial on Cb(Ω, X) satisfies (DE), where Ω
is a completely regular Hausdorff topological space without isolated points
and X is an arbitrary Banach space. We also prove that every polynomial
on the complex spaces c0 and C(K) (K arbitrary) satisfies (ADE). Finally,
in Section 3 we study the k-DP and k-ADP. We show that both properties
are equivalent in the complex case for k ≥ 2; the same is true in the real
case for k even, but not for k odd. Examples of spaces with the k-DP for
every k ≥ 2 are the spaces Cb(Ω, X) when Ω has no isolated points, and the
complex spaces c0 and C(K) (K arbitrary). The real spaces c0 and C(K)
when K has isolated points and more than one point do not have the k-ADP
for every k ≥ 2. The real or complex space ℓ1 does not have the k-ADP for
every k ≥ 2.

1. Preliminary generalities. Our first preliminary result is a gener-
alization of [20, Lemma 2.2 and Theorem 2.3], where only bounded linear
operators were considered. Actually, our proof is inspired by the proof of
those results. The following notation will be useful. If X is a Banach space
and Z is a subspace of ℓ∞(BX), we write ZX for the space of all func-
tions Φ : BX → X such that x∗ ◦ Φ ∈ Z for every x∗ ∈ X∗. The simplest
elements of ZX are the tensors ϕ ⊗ x0 for ϕ ∈ Z and x0 ∈ X given by
[ϕ ⊗ x0](x) = ϕ(x)x0 for every x ∈ BX . Let us mention that in this paper
we will use the result below for Z = P(X) and Z = P(kX).

Theorem 1.1. Let X be a Banach space and let Z be a subspace of

ℓ∞(BX). Then the following are equivalent :

(i) For every ϕ ∈ Z and every x0 ∈ X, ϕ ⊗ x0 satisfies (DE).
(ii) For every ϕ ∈ SZ , every x0 ∈ SX , and every ε > 0, there exist

ω ∈ T and y ∈ BX such that

Re ωϕ(y) > 1 − ε and ‖x0 + ωy‖ > 2 − ε.

(iii) Every Φ ∈ ZX whose image is relatively weakly compact satisfies

(DE).

Proof. (i)⇒(ii). Let Φ = ϕ⊗x0; as it satisfies ‖Id+Φ‖ = 2 by (i), there
exists y ∈ BX such that

‖y + ϕ(y)x0‖ > 2 − ε/2.
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It follows that |ϕ(y)| > 1 − ε/2 and, writing ω = |ϕ(y)|/ϕ(y) ∈ T, we have

Re ωϕ(y) = |ϕ(y)| > 1 − ε/2 > 1 − ε,

and

‖x0 + ωy‖ = ‖y + ωx0‖ =

∥

∥

∥

∥

y +
ϕ(y)

|ϕ(y)|
x0

∥

∥

∥

∥

≥ ‖y + ϕ(y)x0‖ − | |ϕ(y)| − 1| > 2 − ε.

(ii)⇒(iii). Suppose ‖Φ‖ = 1. Since the set K = co(TΦ(BX)) is weakly
compact, it coincides with the closed convex hull of its denting points (see
[14] for instance). Therefore, given ε > 0, we may take a denting point
y0 ∈ K with ‖y0‖ > 1 − ε. Then, for some 0 < δ < ε, there is a slice

S = {y ∈ K : Re y∗0(y) ≥ 1 − δ}

of K containing y0 and having diameter less than ε; here y∗0 ∈ X∗ and

sup
y∈K

Re y∗0(y) = sup
y∈K

|y∗0(y)| = 1

(observe that K is balanced). In particular,

(1) y ∈ K, Re y∗0(y) > 1 − δ ⇒ ‖y − y0‖ < ε.

If we set ϕ := y∗0 ◦ Φ, then ϕ ∈ Z and

‖ϕ‖ = sup
x∈BX

|y∗0(Φ(x))| = sup
y∈K

|y∗0(y)| = 1.

Now, we use (ii) with x0 = y0/‖y0‖ and ϕ to get y ∈ BX and ω ∈ T such
that

Re ωϕ(y) > 1 − δ and

∥

∥

∥

∥

y0

‖y0‖
+ ωy

∥

∥

∥

∥

> 2 − δ > 2 − ε.

We observe that

Re y∗0(ωΦ(y)) = Reωϕ(y) > 1 − δ,

so (1) and the fact that ωΦ(y) ∈ K give

‖ωΦ(y) − y0‖ < ε.

On the other hand,

‖y0+ωy‖ ≥

∥

∥

∥

∥

ωy+
y0

‖y0‖

∥

∥

∥

∥

−

∥

∥

∥

∥

y0−
y0

‖y0‖

∥

∥

∥

∥

=

∥

∥

∥

∥

ωy+
y0

‖y0‖

∥

∥

∥

∥

−| ‖y0‖−1| > 2−2ε.

Finally,

‖Id+Φ‖ ≥ ‖y+Φ(y)‖ = ‖ω(y+Φ(y))‖ ≥ ‖ωy+y0‖−‖ωΦ(y)−y0‖ > 2−3ε.

Letting ε ↓ 0, we conclude that Φ satisfies (DE).
(iii)⇒(i) is clear.

For the alternative Daugavet equation we can state an analogous result,
as in [22, Proposition 2.1 and Theorem 2.2] for the linear case. Part of it is
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a direct consequence of the above theorem, and the proof of the other part
can be easily adapted.

Corollary 1.2. Let X be a Banach space and let Z be a subspace of

ℓ∞(BX). Then the following are equivalent :

(i) For every ϕ ∈ Z and every x0 ∈ X, ϕ ⊗ x0 satisfies (ADE).
(ii) For every ϕ ∈ SZ , every x0 ∈ SX , and every ε > 0, there exist

ω1, ω2 ∈ T and y ∈ BX such that

Reω1ϕ(y) > 1 − ε and ‖x0 + ω2y‖ > 2 − ε.

(iii) For every ϕ ∈ SZ , every x0 ∈ SX , and every ε > 0, there exist

ω ∈ T and y ∈ BX such that

|ϕ(y)| > 1 − ε and ‖x0 + ωy‖ > 2 − ε.

(iv) Every Φ ∈ ZX whose image is relatively weakly compact satisfies

(ADE).

Proof. The equivalence between (i) and (ii) follows from Theorem 1.1
and the fact that ϕ ⊗ x0 satisfies (ADE) if and only if there exists ω ∈ T

such that ωϕ ⊗ x0 satisfies (DE). (ii) and (iii) are trivially equivalent, and
(iv)⇒(i) is clear. The proof of (ii)⇒(iv) is a straightforward adaptation of
the argument in the proof of Theorem 1.1.

For uniformly continuous functions we can state other characterizations
of the equations (DE) and (ADE). The proof can be deduced from the
general theory of numerical ranges [18], by just proving that the norm of a
uniformly continuous function satisfying (DE) can be calculated using only
elements of the unit sphere of the space. At the same price, we will give a
direct proof.

Proposition 1.3. Let X be a Banach space and let Φ be an element of

Cu(BX , X). Then:

(a) Φ satisfies (DE) if and only if ‖Φ‖ = supReV (Φ).
(b) Φ satisfies (ADE) if and only if ‖Φ‖ = v(Φ).

Proof. (a) Suppose that Φ satisfies (DE). Since Φ is uniformly continu-
ous, for every ε > 0 there exists 0 < δ < ε such that

y, z ∈ BX , ‖y − z‖ < δ ⇒ ‖Φ(y) − Φ(z)‖ < ε.

For every fixed 0 < ε < 1, we may find y ∈ BX such that ‖y + Φ(y)‖ >
1 + ‖Φ‖ − δ2/4, and then we may also find y∗ ∈ SX∗ such that

Re y∗(y) + Re y∗(Φ(y)) > 1 + ‖Φ‖ − δ2/4.
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It clearly follows that

Re y∗(y) > 1 − δ2/4,(2)

Re y∗(Φ(y)) > ‖Φ‖ − δ2/4 > ‖Φ‖ − ε.(3)

By the Bishop–Phelps–Bollobás theorem [9, §16], we deduce from (2) the
existence of a pair (z, z∗) ∈ Π(X) such that

‖y − z‖ < δ and ‖y∗ − z∗‖ < δ < ε.

Now, we have ‖Φ(y) − Φ(z)‖ < ε by the uniform continuity of Φ and so

|Re z∗(Φ(z)) − Re y∗(Φ(y))|

≤ |Re z∗(Φ(z) − Φ(y))| + |Re [y∗ − z∗](Φ(z))| + |Re y∗(Φ(y) − Φ(z))|

≤ ‖Φ(z) − Φ(y)‖ + ‖y∗ − z∗‖ + ‖Φ(y) − Φ(z)‖ < 3ε.

From this and (3) we deduce that

Re z∗(Φ(z)) > ‖Φ‖ − 4ε.

Let us prove the converse implication. For every ε > 0, we may find a pair
(z, z∗) ∈ Π(X) such that

Re z∗(Φ(z)) > ‖Φ‖ − ε.

Therefore,

‖Id + Φ‖ ≥ Re z∗(z + Φ(z)) = 1 + Re z∗(Φ(z)) > 1 + ‖Φ‖ − ε,

and the result follows by letting ε ↓ 0.

(b) If Φ satisfies (ADE), then there exists ω ∈ T such that ωΦ satisfies
(DE) and, by (a), we have

‖Φ‖ = ‖ω Φ‖ = supReV (ωΦ) ≤ v(Φ) ≤ ‖Φ‖.

Conversely, given (x, x∗) ∈ Π(X), we have

max
ω∈T

‖Id + ωΦ‖ ≥ max
ω∈T

|x∗(x) + ωx∗(Φ(x))| = 1 + |x∗(Φ(x))|.

Therefore,

max
ω∈T

‖Id + ωΦ‖ ≥ 1 + sup{|x∗(Φ(x))| : (x, x∗) ∈ Π(X)} = 1 + ‖Φ‖,

and the result follows since the other inequality is always true.

Remark 1.4. Let X be a Banach space and Φ ∈ Cu(BX , X). As a
consequence of the above proposition, if Φ satisfies (ADE), then the norm of
Φ can be calculated using only elements in SX , that is, ‖Φ‖ = sup{‖Φ(y)‖ :
y ∈ SX}.

2. The Daugavet equation for polynomials. We start the section
by studying the simplest examples: R and C.
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Examples 2.1.

(a) Since the linear operators on a Banach space are polynomials, nei-

ther R nor C has the property that every (weakly compact) polyno-

mial on them satisfies (DE).
(b) Every polynomial on C satisfies (ADE). Indeed, fix P ∈ P(C; C)

with ‖P‖ = 1. Then, by the maximum modulus theorem, there
exists y ∈ SC ≡ T such that |P (y)| = ‖P‖ = 1, and we may find
ω1 ∈ T such that

Re ω1P (y) = |P (y)| = 1.

On the other hand, we may find ω2 ∈ T such that

Re ω2y = |y| = 1.

Then, writing ω = ω2ω1 ∈ T, we have

‖Id + ωP‖ ≥ |y + ωP (y)| = |ω2y + ω1P (y)| = 2.

(c) The above result is not valid in the real case, i.e. there exists a

(weakly compact) polynomial P ∈ P(R; R) such that ‖Id ± P‖ <
1 + ‖P‖. Indeed, if we define

P (t) = 1 − t2 (t ∈ R),

we have ‖P‖ = 1 and

‖Id ± P‖ = max
t∈[−1,1]

|t ± (1 − t2)| = 5/4 < 2.

Our next aim is to present a wide family of Banach spaces in which all
weakly compact polynomials satisfy (DE). We will use Theorem 1.1, which
in terms of polynomials reads as follows.

Corollary 2.2. Let X be a Banach space. Then the following are equiv-

alent :

(i) For every p ∈ P(X) and every x0 ∈ X, the polynomial p ⊗ x0 sat-

isfies (DE).
(ii) For every p ∈ P(X) with ‖p‖ = 1, every x0 ∈ SX , and every ε > 0,

there exist ω ∈ T and y ∈ BX such that

Re ωp(y) > 1 − ε and ‖x0 + ωy‖ > 2 − ε.

(iii) Every weakly compact P ∈ P(X; X) satisfies (DE).

Definition 2.3. Let Ω be a completely regular Hausdorff topological
space and let X be a Banach space. We say that a subspace F of Cb(Ω, X),
the Banach space of all bounded X-valued continuous functions on Ω en-
dowed with the supremum norm, is Cb-rich if for every open subset U of Ω,
every x ∈ X and every ε > 0 there exists a continuous function ϕ : Ω → [0, 1]
of norm one with support included in U such that the distance of ϕ ⊗ x to
F is less than ε.
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We can assume in the definition that there is t0 ∈ U such that ϕ(t0) = 1.
Indeed, given 0 < ε < 1, consider ϕ as above. Since ϕ has norm one and
support in U , we can find t0 ∈ U and an open neighborhood V of t0 such
that ϕ(t) > 1 − ε for all t ∈ V . As Ω is completely regular, there exists
η : Ω → [0, 1] such that η(t0) = 1 and η vanishes in Ω \ V . If we set
φ(t) = max{ϕ(t), η(t)} for t ∈ Ω then φ : Ω → [0, 1] is continuous, it has
support included in U , φ(t0) = 1 and ‖ϕ−φ‖ ≤ ε, thus dist(φ⊗x,F) < 2ε.

This definition is a straightforward extension of the definition of C-rich
subspace of C(K) given in [10, Definition 2.3].

Now, we can state the main result of the section.

Theorem 2.4. Let Ω be a completely regular Hausdorff topological space

without isolated points, let X be a Banach space and let F be a Cb-rich

subspace of Cb(Ω, X). Then every weakly compact polynomial from F into

itself satisfies the Daugavet equation.

Proof. Let p ∈ P(F) with ‖p‖ = 1 and fix f0 ∈ SF . Since p is uniformly
continuous when restricted to any bounded subset of F , given ε > 0, there
exists 0 < δ < min{ε/10, 1/6} such that

(4) |p(f) − p(g)| < ε/2

for all f, g ∈ F satisfying ‖f − g‖ < 2δ, ‖f‖ ≤ 2, ‖g‖ ≤ 2. We take h ∈ F
with ‖h‖ ≤ 1 such that |p(h)| > 1 − ε/4, and also ω ∈ T such that

(5) Reωp(h) = |p(h)| > 1 − ε/4.

Fix a point τ ∈ Ω with ‖f0(τ)‖ > 1 − δ/4 and find an open neighborhood
U of τ such that

‖f0(t) − f0(τ)‖ < δ/4

for all t ∈ U . Decreasing U if necessary, we may assume that

‖h(s) − h(t)‖ < δ/2

for all s, t ∈ U . Select a sequence U1, U2, . . . of non-empty pairwise disjoint
open subsets of U . We fix sj ∈ Uj for all j = 1, 2, . . . and define xj =
ω−1f0(sj) − h(sj). As F is Cb-rich, we can find continuous non-negative
functions ηj : Ω → [0, 1] of norm one and zj ∈ F such that

(6) supp ηj ⊂ Uj and ‖ηj ⊗ xj − zj‖ <
δ

2j+2
‖ηj ⊗ xj‖

for all j ∈ N. By disjointness of their supports the functions ηj⊗xj/‖ηj⊗xj‖
form a sequence 1-equivalent to the canonical basis of c0. Thanks to (6), the
sequence (zj) spans a subspace isomorphic to c0 and tends weakly to zero.
So by the Bogdanowicz theorem on weak continuity of polynomials on c0

([6], see also [15, Proposition 1.59]), |p(h + zj)− p(h)| tends to 0 as j → ∞.
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So there is a j0 such that

|p(h + zj0) − p(h)| < ε/4.

Combining with (5), we have

(7) Reωp(h + zj0) > 1 − ε/2.

We define

A = h + zj0 , B = h + ηj ⊗ xj , g = A/‖A‖.

Clearly, B ∈ Cb(Ω, X), A, g ∈ F , ‖g‖ = 1, and ‖A − B‖ < δ/2. We have

(8) 1 + 2δ > ‖A‖ > 1 − 2δ.

Indeed, for the lower bound, select t0 ∈ Uj0 for which ηj0(tj0) = 1; then

‖A‖ ≥ ‖B(tj0)‖ − ‖A − B‖

= ‖h(tj0) − h(sj0) + ω−1f0(sj0)‖ − ‖A − B‖

≥ ‖f0(sj0)‖ − ‖h(tj0) − h(sj0)‖ − δ/2 > 1 − 2δ.

On the other hand, for the upper bound,

‖A‖ ≤ ‖B‖ + ‖A − B‖ < ‖B‖ + δ/2,

and ‖B(t)‖ = ‖h(t)‖ ≤ 1 if t 6∈ Uj0 ; if t ∈ Uj0 then

‖B(t)‖ ≤ ‖h(t) − h(sj0)‖ + (1 − ηj0(t))‖h(sj0)‖ + ηj0(t)‖f0(sj0)‖ < 1 + δ.

Now, by (8),

‖g − A‖ = |1 − ‖A‖ | < 2δ.

Hence, by (4) and (7),

Re ωp(g) > 1 − ε,

and

‖f0 + ωg‖ ≥

∥

∥

∥

∥

f0 + ω
B

‖A‖

∥

∥

∥

∥

−
‖A − B‖

‖A‖

≥

∥

∥

∥

∥

f0(tj0) + ω
B(tj0)

‖A‖

∥

∥

∥

∥

−
δ

2‖A‖

≥

∥

∥

∥

∥

f0(tj0) +
ω(h(tj0) − h(sj0)) + f0(sj0)

‖A‖

∥

∥

∥

∥

−
δ

2‖A‖

≥

∥

∥

∥

∥

f0(sj0) +
f0(sj0)

‖A‖

∥

∥

∥

∥

− ‖f0(tj0) − f0(sj0)‖

−
‖h(tj0) − h(sj0)‖

‖A‖
−

δ

2‖A‖

> ‖f0(sj0)‖

(

1 +
1

‖A‖

)

−
δ

2
−

δ

‖A‖
−

δ

2‖A‖
> 2 − ε.
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The last inequality is a consequence of the fact that ‖f0(sj0)‖ > 1 − δ/2,
of (8), and of the choice of δ. By Corollary 2.2, every weakly compact poly-
nomial from F into itself satisfies the Daugavet equation.

If Ω is a completely regular Hausdorff topological space and X is a
Banach space, then Cb(Ω, X) is Cb-rich in itself. Hence we have the following
straightforward corollary.

Corollary 2.5. Let Ω be a completely regular Hausdorff topological

space without isolated points and let X be a Banach space. Then every weakly

compact polynomial from Cb(Ω, X) to itself satisfies the Daugavet equation.

The density of the space of polynomials on a complex Banach space Z
in Au(BZ , Z) gives us the following consequence of the above corollary.

Corollary 2.6. Let Ω be a completely regular Hausdorff topological

space without isolated points and let X be a complex Banach space. Then

every weakly compact Φ in Au(BCb(Ω,X), Cb(Ω, X)) satisfies the Daugavet

equation.

Proof. We denote by Pk the k-homogeneous polynomial of the Taylor
series expansion of Φ at 0. By the Cauchy integral formula, Pk(BX) is
contained in the closed and absolutely convex hull of Φ(BX). As a con-
sequence, Pk is weakly compact for all k. Hence, the Taylor polynomials
of Φ are also weakly compact. For each n, Φn(f) := Φ

(

n−1
n

f
)

belongs to

Au

(

BCb(Ω,X), Cb(Ω, X)
)

and the sequence (Φn) converges uniformly to Φ
on the closed unit ball of Cb(Ω, X). Moreover, for each Φn its Taylor se-
ries expansion converges again uniformly to Φn on the closed unit ball of
Cb(Ω, X). Thus, given ε > 0 there exists a weakly compact polynomial P
such that

‖Φ − P‖ < ε.

Hence, by Theorem 2.4, we have

‖Id + Φ‖ ≥ ‖Id + P‖ − ‖Φ − P‖ = 1 + ‖P‖ − ‖Φ − P‖

≥ 1 + ‖Φ‖ − 2‖Φ − P‖ > 1 + ‖Φ‖ − 2ε,

and the conclusion follows.

More examples of Cb-rich subspaces of Cb(Ω, X) spaces appear in [19]
(see [10, Proposition 2.5]): if K is a compact space without isolated points,
any finite-codimensional subspace of C(K) is C-rich in C(K), and Theo-
rem 2.4 applies. Therefore, we get the following.

Corollary 2.7. Let K be a compact Hausdorff topological space without

isolated points, and let Y be a finite-codimensional subspace of C(K). Then

every weakly compact polynomial in P(Y ; Y ) satisfies (DE).
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If K is a compact Hausdorff topological space with isolated points, the
above result is not valid, since there exist weakly compact polynomials from
C(K) into itself which do not satisfy (DE) (actually, the examples can be
operators). One may wonder if at least every weakly compact polynomial
from C(K) into itself satisfies (ADE). In the real case, this is not the case,
since we have seen at the beginning of this section (Example 2.1(c)) that
even in the simplest case in which K has only one element (i.e. C(K) = R),
there are (weakly compact) polynomials which do not satisfy (ADE). In the
complex case, the situation is completely different, as we see in the next
result.

Theorem 2.8. Let K be a compact Hausdorff space and let X be the

complex space C(K). Then v(Φ) = ‖Φ‖ for every Φ ∈ A∞(BX , X).

To prove the above theorem, we need a preliminary result.

Lemma 2.9. Let Ω be a set , let F be a subspace of ℓ∞(Ω), and let Λ ⊆ Ω
be a norming set for F (i.e. ‖f‖ = sup{|f(λ)| : λ ∈ Λ} for every f ∈ F).
Then, given a Banach space Y and a function Φ ∈ ℓ∞(Ω, Y ) such that

y∗ ◦ Φ ∈ F for every y∗ ∈ Y ∗, we have

‖Φ‖ = sup{‖Φ(λ)‖ : λ ∈ Λ}.

Proof. We clearly have

‖Φ‖ = sup
t∈Ω

‖Φ(t)‖ = sup
t∈Ω

sup
y∗∈BY ∗

|y∗(Φ(t))|

= sup
y∗∈BY ∗

sup
t∈Ω

|y∗(Φ(t))| = sup
y∗∈BY ∗

‖y∗ ◦ Φ‖

= sup
y∗∈BY ∗

sup
t∈Λ

|[y∗ ◦ Φ](t)| = sup
t∈Λ

sup
y∗∈BY ∗

|[y∗ ◦ Φ](t)| = sup
t∈Λ

‖Φ(t)‖.

Proof of Theorem 2.8. By [4, Theorem 4.3], the set Ext(BC(K)) of all
extreme points of BC(K) is a norming set for A∞(BC(K)) and, by the above
lemma, given ε > 0, there exists e ∈ Ext(BC(K)) such that ‖Φ(e)‖ > ‖Φ‖−ε.
On one hand, since Φ(e) ∈ C(K), there exists t ∈ K such that [Φ(e)](t) =
‖Φ(e)‖. On the other hand, since e ∈ Ext(BC(K)), we have |e(t)| = 1. Now,
we observe that

|δt(Φ(e))| = |[Φ(e)](t)| = ‖Φ(e)‖ > ‖Φ‖ − ε,

and |δt(e)| = |e(t)| = 1. Therefore, v(Φ) ≥ ‖Φ‖ − ε.

In particular,

Corollary 2.10. Let K be a compact Hausdorff space. Then every poly-

nomial from the complex space C(K) into itself satisfies (ADE).
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Example 2.11. Let X be the complex space c0. Then every polynomial

from X into X satisfies (ADE). Indeed, given Φ ∈ Au(BX , X) and ε > 0,
there exists x0 ∈ SX such that ‖Φ(x0)‖ > ‖Φ‖− ε. Thus, we can find j such
that

|e∗j(Φ(x0))| > ‖Φ‖ − ε,

where e∗j is the functional associated to the jth element ej of the canonical
basis of X. We define f : C → C by

f(z) = e∗j (Φ(x0 + (z − e∗j(x0))ej)) (z ∈ C).

It is an element of Au(BC). By the maximum modulus theorem, there exists
z0 ∈ C with |z0| = 1 such that |f(z)| ≤ |f(z0)| for all z in the closed unit
disk of C. In particular,

‖Φ‖−ε < |e∗j(Φ(x0))| = |f(e∗j(x0))| ≤ |f(z0)| = |e∗j(Φ(x0 +(z0−e∗j (x0))ej))|.

But x1 := x0 + (z0 − e∗j (x0))ej ∈ SX , and clearly |e∗j(x1)| = 1. Hence,

‖Φ‖ − ε < |e∗j(Φ(x1))| ≤ v(Φ).

Finally, Proposition 1.3 yields the conclusion.

In [12, Theorem 3.1] it is proved that every continuous k-linear mapping
A : Xk → X satisfies v(A) = ‖A‖ for X being c0, c and ℓ∞, and it is
claimed that every k-homogeneous polynomial P on X satisfies v(P ) = ‖P‖.
Unfortunately the last claim is false for the cases of real c0, c and ℓ∞ as we
will show in Example 3.14. Nevertheless, the claim is true for the complex
c0, c and ℓ∞, not only for k-homogeneous polynomials but for any element
of Au(BX , X), as we have shown in Theorem 2.8 and in the proof of Ex-
ample 2.11.

3. The Daugavet equation for k-homogeneous polynomials. The
aim of this section is to study the k-order Daugavet property and the k-order
alternative Daugavet property. This study makes sense since Example 3.4(b)
below shows that there exist spaces with weakly compact polynomials which
do not satisfy (ADE) and nevertheless every weakly compact k-homogeneous
polynomial satisfies (ADE).

We start by presenting the first examples of spaces with the k-DP and
k-ADP. The results are obvious consequences of Theorem 2.4, Corollary 2.10,
and Example 2.11.

Examples 3.1.

(a) Let Ω be a completely regular Hausdorff topological space without iso-

lated points, and let X be a Banach space. Then the space Cb(Ω, X)
has the k-order Daugavet property for every k ∈ N.

(b) Let K be a compact Hausdorff space. Then the complex space C(K)
has the k-order alternative Daugavet property for every k ∈ N.
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(c) The complex space c0 has the k-order alternative Daugavet property

for every k ∈ N.

The following result shows a surprising behavior of the Daugavet equa-
tion and the alternative Daugavet equation for k-homogeneous polynomials
with k > 1.

Proposition 3.2. Let X be a Banach space over K and let k be an

integer , k ≥ 2.

(a) If K = C, then (DE) and (ADE) are equivalent in P(kX; X).
(b) If K = R and k is even, then (DE) and (ADE) are equivalent in

P(kX; X).

Proof. Only (ADE)⇒(DE) has to be proved.

(a) If P ∈ P(kX; X) satisfies (ADE), then there is ω ∈ T such that

‖Id + ωP‖ = 1 + ‖P‖.

We take β ∈ T such that βk−1 = ω (observe that we need k ≥ 2 for this!).
For every ε > 0, we may find x ∈ BX such that

‖x + ωP (x)‖ > 1 + ‖P‖ − ε.

If we write y = βx ∈ BX , we have

‖y + P (y)‖ = ‖βx + P (βx)‖ = ‖βx + βkP (x)‖

= |β| ‖x + βk−1P (x)‖ = ‖x + ωP (x)‖ > 1 + ‖P‖ − ε.

Letting ε ↓ 0, we get ‖Id + P‖ ≥ 1 + ‖P‖ and P satisfies (DE).

(b) The above argument works in the real case if k − 1 is odd.

As an immediate consequence, we obtain the following.

Corollary 3.3. Let X be a Banach space and let k be an integer , k ≥ 2.

(a) If X is complex , then the k-DP and k-ADP are equivalent.

(b) If X is real and k is even, then the k-DP and k-ADP are equivalent.

Let us give more examples.

Examples 3.4.

(a) By Example 2.1(b), the complex space C has the k-ADP for every
k ∈ N. Then, by the above corollary, C has the k-DP when k ≥ 2,
but C does not have the 1-DP.

(b) Although there are non-homogeneous polynomials on R which do
not satisfy (ADE) (see Example 2.1(c)), it is easy to check that the

real space R has the k-ADP for every k ∈ N.

(c) Thus, R has the k-DP when k is even by the above corollary. On the
other hand, if k is odd , R does not have the k-DP as shown by the
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polynomial P ∈ P(k
R; R) given by

P (t) = −tk (t ∈ R).

(d) By Corollary 2.10 and Example 2.11 we know that every polynomial
from one of the complex spaces c0, and C(K), K arbitrary, into
itself satisfies (ADE), but if we restrict ourselves to the case of k-
homogeneous polynomials, Corollary 3.3 gives us more: The complex

spaces c0 and C(K), K arbitrary , have the k-order Daugavet property

for every k ≥ 2.

Remark 3.5. Item (c) in the above examples shows that, in the real
case, the equations (DE) and (ADE) are not equivalent in P(kX; X) for
odd k. It also shows that the k-DP and k-ADP are not equivalent in the
real case for odd k.

The next results will show that the real spaces c0, c and ℓ∞ do not have
the k-ADP for any k ≥ 2. We need some definitions. A closed subspace Y
of a Banach space X is said to be an absolute summand of X if there exists
another closed subspace Z such that X = Y ⊕ Z and, for every y ∈ Y and
z ∈ Z, the norm of y + z only depends on ‖y‖ and ‖z‖. We then also say
that X is an absolute sum of Y and Z. This implies that there exists an
absolute norm | · |a on R

2 such that

‖x + z‖ = |(‖x‖, ‖z‖)|a (x ∈ X, z ∈ Z),

where by an absolute norm we mean a norm | · |a on R
2 such that |(1, 0)|a =

|(0, 1)|a = 1 and |(a, b)|a = |(|a|, |b|)|a for every a, b ∈ R. We refer the reader
to [9, §21] for background. Examples of absolute summands are the ℓp-sums
of Banach spaces for 1 ≤ p ≤ ∞.

The proof of the following result is straightforward. The reader may
consult [11, Proposition 2.8] to see the main idea.

Proposition 3.6. Let X be a Banach space and suppose that X is an

absolute sum of two closed subspaces Y and Z. If X has the k-DP (resp.
k-ADP) for some k ∈ N, then so do Y and Z.

Now, we will study the relationship between the k-DP and k-ADP for
different values of the integer k.

Proposition 3.7. Let X be a Banach space and let k be a positive

integer. If X has the (k + 1)-ADP , then it has the k-ADP.

Proof. Fix P ∈ P(kX; X), P 6= 0. For every 0 < ε < ‖P‖, we may find
y ∈ SX and y∗ ∈ SX∗ such that

‖P (y)‖ > ‖P‖ − ε and |y∗(y)| = 1.
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If we define Q ∈ P(k+1X; X) by

Q(x) = y∗(x)P (x) (x ∈ X),

we have ‖Q‖ ≥ ‖Q(y)‖ = |y∗(y)| ‖P (y)‖ > ‖P‖−ε. Since X has the (k+1)-
ADP, we may find ω1 ∈ T and z ∈ SX such that

1 + ‖P‖ − ε < ‖z + ω1Q(z)‖ = ‖z + y∗(z)ω1P (z)‖.

It follows that |y∗(z)| > 1 − ε/‖P‖ and, taking ω = (y∗(z)/|y∗(z)|)ω1 ∈ T,
we have

‖Id + ωP‖ ≥ ‖z + ωP (z)‖ =

∥

∥

∥

∥

z +
y∗(z)ω1P (z)

|y∗(z)|

∥

∥

∥

∥

≥ ‖z + y∗(z)ω1P (z)‖ −

∣

∣

∣

∣

1 −
1

|y∗(z)|

∣

∣

∣

∣

‖P (z)‖

> 1 + ‖P‖ − ε −
ε‖P‖

‖P‖ − ε
.

Letting ε ↓ 0, we get ‖Id + ωP‖ = 1 + ‖P‖ and X has the k-ADP.

In the complex case, Proposition 3.7 can be read in terms of the k-
Daugavet property for k ≥ 2 since, in this case, the k-ADP and k-DP are
equivalent.

Corollary 3.8. Let X be a complex Banach space and let k be a positive

integer , k ≥ 2. If X has the (k + 1)-DP , then it has the k-DP.

Remarks 3.9.

(a) The above result is not valid for k = 1. Indeed, the complex space
c0 has the 2-DP, but it does not have the 1-DP.

(b) The above result is false in the real case, since the real space R has
the 2m-DP for every m ∈ N, but it does not have the (2m − 1)-DP
for any m ∈ N.

In the real case a result similar to the above corollary can be proved if
we allow a two-step jump.

Proposition 3.10. Let X be a real Banach space and let k be a positive

integer. If X has the (k + 2)-DP , then it has the k-DP.

Proof. Fix P ∈ P(kX; X). For every 0 < ε < 1, we may find y ∈ SX and
y∗ ∈ SX∗ such that

‖P (y)‖ > ‖P‖ − ε and y∗(y) = 1.

If we define Q ∈ P(k+2X; X) by

Q(x) = (y∗(x))2 P (x) (x ∈ X),
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we have

‖Q‖ ≥ ‖Q(y)‖ = (y∗(y))2‖P (y)‖ > ‖P‖ − ε.

Since X has the (k + 2)-DP, we may find z ∈ SX such that

1 + ‖P (z)‖ − ε ≤ 1 + ‖P‖ − ε < ‖z + Q(z)‖ = ‖z + (y∗(z))2P (z)‖.

It follows that (y∗(z))2‖P (z)‖ > ‖P (z)‖ − ε, and so

‖Id + P‖ ≥ ‖z + P (z)‖ = ‖z + (y∗(z))2P (z)‖ − (1 − (y∗(z)
)2

)‖P (z)‖

> 1 + ‖P‖ − 2ε.

Remark 3.11. The above result is not valid in the complex case for
k = 1. Indeed, the complex space c0 has the 3-DP but it does not have the
1-DP.

In [12, p. 141] there is given a weakly compact 2-homogeneous polyno-
mial P ∈ P(2ℓ1; ℓ1) (both in the real and complex cases) which satisfies
v(P ) ≤ 1

2‖P‖. This fact, together with Propositions 1.3 and 3.7, leads to
the following example.

Example 3.12. The space ℓ1 does not have the k-ADP for any k ≥ 2.

Remark 3.13. The converse of Proposition 3.7 is not true. For instance,
ℓ1 has the 1-ADP but it does not have the 2-ADP.

It is actually proved in [12, p. 141] that the polynomial P : ℓ2
1 → ℓ2

1

defined by

P (x1, x2) =

(

1

2
x2

1 + 2x1x2,−
1

2
x2

2 − x1x2

)

satisfies ‖P‖ = 1 and v(P ) = 1/2. Therefore, ℓ2
1 does not have the 2-ADP.

Since, in the real case, ℓ2
1 and ℓ2

∞ are isometric, we infer that this latter
space does not have the 2-ADP but, actually, much more examples can be
deduced from this fact.

Example 3.14. The real spaces c0, c, ℓ∞, ℓn
∞ for every n ≥ 2 do not

have the k-ADP for any k ≥ 2. Indeed, since the real space ℓ2
∞ does not

have the 2-ADP, and all the above spaces contain ℓ2
∞ as an ℓ∞-summand,

Proposition 3.6 gives us the case k = 2, and the rest follows from Proposi-
tion 3.7.

The above argument also shows that real C(K) spaces when K is a
compact set with at least two isolated points do not have the k-ADP for
any k ≥ 2. But this assertion can be improved, as the next example shows.

Example 3.15. Let K be a non-perfect compact Hausdorff space with at

least two points. Then the real space C(K) does not satisfy the k-ADP for
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any k ≥ 2. Indeed, we consider an isolated point x1 of K and x2 ∈ K \{x1},
and we define p : C(K) → R by

p(f) = f(x2)
2 −

1

2
f(x1)

2

for all f ∈ C(K). Clearly ‖p‖ = 1 = p(χK\{x1}). Suppose that C(K) has
the 2-ADP. Then, by Corollary 1.2, we can find a sequence (fn) of norm-one
elements of C(K) such that

(9)

∣

∣

∣

∣

fn(x2)
2 −

1

2
fn(x1)

2

∣

∣

∣

∣

→ 1 and ‖χ{x1} + fn‖ → 2.

On the one hand, the first convergence implies that

|fn(x2)| → 1 and |fn(x1)| → 0.

On the other hand, ‖χ{x1} + fn‖ > 1 is only possible if

‖χ{x1} + fn‖ = |1 + fn(x1)|

and, therefore, the second convergence in (9) implies that

|1 + fn(x1)| → 2,

a contradiction.

Taking a look at all the examples that we have given, one may wonder
if the k-DP or even the k-ADP for a Banach space X implies that every
k-homogeneous polynomial satisfies (ADE). This is not the case, as the
following example shows.

Example 3.16. Consider the Banach space C([0, 1], ℓ2) and let k be a
positive integer. On the one hand, every weakly compact polynomial on
C([0, 1], ℓ2) satisfies (DE) by Corollary 2.5. On the other hand, [11, Propo-
sitions 2.8 and 2.9] (see also the remark after Proposition 2.9 in [11]) shows
that there exists a (non-weakly compact) k-homogeneous polynomial on
C([0, 1], ℓ2) which does not even satisfy (ADE).
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