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Banach–Saks properties in symmetric spaces

of measurable operators

by

P. G. Dodds, T. K. Dodds and F. A. Sukochev (Bedford Park)

Abstract. We study Banach–Saks properties in symmetric spaces of measurable op-
erators. A principal result shows that if the symmetric Banach function space E on the
positive semiaxis with the Fatou property has the Banach–Saks property then so also
does the non-commutative space E(M, τ) of τ -measurable operators affiliated with a
given semifinite von Neumann algebra (M, τ).

0. Introduction. A Banach space is said to have the Banach–Saks
property if each weakly null sequence contains a subsequence whose arith-
metic means converge strongly to zero. It is a classical result of Banach and
Saks [BS], and Banach and Mazur [Ba], that the spaces Lp[0, 1), 1 < p <∞,
have this property. In the case that p > 2, this result also follows directly
from the work of Kadec and Pełczyński [KP]. While it is a well known re-
sult of Kakutani (see [Di]) that any uniformly convex Banach space has the
Banach–Saks property, it was shown by Szlenk [Sz] that the non-uniformly
convex Banach space L1[0, 1) also has the Banach–Saks property. More re-
cently, the Banach–Saks property has been studied in the framework of
rearrangement invariant spaces [DSS], where it has been shown, in particu-
lar, that any separable Orlicz or Lorentz space on the unit interval has the
Banach–Saks property. While any Banach space with the Banach–Saks prop-
erty is necessarily separable, separability on its own is not a sufficient condi-
tion for the validity of the Banach–Saks property. Indeed, it is shown in [DSS]
that the separable part of each non-separable Orlicz or Lorentz space fails
to have the Banach–Saks property, as do certain separable Marcinkiewicz
spaces.
From a somewhat different viewpoint, the Banach–Saks property has

been studied in the setting of unitary matrix ideals (Schatten ideals) by
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Arazy [Ar]. If E is a separable symmetric sequence space, then it was shown
in [Ar] that E has the Banach–Saks property if and only if the associated
unitary matrix space CE has the Banach–Saks property. Here CE is the
space of all compact operators x on some separable Hilbert space for which
s(x) ∈ E with norm given by ‖x‖CE = ‖s(x)‖E , where s(x) = {sn(x)}

∞
n=1 is

the sequence of s-numbers of x. The approach of [Ar] is based on the study
of shell block basic sequences in unitary matrix spaces. The purpose of this
paper is to show that this result of Arazy continues to hold in the more gen-
eral setting of symmetric spaces E(M, τ) of measurable operators associated
with a symmetric Banach function space E on the positive semiaxis.

A principal result of the paper (Theorem 2.13) shows that if the von
Neumann algebra (M, τ) is non-atomic, and if E has the Fatou property,
then E(M, τ) has the Banach–Saks property if and only if E(M, τ) has the
Banach–Saks property for disjointly supported sequences. This extends a
similar result in the commutative setting given in [DSS], where it is shown
that the assumption that E has the Fatou property cannot be omitted, and
this is in strong contrast to the situation in separable symmetric sequence
spaces, in which the Banach–Saks property and that for disjointly supported
sequences are always equivalent. It follows readily from Theorem 2.13 that if
the separable symmetric Banach function space E on the positive semiaxis
with the Fatou property has the Banach–Saks property then so also does the
non-commutative space E(M, τ) for all semifinite (M, τ) (Theorem 2.14).
Specialisation to the von Neumann algebra of all bounded linear operators
on a separable Hilbert space recovers the results of Arazy for unitary ma-
trix spaces associated with separable symmetric sequence spaces with the
Fatou property. However, our methods are completely different from those
of [Ar], and our approach is based on the systematic study of Banach–Saks
type properties in (commutative) rearrangement-invariant Banach function
spaces given in [DSS], combined with the study of (non-commutative) sym-
metric spaces of measurable operators using methods of real analysis [FK],
[CS], [CKS], [CSS], [DDP1–3]. A principal ingredient is a decomposition the-
orem (Proposition 2.7): if the von Neumann algebra (M, τ) is non-atomic
and if E is a separable space with the Fatou property, then each bounded
sequence in E(M, τ) contains a subsequence which is a norm perturbation of
the sum of an equimeasurable sequence and a sequence which is two-sided
disjointly supported and which converges to zero for the measure topol-
ogy. The ideas here go back to the paper [KP] in classical (commutative)
Lp-spaces.

As a by-product of our approach, we show (Theorem 2.8) that if E
is separable and has the Fatou property, then each bounded sequence in
E(M, τ) contains a subsequence with the property that the Cesàro means
of each further subsequence are convergent in the measure topology. This
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is a non-commutative analogue of a well known theorem of Komlós [Ko].
Finally, the difference between the purely atomic type I setting studied by
Arazy and the more general setting including non-atomic algebras studied
in the present paper yields the interesting consequence that if Φ is an Or-
licz function for which the corresponding Orlicz space EΦ is non-separable,
if (M, τ) is non-atomic and if (N , σ) is the von Neumann algebra of all
bounded linear operators on a separable Hilbert space equipped with the
canonical trace σ, then EΦ(M, τ) does not embed isomorphically in the
unitary matrix space EΦ(N , σ) = CEΦ .
In the third section of the paper, we consider the (so-called) p-Banach–

Saks and strong p-Banach–Saks properties studied in [HRS], [RX] in the
setting of non-commutative Lp-spaces. A principal result (Theorem 3.9)
is that if the commutative space E is p-convex and q-concave for some
1 < p < 2 ≤ q < ∞ and if (M, τ) is non-atomic, then each weakly null,
E-equiintegrable sequence in E(M, τ) contains a strong p-Banach–Saks sub-
sequence. We show further (Theorem 3.14) that if the Lorentz function ψ
is regular, then a closed subspace X of the non-commutative Lorentz space
Λψ,p(M, τ), 1 ≤ p <∞, has the strong p-Banach–Saks property if and only
if X contains no isomorph of lp. These results are new, even in the commu-
tative setting, and extend similar results in [HRS], [RX] for the special case
of non-commutative Lp-spaces.

1. Preliminaries. In this section, we collect some of the basic facts and
notation that will be used in this paper. We denote byM a semifinite von
Neumann algebra on the Hilbert space H, with a fixed faithful and normal
semifinite trace τ . The identity inM is denoted by 1 and we denote by P
the complete lattice of all (self-adjoint) projections inM. A linear operator
x : dom(x) → H, with domain dom(x) ⊆ H, is said to be affiliated with
M if ux = xu for all unitary u in the commutant M′ of M. The closed
and densely defined operator x affiliated with M is called τ -measurable if
for every ε > 0 there exists an orthogonal projection p ∈ M such the
p(H) ⊆ dom(x) and τ(1− p) < ε. The collection of all τ -measurable opera-

tors is denoted by M̃. With the sum and product defined as the respective
closures of the algebraic sum and product, M̃ is a ∗-algebra. For ε, δ > 0 we
denote by N(ε, δ) the set of all x ∈ M̃ for which there exists an orthogonal
projection p ∈ M such that p(H) ⊆ dom(x), ‖xp‖∞ ≤ ε and τ(1 − p) ≤ δ,
where ‖ · ‖∞ denotes the usual operator norm. The sets {N(ε, δ) : ε, δ > 0}

form a base at 0 for a metrisable Hausdorff topology in M̃, which is called
the measure topology. Equipped with the measure topology, M̃ is a com-
plete topological ∗-algebra. These facts and their proofs can be found in the
papers [Ne] and [Te]. For standard facts concerning von Neumann algebras,
we refer to [SZ], [Ta].
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We recall the notion of generalised singular value function [FK]. Given
a self-adjoint operator x in H we denote by ex(·) the spectral measure of x.

Now assume that x ∈ M̃. Then e|x|(B) ∈ M for all Borel sets B ⊆ R, and

there exists s>0 such that τ(e|x|(s,∞))<∞. For x∈M̃ and t≥0 we define

(2.1) µt(x) = inf{s ≥ 0 : τ(e
|x|(s,∞)) ≤ t}.

The function µ(x) : [0,∞) → [0,∞] is called the generalised singular value
function (or decreasing rearrangement) of x; note that µt(x) < ∞ for all
t > 0. For the basic properties of this singular value function we refer the
reader to [FK]; some additional properties can be found in [DDP1,2]. We

note that a sequence {xn} ⊆ M̃ converges to 0 for the measure topology if
and only if µt(xn)→ 0 for all t > 0.
If we considerM = L∞(R+,m), where m denotes Lebesgue measure on

the positive half-line R
+, as an Abelian von Neumann algebra acting via

multiplication on the Hilbert space H = L2(R
+,m), with the trace given

by integration with respect to m, then it is easy to see that M̃ consists
of all measurable functions on R

+ which are bounded except on a set of
finite measure, and that for f ∈ M̃, the generalised singular value function
µ(f) is precisely the decreasing rearrangement of the function |f | (and in
this setting, µ(f) is frequently denoted by f∗). If M = L(H) and τ is the

standard trace, then it is not difficult to see that M̃ = M and that the
measure topology coincides with the operator norm topology. In this case,
x ∈M is compact if and only if limt→∞ µt(x) = 0; moreover,

µn(x) = µt(x), t ∈ [n, n+ 1), n = 0, 1, 2, . . . ,

and the sequence {µn(x)}∞n=0 is just the sequence of eigenvalues of |x| in
non-increasing order and counted according to multiplicity.
By L0(R+,m) we denote the space of all C-valued Lebesgue measurable

functions on R
+ (with identification m-a.e.). A Banach space (E, ‖ · ‖

E
),

where E ⊆ L0(R+,m) is called a rearrangement-invariant Banach function
space if it follows from f ∈ E, g ∈ L0(R+,m) and µ(g) ≤ µ(f) that g ∈ E
and ‖g‖E ≤ ‖f‖E . Furthermore, (E, ‖ · ‖E) is called a symmetric Banach
function space if it has the additional property that f, g ∈ E and g ≺≺ f
imply that ‖g‖E ≤ ‖f‖E . The symmetric Banach function space (E, ‖·‖E) is
called fully symmetric if f ∈ E, g ∈ L0(R+,m) and g ≺≺ f imply g ∈ E and
‖g‖E ≤ ‖f‖E . It is shown in [DDP2,3] that E is fully symmetric if and only if
E(M, τ) is an exact interpolation space for the couple (L1(M, τ),M). Here
g ≺≺ f denotes submajorisation in the sense of Hardy–Littlewood–Pólya:

(2.2)

t\
0

µs(g) ds ≤
t\
0

µs(f) ds for all t > 0.

For the general theory of rearrangement-invariant Banach function spaces,



Banach–Saks properties in spaces of operators 129

we refer the reader to [KPS], [BeS], [LT], although in the latter two references
the class of function spaces considered is more restrictive.

Given a semifinite von Neumann algebra (M, τ) and a symmetric Banach
function space (E, ‖ · ‖E) on (R+,m), we define the corresponding non-
commutative space E(M, τ) by setting

(2.3) E(M, τ) = {x ∈ M̃ : µ(x) ∈ E}.

Equipped with the norm ‖x‖E(M,τ) := ‖µ(x)‖E , the space (E(M, τ),
‖ · ‖E(M,τ)) is a Banach space and is called the (non-commutative) symmet-
ric space associated with (M, τ) corresponding to (E, ‖ · ‖E). An extensive
discussion of the various properties of such spaces can be found in [DDP1–3].

The Köthe dual E(M, τ)× is defined to be the set of all x ∈ M̃ such that
xy ∈ L1(M, τ) for all y ∈ E(M, τ). With the norm defined by setting

(2.4) ‖x‖E(M,τ)× := sup{τ(|xy|) : y ∈ E(M, τ), ‖y‖E(M,τ) ≤ 1},

x ∈ E(M, τ)×,

the Köthe dual E(M, τ)× is a Banach space. Basic properties of Köthe
duality, in the commutative setting, may be found in [KPS], [BeS] (where the
Köthe dual is called the associate space). In the non-commutative setting,
the reader is referred to [DDP3], where it is shown in particular that if E is
symmetric, then the space (E(M, τ)×, ‖ · ‖E(M,τ)×) may be identified with
the space (E×(M, τ), ‖ · ‖E×(M,τ)).

If E is a symmetric Banach function space on R
+, then E is separable if

and only if the norm on E is order continuous in the sense that 0 ≤ fσ ↓σ 0
in E implies that ‖fτ‖E ↓σ 0. In this case, the norm is order continuous (in
the obvious sense) on the non-commutative space E(M, τ). The symmet-
ric space E is separable if and only if the Banach dual E∗ coincides with
the Köthe dual E× of E. In this case, the dual space E∗ is a symmetric
Banach function space on R

+ and it follows from [DDP3, Theorems 5.6,
5.11] that the Banach dual of the space (E(M, τ), ‖ · ‖E(M,τ)) is the space
(E∗(M, τ), ‖ · ‖E∗(M,τ)). If E is separable, then E is fully symmetric in
the sense that f ∈ E, g ∈ L0(R+,m) and g ≺≺ f imply that g ∈ E and
‖g‖E ≤ ‖f‖E .

We set

M̃0 := {x ∈ M̃ : µt(x)→ 0 as t→∞},

L0(M, τ) := M̃0 ∩ (L1(M, τ) +M),

and make the obvious remark that M̃0 coincides with M̃ if τ(1) <∞. For
brevity, we denote the space L0(L∞(R

+,m)) by L0[0,∞). By [DDP3, Propo-
sition 2.7], the closure of the space L1(M, τ)∩M in the space L1(M, τ)+M
coincides with L0(M, τ). Moreover, for any symmetric Banach function
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space E on R
+, the inclusions

L1(M, τ) ∩M ⊆ E(M, τ), E×(M, τ) ⊆ L1(M, τ) +M

hold with continuous embeddings. It is clear that the embedding E ⊆
L0[0,∞) implies the embedding E(M, τ) ⊆ M̃0. We remark that if E is
separable then E(M, τ) ⊆ L0(M, τ).

If N is a von Neumann subalgebra ofM, then N will be called proper if
the restriction τN of τ to N is again semifinite. The first part of the result
below may be found in [DDP2, Theorem 3.5]. The second assertion follows
by a straightforward modification of the arguments of [CS, Lemma 4.1] and
[CKS, Lemma 1.3].

Proposition 1.1. If x ∈ M̃0, then there exists a proper von Neu-
mann subalgebra Mx ⊆ L∞(R

+,m) with µ(x) ∈ M̃x, a proper commuta-
tive subalgebra Mx ⊆ M and a positive rearrangement-preserving algebra

∗-isomorphism Jx of M̃x onto M̃x whose restriction to the lattice of projec-

tions of Mx is a Boolean algebra isomorphism onto the lattice of projections

ofMx and for which

Jx(µ(x)) = |x|.

If , in addition, x is self-adjoint , and if (M, τ) is non-atomic, thenMx may

be taken to be a non-atomic maximal Abelian von Neumann algebra contain-

ing the spectral resolution of X, and the commutative von Neumann algebra
Mx may be taken to be the commutative von Neumann algebra L∞(R

+,m).

If N ⊆ M is a proper von Neumann subalgebra, then the conditional
expectation

EN : L1(M, τ) +M→ L1(N , τN ) +N

is defined as in the commutative setting via the equality

τN (EN (x)y) = τ(xy), x ∈ L1(M, τ) +M, y ∈ L1(N , τN ) ∩N ,

and an appeal to the fact that the spaces L1(N , τN ) +N , L1(N , τN ) ∩ N
are dual in the sense of Köthe. See, for example, [DDP3, Theorem 5.6].

The following is proved in [DDS, Lemma 5.1].

Lemma 1.2. Let N ⊆M be a proper von Neumann subalgebra. If E is a
fully symmetric Banach function space on R

+, then EN (x) ∈ E(N , τN ) for
all x ∈ E(M, τ) and

τN (EN (x)y) = τ(xy), x ∈ E(M, τ), y ∈ E(N , τN )
∗ = E∗(N , τN ).

2. The Banach–Saks property. It will be convenient to adopt the
following terminology.
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Definition 2.1. Let X be a Banach space.

(a) A weakly null sequence {xn}∞n=1 ⊆ X is said to be a Banach–Saks
sequence if

lim
n→∞

n−1
∥∥∥

n∑

j=1

yj

∥∥∥ = 0

for all subsequences {yj}∞j=1 ⊆ {xn}
∞
n=1.

(b) X is said to have the Banach–Saks property if every weakly null
sequence in X has a subsequence which is a Banach–Saks sequence.

We remark that the classical formulation of the Banach–Saks property re-
quires that each bounded sequence contain a Cesàro summable subsequence,
and any Banach space enjoying this property is necessarily reflexive. See, for
example, [Di]. In reflexive spaces, the classical Banach–Saks property is eas-
ily seen to be equivalent to the (so-called) weak Banach–Saks property which
requires that each weakly null sequence should contain a Cesàro summable
subsequence. That the apparent strengthening of the weak Banach–Saks
property given in the preceding Definition 2.1(b) is, in fact, equivalent to
the weak Banach–Saks property is due to Erdős and Magidor [EM]. See also
[FS] and [Ro].
Throughout this paper, unless stated otherwise, we shall always assume

that E is a separable symmetric Banach function space on R
+, that (M, τ)

is a semifinite von Neumann algebra and that E(M, τ) is the Banach space
of τ -measurable operators associated with (M, τ).

Proposition 2.2. If E× ⊆ L0[0,∞) and if an, y ∈ E(M, τ) satisfy
an ≺≺ y, n ∈ N, and an → 0 for the measure topology , then ‖an‖E(M,τ) → 0.

Proof. Without loss of generality, it may be assumed that a∗n = an for
all n ∈ N. Let K be the unit ball of E×(M, τ) = E(M, τ)∗. Since K
is σ(E(M, τ)×, E(M, τ))-sequentially compact, and using the assumptions
that E is separable and that E× ⊆ L0[0,∞), it follows from [DScS, Theo-
rem 5.4(i)⇒(ii) and Proposition 2.2(iv)⇒(vi)] that

‖an‖E(M,τ) = sup
{ \
[0,∞)

µ(an)µ(y) dt : y ∈ K
}
→ 0

as n→∞. This suffices to prove the proposition.

In what follows, it will be convenient to denote by ‖ · ‖+ the norm on
the space L1(M, τ) +M so that

‖x‖+ =
1\
0

µs(x) ds, x ∈ L1(M, τ) +M.

As noted in [DSS], the separable space L0[0,∞) fails to have the Banach–
Saks property. However, as the following proposition shows, equimeasurable



132 P. G. Dodds et al.

sequences in L0(M, τ) contain subsequences with convergent Cesàro aver-
ages for all semifinite (M, τ).

Proposition 2.3. If {xn}∞n=1⊆L0(M, τ) and if µ(xn)=µ(x1), n∈N,
then there exists a subsequence {xn(k)}

∞
k=1 ⊆ {xn}

∞
n=1 and x ∈ L0(M, τ)

such that ∥∥∥∥x−
1

N

N∑

k=1

xm(k)

∥∥∥∥
+

→
N
0

for all further subsequences {xm(k)}
∞
k=1 ⊂ {xn(k)}

∞
k=1.

Proof. For each i ∈ N, let

Ii =

[
1

i
,
1

i− 1

)
∪ [i− 1, i).

For each n ≥ 1, we letMn =M|xn|,Mn =M|xn|, Jn = J|xn| be as given by
Proposition 1.1 and let En be the conditional expectation of (L1+L∞)(R+)
onto (L1 + L∞)(Mn). Since µ(xn) = µ(x1), n ∈ N, it follows that Mn =
M1 := M for all n ∈ N, and so also En = E1 := E . Let xn = un|xn| be the
polar decomposition of xn, n = 1, 2, . . . . We set

z(i)n = Jn(E(χIi)), i ≥ 2, n ≥ 1,

and, using Proposition 1.1, observe that

|xn|z
(i)
n = Jn(µ(x1))Jn(E(χIi)) = Jn(E(µ(x1)χIi))

so that

µ(|xn|z
(i)
n ) = µ(Jn(E(µ(x1)χIi)) = µ(µ(x1)χIi), i ≥ 2, n ≥ 1.

Since

sup
n
‖xnz

(i)
n ‖L2(M,τ)) = sup

n
‖un|xn|z

(i)
n ‖L2(M,τ)) ≤ sup

n

∥∥|xn|z(i)n
∥∥
L2(M,τ))

≤ ‖µ(x1)χIi‖L2[0,∞)

and since L2(M, τ) has the Banach–Saks property, it follows from a diagonal
argument that there exists a subsequence {xn(j)}

∞
j=1 ⊆ {xn}

∞
n=1 such that,

for all 2 ≤ i ∈ N, there exists x(i) ∈ L2(M, τ) such that

(2.5) lim
N→∞

1

N

N∑

j=1

xn(j)z
(i)
n(j) = x

(i)

holds in L2(M, τ), and hence also in L1(M, τ) +M, for all further sub-
sequences {xm(j)}

∞
j=1 ⊂ {xn(k)}

∞
k=1. We let {xm(j)}

∞
j=1 ⊂ {xn(k)}

∞
k=1 be a

fixed subsequence and set

wN :=
1

N

N∑

k=1

xm(k), N = 1, 2, . . . ,
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and let ε>0 be given. We observe that, for everym=1, 2, . . . , andM,N ∈N,

‖wN − wM‖+ ≤

∥∥∥∥
1

N

N∑

k=1

(
xm(k) −

m∑

i=1

xm(k)z
(i)
m(k)

)∥∥∥∥
+

+

∥∥∥∥
1

M

M∑

k=1

(
xm(k) −

m∑

i=1

xm(k)z
(i)
m(k)

)∥∥∥∥
+

+

∥∥∥∥
m∑

i=1

x(i) −
1

N

N∑

k=1

m∑

i=1

xm(k)z
(i)
m(k)

∥∥∥∥
+

+

∥∥∥∥
m∑

i=1

x(i) −
1

M

M∑

k=1

m∑

i=1

xm(k)z
(i)
m(k)

∥∥∥∥
+

.

Choose m ∈ N such that

(2.6) 1/m < ε, µm(x1) < ε,

1/m\
0

µs(x1) ds < ε.

Noting that

µ
(
xm(k)−

m∑

i=1

xm(k)z
(i)
m(k)

)
= µ
(
uk|xm(k)|

∞∑

i=m+1

z
(i)
m(k)

)

≤ µ
(
|xm(k)|

∞∑

i=m+1

z
(i)
m(k)

)

= µ
(
Jm(k)E

(
µ(x1)

∞∑

i=m+1

χIi

))

= µ
(
E
(
µ(x1)

∞∑

i=m+1

χIi

))
≺≺ µ
(
µ(x1)

∞∑

i=m+1

χIi

)
,

and that

µt

(
µ(x1)

∞∑

i=m+1

χIi

)
=

{
µt(x1) if 0 < t < 1/m,

µt+m(x1) if t ≥ 1/m,

it follows that

∥∥∥xm(k) −
m∑

i=1

xm(k)z
(i)
m(k)

∥∥∥
+
=

1\
0

µs

(
xm(k) −

m∑

i=1

xm(k)z
(i)
m(k)

)
ds

≤

1/m\
0

µs(x1) ds+

1\
1/m

ε ds ≤ 2ε.
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Since

1

N

N∑

k=1

(
xm(k) −

m∑

i=1

xm(k)z
(i)
m(k)

)
≺≺
1

N

N∑

k=1

µ
(
xm(k) −

m∑

i=1

xm(k)z
(i)
m(k)

)
,

it follows further that

(2.7)

∥∥∥∥
1

N

N∑

k=1

(
xm(k) −

m∑

i=1

xm(k)z
(i)
m(k)

)∥∥∥∥
+

≤ 2ε,

and similarly
∥∥∥∥
1

M

M∑

k=1

(
xm(k) −

m∑

i=1

xm(k)χz
(i)
m(k)

)∥∥∥∥
+

≤ 2ε,

for all M,N ∈ N. Now observing that
∥∥∥∥
m∑

i=1

x(i) −
1

N

N∑

k=1

m∑

i=1

xm(k)z
(i)
m(k)

∥∥∥∥
+

=

∥∥∥∥
m∑

i=1

(
x(i) −

1

N

N∑

k=1

xm(k)z
(i)
m(k)

)∥∥∥∥
+

together with the same equality with N replaced by M , and using (2.5), it
follows that there exists N0 ∈ N such that
∥∥∥∥
m∑

i=1

x(i)−
1

N

N∑

k=1

m∑

i=1

xm(k)z
(i)
m(k)

∥∥∥∥
+

+

∥∥∥∥
m∑

i=1

x(i)−
1

M

M∑

k=1

m∑

i=1

xm(k)z
(i)
m(k)

∥∥∥∥
+

≤ ε,

for all M,N ≥ N0. We obtain

‖wN − wM‖+ ≤ 5ε

for all M,N ≥ N0. Consequently, there exists x ∈ L1(M, τ) +M such that

1

N

N∑

k=1

xm(k) → x

as N →∞. To show that x is independent of the subsequence {xm(k)}
∞
k=1,

let ε > 0 be given and suppose that m satisfies (2.6). By (2.7),

∥∥∥∥
1

N

N∑

k=1

xm(k) −
m∑

i=1

(
1

N

N∑

k=1

xm(k)z
(i)
m(k)

)∥∥∥∥
+

=

∥∥∥∥
1

N

N∑

k=1

(
xm(k) −

m∑

i=1

xm(k)z
(i)
m(k)

)∥∥∥∥
+

≤ 2ε

for all N ∈ N. Letting N →∞, we obtain

∥∥∥x−
m∑

i=1

x(i)
∥∥∥
+
< 2ε
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for all sufficiently large m ∈ N. This shows that the equality x =
∑∞
i=1 x

(i)

holds in L1(M, τ)+M. Since L0(M, τ) is closed in L1(M, τ)+M, it follows
that x ∈ L0(M, τ), and this suffices to complete the proof.

If x ∈ M̃, then the right and left support projections of x are denoted by
r(x), l(x) respectively. Note that if x = u|x| is the polar decomposition, then

u∗u = r(x) and uu∗ = l(x) (see, for example, [Ta]). The family {xi}i∈I ⊂ M̃
is said to be right (respectively, left) disjointly supported if r(xi)r(xj) = 0
(respectively, l(xi)l(yj) = 0) for all i, j ∈ I, i 6= j.
We shall need the following assertion that sequences converging to zero

for the measure topology contain subsequences that are approximately both
right and left disjointly supported. The lemma which follows is proved in
[CDS, Theorem 2.5] and, in the case that E = Lp[0, 1), p ≥ 1, is due to
Kadec and Pełczyński [KP].

Lemma 2.4. If {xn}∞n=1 ⊆ E(M, τ) converges to zero in the measure
topology , then there exists a subsequence {yn}∞n=1 ⊆ {xn}

∞
n=1 and sequences

{pn}, {qn} of mutually orthogonal projections inM such that

‖yn − pnynqn‖E(M,τ) → 0.

The preceding lemma implies immediately the following non-commu-
tative extension of a variant of the Kadec–Pełczyński lemma as given in
[HLR, Corollary 3.6].

Corollary 2.5. If Y ⊆ E(M, τ) is a closed subspace, then one of the
following statements holds:

(i) The norm topology of E(M, τ) coincides on Y with the measure
topology.

(ii) There is a sequence {yn}∞n=1 in the unit sphere of Y and a two-
sided disjointly supported sequence {dn}∞n=1 ⊆ E(M, τ) such that
‖yn − dn‖E(M,τ) → 0.

The following observation is an immediate consequence of a well known
characterisation of weakly compact sets in the predual of a von Neumann
algebra due to C. A. Akemann.

Lemma 2.6. If {xn}∞n=1 ⊆ E(M, τ) is weakly convergent and is left
disjointly supported , then {xn}∞n=1 is weakly null.

Proof. Suppose that x ∈ E(M, τ) satisfies xn → x weakly in E(M, τ).
If z ∈ E(M, τ)∗ = E(M, τ)×, then xnz → xz weakly in L1(M, τ). If en is
the left support of xn, n ≥ 1, then by assumption the sequence {en}∞n=1 is
pairwise disjoint, and consequently, from the well known Akemann criterion
(see, for example, [RX, Theorem 4.14(i)⇔(ii)]), it follows that

|τ(xnz)| = |τ(enxnz)| ≤ sup
k
|τ(enxkz)| → 0.
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The subsequence splitting principle which follows shows that in separable
spaces with the Fatou property, each bounded sequence contains a subse-
quence which is a perturbation of the sum of an equimeasurable sequence
and a sequence which is left and right disjointly supported.

Proposition 2.7. Suppose that E has the Fatou property , and suppose
that (M, τ) is non-atomic. Let {xn}∞n=1 ⊆ E(M, τ) be a sequence of self-
adjoint elements with

sup
n∈N

‖xn‖E(M,τ) = C <∞.

(i) There exists a subsequence {x′n}
∞
n=1 ⊆ {xn}

∞
n=1 which admits the

splitting

(2.8) x′n = yn + zn + dn, n ≥ 1,

where {yn}∞n=1, {zn}
∞
n=1, {dn}

∞
n=1 ⊆ E(M, τ) are bounded sequences

satisfying

(a) the sequence {yn}∞n=1 is equimeasurable, that is, µ(y1) = µ(yn)
for all n ∈ N, and ‖y1‖E(M,τ) ≤ C;

(b) zn → 0 for the measure topology and there exist sequences {pn},
{qn} of mutually orthogonal projections in M such that zn =
pnznqn for all n ∈ N and supn∈N ‖zn‖E(M,τ) ≤ 2C;

(c) ‖dn‖E → 0.

(ii) If , in addition, E× ⊆ L0[0,∞) and the sequence {xn}∞n=1 is weakly
null , then the sequences {yn}∞n=1, {zn}

∞
n=1 from (2.8) may be chosen

to be weakly null as well.

Proof. (i) It follows from the inequalities

sup
n
µt(xn) ≤ C/‖χ[0,t)‖E , t > 0,

that the sequence {µ(xn)}∞n=1 is uniformly bounded on every interval of the
form [a, b] for all 0 < a < b <∞. The Helly selection theorem and a diagonal
argument show that there exists a subsequence {x′n}

∞
n=1 ⊆ {xn}

∞
n=1 and a

right-continuous, non-increasing function f : (0,∞) → [0,∞) such that
µ(x′n) → f almost everywhere on R

+. Since E has the Fatou property, it
follows that f ∈ E and that ‖f‖E ≤ C.
We set

an(t) := µt(x
′
n)− f(t), ∀t > 0, ∀n ∈ N.

Since E is separable, limt→∞ f(t) = limt→∞ µt(x
′
n) = 0, and since f, µ(xn)

are non-increasing for all n ∈ N, it follows that an → 0 in measure.
Proposition 1.1 implies that there exists a rearrangement-preserving

mapping Jn : E → E(M, τ) such that Jn(µ(x
′
n)) = |x

′
n| for all n ∈ N.
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We let x′n = un|x′n| be the polar decomposition and note that since xn is
self-adjoint, un may be taken to be unitary. We now set

yn = unJn(f), wn = unJn(an) = unJn(µ(x
′
n)− f), n ∈ N.

It follows immediately that

x′n = un|x
′
n| = unJn(µ(x

′
n)) = yn + wn

and that

µ(yn) = f, n ∈ N.

In particular,

‖yn‖E(M,τ) = ‖f‖E ≤ C, ‖wn‖E(M,τ) ≤ 2C

for all n ∈ N. Since an → 0 in measure, we also have wn = unJn(an)→ 0 in
measure. By the separability of E, Lemma 2.4 shows that, by passing to a
subsequence if necessary and relabelling, there exist sequences {pn}, {qn} of
mutually orthogonal projections inM such that ‖wn−pnwnqn‖E(M,τ) → 0.
Setting zn = pnwnqn and dn = wn − pnwnqn for all n ∈ N, it follows that
‖zn‖E(M,τ) ≤ 2C and ‖dn‖E(M,τ) → 0, as required.
(ii) From part (i), we may assume that the decomposition (2.8) holds for

the sequence {xn}∞n=1. We set f = µ(y1) and let

Ω(f) := {x ∈ E(M, τ) : µ(x) ≺≺ f}.

Using the assumption that E× ⊆ L0[0,∞) and the separability of E, it
follows from [DScS, Theorem 5.4] that Ω(f) is sequentially compact for
the weak topology on E(M, τ) induced by E(M, τ)×. Passing again to a
subsequence if necessary, we may assume that {yn}∞n=1 ⊆ Ω(f) is weakly
convergent, and using the assumption that {xn}∞n=1 is weakly null, we may
assume further that the two-sided disjoint sequence {zn}∞n=1 is weakly con-
vergent. It now follows from Lemma 2.6 that {zn}∞n=1 is weakly null. This
implies that {yn}∞n=1 is also weakly null, and completes the proof of the
proposition.

In the commutative setting, the preceding proposition is given in [DSS,
Proposition 3.2]. In the case that τ(1) <∞, part (i) of the preceding propo-
sition was established in [Su, Lemma 1.1 and Proposition 2.2]. If we ob-
serve that each equimeasurable sequence in the space Lp[0, 1), 1 ≤ p <∞,
is Lp-equiintegrable (see Definition 3.3 below and the discussion following
it), this implies the classical subsequence splitting principle of Kadec and
Pełczyński [KP] which states that each bounded sequence in Lp[0, 1) con-
tains a subsequence which is the sum of a sequence which is Lp-equiintegr-
able and a sequence which is disjointly supported. More recently, it has been
shown by N. Randrianantoanina [Ran2] (see also [RX]) that if E satisfies a
non-trivial lower estimate then each bounded sequence in E(M, τ) contains
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a subsequence which splits as the sum of an E-equiintegrable sequence and a
sequence which is disjointly supported. In the case of finite trace, this result
is implied by the present Proposition 2.7(i), but in the case that the trace
is not finite, the subsequence splitting principles given by Proposition 2.7(i)
and [Ran2] are quite distinct.

The theorem which follows is a non-commutative analogue of the well
known theorem of Komlós [Ko]. For the special case that τ(1) < ∞ and
E = L1, this result is proved in [Ran1] using somewhat different techniques.

Theorem 2.8. Suppose that E has the Fatou property. If {xn}∞n=1
⊆ E(M, τ) satisfies sup ‖xn‖E(M,τ) < ∞, then there exists y ∈ E(M, τ)
and a subsequence {yn}∞n=1 ⊆ {xn}

∞
n=1 such that for every further subse-

quence {yn(k)}
∞
k=1 ⊆ {yn}

∞
n=1, the sequence of averages {

∑n
k=1 yn(k)/n}

∞
n=1

converges to y in the measure topology.

Proof. It clearly suffices to assume that the sequence {xn} consists of
self-adjoint elements. We assume first that (M, τ) is non-atomic. By Propo-
sition 2.7(i) and passing to a subsequence and relabelling if necessary, we
may assume that µ(xn) = µ(x1) for all n ≥ 1. By Proposition 2.3, using
the fact that E is separable, there exists y ∈ L0(M, τ) and a subsequence
{yn}∞n=1 ⊆ {xn}

∞
n=1 such that the sequence {

∑n
k=1 yn(k)/n}

∞
n=1 converges

to y in the norm of L1(M, τ)+M, and hence for the measure topology, for
all further subsequences {yn(k)}

∞
k=1 ⊆ {yn}

∞
n=1. Since sup ‖xn‖E(M,τ) <∞,

and since E has the Fatou property, it follows from [DDP3, Proposition 5.14]
that y ∈ E(M, τ).

In the general case, let

N :=M⊗ L∞(0, 1), τN := τ ⊗m.

Clearly M ⊗ χ[0,1] is a proper von Neumann subalgebra of (N , τN ). We
may obviously identify the former subalgebra with M by considering the
mapping

φ : M̃ → Ñ , φ(x) := x⊗ χ[0,1].

For the necessary details, we refer to [FK], [CS]. By the first part of the
proof, there exists a subsequence {yn}∞n=1 ⊆ {xn}

∞
n=1 and there exists z ∈

E(N , τN ) such that the sequence {
∑n
k=1 φ(yn(k))/n}

∞
n=1 converges to z for

the measure topology on Ñ . It follows that the sequence {
∑n
k=1 yn(k)/n}

∞
n=1

is Cauchy for the measure topology on M̃ and hence converges to some
element y ∈ M̃ for the measure topology on M̃. Therefore we readily see
that z = φ(y), and this implies further that y ∈ E(M, τ). This suffices to
complete the proof of the theorem.

The following lemma is given in [PSW, Lemma 5.3].
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Lemma 2.9. Let {xn}∞n=1 be a sequence in L1(M, τ) +M. If x ∈ M̃
and y ∈ L1(M, τ) +M are such that xn → x for the measure topology and
xn → y for the weak topology on L1(M, τ) +M induced by L1(M, τ) ∩M,
then x = y.

Definition 2.10. A sequence {xn}∞n=1 ⊆ E(M, τ) will be said to be
E-equiintegrable at 0 if

lim
δ→0
sup
n∈N

‖µ(xn)χ[0,δ)‖E = 0.

Proposition 2.11. Suppose that (M, τ) is non-atomic. If {xn}∞n=1 ⊆
E(M, τ), then the following statements are equivalent :

(i) {xn}∞n=1 is E-equiintegrable at 0.
(ii) lime∈P, τ(e)→0 supn∈N ‖xne‖E(M,τ) = 0.

(iii) lime∈P, τ(e)→0 supn∈N
‖exn‖E(M,τ) = 0.

(iv) lime∈P, τ(e)→0 supn∈N
‖exne‖E(M,τ) = 0.

Proof. The implications (i)⇒(ii)⇒(iv), (i)⇒(iii)⇒(iv) follow immedi-
ately from the submajorisations

µ(exe) ≤ µ(xe), µ(ex) ≺≺ µ(x)χ[0,τ(e))

for each e ∈ P and x ∈ E(M, τ) (see [FK, Theorem 4.2(iii)]). To show that
(iv)⇒(i), it suffices to assume that x∗n = xn for all n ∈ N. If x ∈ E(M) is
self-adjoint and δ > 0, then it follows from the fact that (M, τ) is non-atomic
and Proposition 1.1 that there exists e ∈ P commuting with x such that
τ(e) = δ and such that

µ(x)χ[0,δ) = µ(xe) = µ(exe).

The implication (iv)⇒(i) now follows readily from this observation and the
details are omitted.

We shall need the following variant of Proposition 2.7.

Proposition 2.12. Suppose that E has the Fatou property and suppose
that (M, τ) is non-atomic. Let {xn}∞n=1 be a sequence of self-adjoint ele-
ments with

sup
n∈N

‖xn‖E(M,τ) <∞.

(i) There exists a subsequence {yn}∞n=1 ⊆ {xn}
∞
n=1 and there exist se-

quences {vn}∞n=1, {wn}
∞
n=1 ⊆ E(M, τ) such that yn = vn + wn,

{wn}∞n=1 is E-equiintegrable at 0 and {vn}
∞
n=1 converges to 0 in mea-

sure.

(ii) If {xn}∞n=1 is weakly null , then each of the sequences {vn}
∞
n=1,

{wn}∞n=1 may be taken to be weakly null.
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Proof. Passing to a subsequence if necessary, a standard argument based
on Helly’s theorem as in the proof of Proposition 2.7 yields the existence of a
non-increasing function f on (0,∞) such that µ(xn)→ f almost everywhere.
Since E has the Fatou property, we infer that f ∈ E. Observe that for all
0 < a < b < ∞, it follows from the bounded convergence theorem that
‖µ(xn)χ[a,b) − fχ[a,b)‖E → 0. Suppose that δn, εn ↓ 0 with

∑∞
n=1 δn < ∞

and 0<δn<1 for all n ∈ N. Passing to subsequences, we may assume that

‖µ(xn)χ[δn,1) − fχ[δn,1)‖E < εn, n ∈ N.

We let xn = un|xn| be the polar decomposition, with un taken to be unitary
by the self-adjointness of xn, for all n ∈ N. Again by Proposition 1.1, there
exists a rearrangement-preserving mapping Jn : E → E(M, τ) such that
Jn(µ(xn)) = |xn| for all n ∈ N. We now set

vn = unJn(µ(xn)χ[0,δn)), wn = unJn(µ(xn)χ[δn,∞)), n ∈ N.

It is clear that xn = vn +wn, n ∈ N, and that vn → 0 in measure. To show
that the sequence {wn} is E-equiintegrable at 0, let αn ↓ 0. Without loss of
generality we may assume that 0 < αn + δn < 1 and that ‖fχ[0,αn)‖E < εn
for all n ∈ N. Observe that

‖µ(wn)χ[0,αn)‖E = ‖µ(µ(xn)χ[δn,∞))χ[0,αn)‖E

≤ ‖µ(xn)χ[δn,δn+αn) − fχ[δn,δn+αn)‖E + ‖fχ[δn,δn+αn)‖E

≤ ‖µ(xn)χ[δn,1) − fχ[δn,1)‖E + ‖fχ[0,αn)‖E ≤ 2εn

for all n ∈ N. From this, it follows readily that the sequence {wn}∞n=1 is
E-equintegrable at 0.

Suppose now that the sequence {xn}∞n=1 is weakly null. It follows from
[DScS, Theorem 5.2] that {µ(xn)}∞n=1 ⊆ E is relatively weakly compact. By
[Fr, 82G], it follows that {µ(vn)}∞n=1 = {µ(xn)χ[0,δn)}

∞
n=1 is relatively weakly

compact. Since µ(vn) → 0 in measure, Lemma 2.9 shows that {µ(vn)}∞n=1
is weakly null. For all n ∈ N, we denote by e′n, e

′′
n, respectively, the left and

right support projections of vn, and set

e = sup
n∈N

e′n ∨ e
′′
n.

It follows that

0 ≤ τ(e) ≤
∞∑

n=1

(τ(e′n) + τ(e
′′
n)) ≤ 2

∞∑

n=1

δn <∞.

Since {vn}∞n=1 ⊆ eMe, we now deduce from [DScS, Theorem 5.4] that the
sequence {vn}∞n=1 is relatively weakly compact in E(eMe, τ(e·e)) and hence
relatively weakly compact in E(M, τ). Since vn → 0 in measure, it again
follows from Lemma 2.9 that any weak cluster point of {vn}∞n=1 is necessar-
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ily 0. From this, it follows that {vn}∞n=1 (and hence also {wn}
∞
n=1) is weakly

null.

Theorem 2.13. If E has the Fatou property and if M is non-atomic,
then the following conditions are equivalent :

(i) E(M, τ) has the Banach–Saks property.
(ii) Each weakly null two-sided disjointly supported sequence in E(M, τ)
contains a Banach–Saks subsequence.

Proof. We only need to prove that (ii) implies (i). Let {xn}∞n=1⊆E(M, τ)
be a weakly null sequence. We assume first that E× ⊆ L0[0,∞). By Propo-
sition 2.7(ii), and passing to a subsequence if necessary, we may assume
that there exist weakly null sequences {yn}∞n=1 ⊆ E(M, τ) and {zn}∞n=1 ⊆
E(M, τ) and a null sequence {dn}∞n=1 ⊆ E(M, τ) such that

xn = yn + zn + dn

and such that
µ(yn) = µ(y1) for all n ∈ N,

with {zn}∞n=1 two-sided disjointly supported and zn → 0 in measure. By
assumption, {zn}∞n=1 is a Banach–Saks sequence. Using Proposition 2.3,
Lemma 2.9 and passing to a further subsequence and relabelling if necessary,
we may assume that

1

n

n∑

k=1

wk → 0

in measure for every subsequence {wn}∞n=1 ⊆ {yn}
∞
n=1. Suppose then that

{wn}∞n=1 ⊆ {yn}
∞
n=1 is an arbitrary subsequence. Set

an :=
1

n

n∑

k=1

wk, n ∈ N.

Since
µ(wn) = µ(y1), n ∈ N,

it follows that

an ≺≺ µ(y), n ∈ N.

Since an→ 0 in measure, Proposition 2.2 now shows that ‖an‖E→ 0. This
implies that {yn}∞n=1 is a Banach–Saks sequence and, since {zn}

∞
n=1 is a

Banach–Saks sequence, this suffices to establish the implication (ii)⇒(i) in
the case that E× ⊆ L0[0,∞).
We now assume that τ(1) = ∞ and that E× 6⊆ L0[0,∞). This implies

that L∞[0,∞) ⊆ E×, or equivalently, that E ⊆ L1[0,∞). Using Propo-
sition 2.12, and passing to subsequences and relabelling if necessary, we
may assume that there are weakly null sequences {vn}∞n=1, {wn}

∞
n=1 such
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that xn = vn + wn for all n ∈ N, with vn → 0 in measure and {wn}∞n=1
E-equiintegrable at 0. Passing to further subsequences if necessary, it follows
from Lemma 2.4 and the assumption that E(M, τ) has the d-Banach–Saks
property that we may assume that {vn}∞n=1 is a Banach–Saks sequence.
It remains to show that {wn}∞n=1 contains a Banach–Saks subsequence.

We set

an :=
1

n

n∑

k=1

wk, n ∈ N.

By Theorem 2.8, we may assume that there exists y ∈ E(M, τ) such that
an → y in measure, and since {wn}∞n=1 is weakly null, it follows that also
an → 0 weakly. From Lemma 2.9, it follows that y = 0. We suppose that

‖an‖E(M,τ) > ε

for infinitely many n ∈ N. By Lemma 2.4, it may be assumed that the
sequence {an}∞n=1 is both left and right disjointly supported. By [CDS,
Lemma 2.9], there exists a disjointly supported weakly null sequence {fn}∞n=1
⊆ E such that µ(fn) = µ(an) for all n ∈ N. Further, since an → 0 in mea-
sure, it follows that also fn → 0 in measure. Without loss of generality, we
may assume that

‖fn‖E > ε

for all n ∈ N. Since the sequence {wn}∞n=1 is E-equiintegrable at 0, there
exists δ > 0 such that

sup
n∈N

‖µ(wn)χ[0,δ)‖E < ε/2.

Since

µ(fn)χ[0,δ) = µ(an)χ[0,δ) ≺≺

(
1

n

n∑

k=1

µ(wk)

)
χ[0,δ)

for all n ∈ N, it also follows that

(2.9) sup
n∈N

‖µ(fn)χ[0,δ)‖E < ε/2.

Since fn → 0 in measure, we may assume without loss of generality that

(2.10) sup
n∈N

µδ(fn) ≤ 1.

Set
bn := fnχ(1,∞)(|fn|), cn := fnχ[0,1](|fn|), n ∈ N.

It follows from (2.10) and (2.9) that

‖bn‖E < ε/2

for all n ∈ N. Since the sequence {fn}∞n=1 is weakly null, it follows from [Fr,
82G] that the sequence {cn}∞n=1 is relatively weakly compact in E. Since
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cn → 0 in measure, Lemma 2.9 shows that {cn}∞n=1 is weakly null in E.
Consequently, {cn}∞n=1 is weakly null in L1[0,∞) by the assumption that
E ⊆ L1[0,∞). It follows from the well known Vitali convergence theorem
that ‖cn‖L1[0,∞) → 0. Since µ(cn) ≤ 1 for all n ∈ N and since µ(cn) → 0
in measure, the separability of E implies that ‖µ(cn)χ[0,1)‖E → 0. Since
µ(cn)→ 0 in measure, it follows that

‖µ(cn)χ[1,∞)‖L∞ = µ1(cn)→ 0.

Since ‖µ(cn)χ[1,∞)‖L1 → 0, we deduce that

‖µ(cn)χ[1,∞)‖L1∩L∞ → 0

and consequently

‖µ(cn)χ[1,∞)‖E → 0

since L1 ∩ L∞ embeds continuously into E. It now follows that ‖cn‖E → 0
and, further, that

‖fn‖E < ε,

for all sufficiently large n ∈ N, and this contradiction completes the proof
of the theorem.

We remark that, in the previous theorem, the assumption that E should
have the Fatou property cannot be omitted, even in the case that M is
commutative, and τ(1) < ∞. Indeed, it is shown in [DSS] that there exist
Marcinkiewicz spaces on the interval [0, 1) whose separable part fails to have
the Banach–Saks property. See the remarks following [DSS, Corollary 5.6].
However, it is well known that each bounded, disjointly supported sequence
in the separable part of any Marcinkiewicz space on [0, 1) contains a subse-
quence equivalent to the standard unit vector basis of c0. See, for example,
[To, Proposition 1]. Consequently, the separable part of any Marcinkiewicz
space on [0, 1) satisfies the second assertion of the previous theorem, but
not the first.

We mention further that the commutative specialisation of Theorem 2.13
is stated in [DSS, Theorem 4.5]. However, the proof given there contains a
gap, and is valid only under the additional assumption that E× ⊆ L0[0,∞),
as is also the case with [DSS, Proposition 4.2]. This gap is removed by the
commutative specialisation of the present proof of Theorem 2.13.

Theorem 2.14. If E has the Fatou property , then the following condi-
tions are equivalent :

(i) E has the Banach–Saks property ;

(ii) E(M, τ) has the Banach–Saks property for every semifinite von Neu-
mann algebra (M, τ).
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Proof. It clearly suffices to prove the implication (i)⇒(ii). We assume
first that (M, τ) is non-atomic, and suppose that {zn}∞n=1 ⊆ E(M, τ) is a
weakly null two-sided disjointly supported sequence. By [CDS, Lemma 2.6],
there exists a mutually disjoint, weakly null sequence {fn}∞n=1 ⊆ E such
that µ(fn) = µ(zn), n ≥ 1. It follows readily that

µ
( n∑

k=1

fn(k)

)
= µ
( n∑

k=1

zn(k)

)

and this implies that
∥∥∥
n∑

k=1

fn(k)

∥∥∥
E
=
∥∥∥
n∑

k=1

zn(k)

∥∥∥
E(M,τ)

for any increasing sequence n(k), k ∈ N. By assumption, the space E has
the Banach–Saks property and so {fn} is a Banach–Saks sequence. It fol-
lows immediately that {zn} is a Banach–Saks sequence. Now Theorem 2.13
implies that E(M, τ) has the Banach–Saks property.
In the general case, set

N :=M⊗ L∞(0, 1), τN := τ ⊗m,

and identify M with the proper subalgebra M ⊗ χ[0,1] via the mapping

φ : x 7→ x⊗χ[0,1], x ∈ M̃. If z ∈ E
×(N , τN ), then there exists y ∈ E×(M, τ)

such that
EM⊗χ[0,1)z = y ⊗ χ[0,1).

Consequently, using Lemma 1.2, for all x ∈ E(M, τ) we get

(τ ⊗m)((x⊗ χ[0,1))z) = (τ ⊗m)((x⊗ χ[0,1))EM⊗χ[0,1)z) = τ(xy).

Noting that separability of E implies that E×(N , τN ) = E(N , τN )∗, and
that E×(M, τ) = E(M, τ)∗, it follows that the restriction of φ to E(M, τ) is
continuous for the weak topologies on E(M, τ), E(N , τN ) respectively. This
implies that the restriction of φ to E(M, τ) preserves weakly null sequences.
Since (N , τN ) is non-atomic, and since

‖x‖E(M,τ) = ‖x⊗ χ[0,1)‖E(N ,τN ), x ∈ E(M, τ),

the assertion of the theorem now follows from the first part of the proof.

It is classical [BS], [Ba], [Sz] that if E = Lp, 1 ≤ p <∞, then E has the
Banach–Saks property. Further, if E is a separable Orlicz or Lorentz space,
then also E has the Banach–Saks property [DSS] (see also Theorem 3.14
below). Consequently, in each case, it follows from Theorem 2.14 that the
space E(M, τ) has the Banach–Saks property for all semifinite (M, τ).
We remark that if M = B(H) is the algebra of all bounded operators

in some separable Hilbert space equipped with the standard trace, then the
space E(M, τ) is simply the Schatten ideal (or unitary matrix space) CE .
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Here we identify the underlying symmetric sequence space with the linear
span in E[0,∞) of the vectors en = χ[n−1,n), n ∈ N. In this particular case,
Theorem 2.14 reduces to [Ar, Corollary 3.6]. In the case of trace ideals, the
approach of Arazy yields the stronger result that an arbitrary separable sym-
metric sequence space E has the Banach–Saks property if and only if the
Schatten ideal CE has the Banach–Saks property. Suppose now that Φ is an
Orlicz function. It has been shown by Rakov [Rak] that the separable part
l0Φ of a non-separable Orlicz sequence space l

0
Φ always has the Banach–Saks

property. It then follows from Arazy’s result that the Schatten ideal Cl0Φ also
has the Banach–Saks property. However, it follows from [DSS, Theorem 5.5]
that if LΦ is a non-separable Orlicz space on any interval [0, α), 0<α≤∞,
then the separable part L0Φ does not have the Banach–Saks property. Con-
sequently, we obtain the following remark.

Proposition 2.15. If LΦ is a non-separable Orlicz space, and if (M, τ)
is non-atomic, then L0Φ(M, τ) does not embed isomorphically in the trace
ideal Cl0Φ .

3. p-Banach–Saks properties. We recall the following terminology
[HRS].

Definition 3.1. Let X be a Banach space and 1 < p <∞.

(a) A weakly null sequence {xn}∞n=1 ⊆ X is said to be

(i) a p-Banach–Saks sequence if there exists a positive constant
C <∞ such that

lim sup
n→∞

n−1/p
∥∥∥
n∑

j=1

yj

∥∥∥ ≤ C

for all subsequences {yn}∞n=1 ⊆ {xn}
∞
n=1;

(ii) a strong p-Banach–Saks sequence if

lim
n→∞

n−1/p
∥∥∥
n∑

j=1

yj

∥∥∥ = 0

for all subsequences {yn}∞n=1 ⊆ {xn}
∞
n=1.

(b) X is said to have the p-Banach–Saks property (respectively, the
strong p-Banach–Saks property) if each weakly null sequence in X
has a p-Banach–Saks subsequence (respectively, a strong p-Banach–
Saks subsequence).

We denote by {rn}∞n=1 the usual Rademacher sequence on [0, 1) defined
by setting

rn(t) = sgn sin(2
nπt), t ∈ [0, 1), n = 0, 1, . . . .
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We recall [LT] that a Banach space X is said to have type p for some
1 < p ≤ 2 if there exists a finite constant M such that for every finite
sequence {xj}nj=1 ⊆ X,

∥∥∥
n∑

j=1

xjrj

∥∥∥
L2([0,1),X)

=
(1\
0

∥∥∥
n∑

j=1

xjrj(t)
∥∥∥
2

X
dt
)1/2
≤M
(∑

j=1

‖xj‖
p
X

)1/p
.

Let 1 ≤ p, q ≤ ∞. A Banach lattice X is said to be p-convex, respectively
q-concave, if there exists a constantM > 0 such that for every finite sequence
{xj}nj=1 ⊆ X,

∥∥∥
( n∑

j=1

|xj |
p
)1/p∥∥∥

X
≤M
( n∑

j=1

‖xj‖
p
X

)1/p
,

respectively
( n∑

j=1

‖xj‖
q
X

)1/q
≤M
∥∥∥
( n∑

j=1

|xj |
q
)1/q∥∥∥

X
.

The smallest such constant M is called the modulus of p-convexity, respec-
tively, modulus of q-concavity, of X. We remark that if 1 < p ≤ 2 ≤ q <∞,
and if E is a symmetric Banach function space on [0,∞) which is p-convex
and q-concave, then the argument of [LT, Proposition 1.d.8] shows that there
exists on E an equivalent symmetric norm with moduli of p-convexity and
q-concavity both equal to 1. With this equivalent norm, [LT, Theorem 1.f.1]
shows that E is uniformly convex with modulus of convexity of power type
q and uniformly smooth with modulus of smoothness of power type p. It
follows, in particular, that E is reflexive.

We remark that it has been shown by Rakov [Rak] that if a Banach space
is of type p, 1 < p ≤ 2, then it has the p-Banach–Saks property.

Proposition 3.2. If E is p-convex and q-concave for some 1 < p ≤ 2 ≤
q <∞, then E(M, τ) has the p-Banach–Saks property.

Proof. By passing to an equivalent rearrangement-invariant norm on E
if necessary, we may assume that E has modulus of p-convexity and modulus
of q-concavity both equal to 1. It then follows from [Xu1] that E(M, τ) has
type p. The assertion of the proposition now follows from the cited result of
Rakov.

We remark that it follows from Theorem 2.13 (see also Corollary 3.7 be-
low) and the classical theorem of Szlenk [Sz] that L1(M, τ) has the Banach–
Saks property (in fact, as shown in [BD], any von Neumann algebra predual
has the Banach–Saks property). We note that Proposition 3.2 implies that
Lp(M, τ) has the p-Banach–Saks property for 1 < p ≤ 2. In the case that
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(M, τ) is finite, this was shown in [HRS, Proposition 4.6] quite indepen-
dently of Rakov’s result. It was noted further in [HRS] (see also [Su]) that
if (M, τ) is finite, then Lp(M, τ) has the 2-Banach–Saks property for p > 2
and that this is best possible.
The definition which follows extends the classical notion of uniform equi-

integrability to non-commutative spaces of measurable operators.

Definition 3.3. If K ⊆ E(M, τ) is bounded, then K is said to be
E-equiintegrable if

sup
x∈K
{‖enxen‖E(M,τ)} → 0

for every system {en}∞n=1 ⊆M of projections with en ↓ 0.

The preceding definition was introduced by Randrianantoanina [Ran2]
(see also [Ran1]), although related notions had been earlier considered
in [CS]. If E = L1[0,∞), then the well known criterion of Akemann [Ta]
(see also [RX]) asserts that the E-equiintegrable subsets of L1(M, τ) are
precisely those which are relatively weakly compact. Equiintegrable sets in
the Haagerup Lp-spaces have been studied in some detail in [RX] via ultra-
product techniques, but these methods do not apply in the present setting.
We observe that it follows immediately from Proposition 2.11 that any

bounded E-equintegrable sequence is E-equintegrable at 0 in the sense of
Definition 2.10 and that the two notions coincide if the trace (M, τ) is
finite. We note further that if the sequence {yk}∞k=1 is equimeasurable, and
if τ(1) <∞, then {yk}∞k=1 is E-equiintegrable. In fact, the submajorisation
(see [CS])

ye ≺≺ µ(y)χ[0,τ(e))

together with the equimeasurability of the sequence {yk}∞k=1, the finiteness
of the trace τ and the separability of E immediately yields

sup
k
‖enyken‖E(M,τ) ≤ ‖µ(y)χ[0,τ(en))‖E → 0

whenever en ↓ 0. It is clear that this assertion fails in the case of τ(1) =∞.

Lemma 3.4. Let z ∈ M̃ and let e, f ∈M be self-adjoint projections.

(i) |ze| =
∣∣|z|e
∣∣ = e|ze|e.

(ii) If e ≤ f , then µ(ze) ≤ µ(zf).

Proof. (i) It follows from the equality

|ze|2 = e|z|2e =
∣∣|z|e
∣∣2

that |ze| =
∣∣|z|e
∣∣ for all z ∈ M̃. If p denotes the right support of ze (which

is the right support of |ze|), then it is clear that p ≤ e and this implies
e|ze|e = |ze|.
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(ii) If e ≤ f ∈M are self-adjoint projections with e ≤ f , then

µ(ze) = µ(|z|e) = µ(e|z|) = µ1/2(|z|e|z|)

≤ µ1/2(|z|f |z|) = µ(f |z|) = µ(|z|f) = µ(zf).

Lemma 3.5. Suppose thatM is non-atomic and that {xn}∞n=1⊆E(M, τ)
is E-equiintegrable. If

xn = yn + zn, n ∈ N,

where the sequence {yn}∞n=1 is equimeasurable and {zn}
∞
n=1 converges to 0

for the measure topology , then ‖zn‖E(M,τ) → 0.

Proof. We show first that

(3.1) ‖enznen‖E(M,τ) = ‖enz
∗
nen‖E(M,τ) → 0

for any sequence {en}∞n=1 of projections for which
∑∞
n=1 τ(en) <∞. In fact,

‖enznen‖E(M,τ) ≤ ‖(∨k≥nek)zn(∨k≥nek)‖E(M,τ)

≤ ‖(∨k≥nek)xn(∨k≥nek)‖E(M,τ) + ‖yn((∨k≥nek)‖E(M,τ)

≤ sup
j
‖(∨k≥nek)xj(∨k≥nek)‖E(M,τ)

+ ‖µ(y1)χ[0,
∑
k≥n τ(ek))

‖E ,

where we have again used the submajorisation

µ(ye) ≺≺ µ(y)µ(e).

Since ∨k≥nek ↓ 0, the assertion follows from the separability of E and the
assumption that the sequence {xn}∞n=1 is E-equiintegrable.
We show next that

(3.2) ‖znfn‖E(M,τ) → 0, ‖z∗nfn‖E(M,τ) → 0

for every sequence {fn}∞n=1 ⊆ M of projections with supn τ(fn) < ∞. Let
us first remark that, if z ∈ E(M, τ), if ε, δ > 0 and if p, q are projections
with τ(1− p), τ(1− q) < δ and are such that

‖zp‖E(M,τ) < ε, ‖z∗q‖E(M,τ) < ε,

then, setting e := 1− (1−p)∨ (1−q), it is easily checked that τ(1−e) < 2δ
and

‖ze‖E(M,τ) < ε, ‖z∗e‖E(M,τ) < ε.

Since zn, z
∗
n → 0 in measure, using the preceding remark and passing to a

subsequence and relabelling if necessary, we may assume that there exists a
sequence {en}∞n=1 of projections such that

∑∞
n=1 τ(1 − en) < ∞ and such

that

‖znen‖M → 0, ‖z∗nen‖M → 0.
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By (3.1), we may assume that

‖(1− en)zn(1− en)‖E(M,τ) → 0, ‖(1− en)z
∗
n(1− en)‖E(M,τ) → 0.

If {fn}∞n=1 is any sequence of projections with supn τ(fn) <∞ then

‖znfn‖E(M,τ) ≤ ‖znenfn‖E(M,τ) + ‖enzn(1− en)fn‖E(M,τ)

+ ‖(1− en)zn(1− en)fn‖E(M,τ)

≤ ‖znenfn‖L1(M,τ)∩M + ‖fn(1− en)z
∗
nen‖L1(M,τ)∩M

+ ‖(1− en)zn(1− en)‖E(M,τ)

≤ max{1, sup
n
τ(fn)}(‖znen‖M + ‖z

∗
nen‖M)

+ ‖(1− en)zn(1− en)‖E(M,τ) → 0.

The preceding argument applies equally with zn replaced by z
∗
n, and shows

that each subsequence of each of the sequences {znfn}∞n=1, {z
∗
nfn}

∞
n=1 con-

tains a null subsequence, and this suffices to establish (3.2).
Suppose now that there exists ε > 0 such that

(3.3) ‖zn‖E(M,τ) > 2ε, n ∈ N.

Since the sequence {xn}∞n=1 is E-equiintegrable, there exists a projection p
with τ(p) <∞ and such that

(3.4) sup
n
‖(1− p)xn(1− p)‖E(M,τ) < ε/8.

To see that this is the case, suppose that {eα}α∈A is a mutually disjoint
family of projections such that τ(eα) <∞ for all α ∈ A and

∑
α∈A eα = 1.

By a similar argument to those in [Xu2, Lemma 5.7 and proof of Theo-
rem 5.1] (see also [Ran2]), there exists an at most countable subset {en}∞n=1
such that

xneα = eαxn = yneα = eαyn = zneα = eαzn = 0

whenever eα 6∈ {en}∞n=1. Set e :=
∑∞
n=1 en. Replacing M by eMe and

τ by its restriction to eMe, we may suppose that e = 1. If we now set
pn :=

∑
k≥n ek, then it is clear that pn ↓ 0 and τ(1− pn) <∞ for all n ∈ N.

Using the E-equintegrability of {xn}∞n=1, this clearly suffices to establish
(3.4). From (3.2), with fn taken to be 1 − p for all n ≥ 1, and using (3.3),
we may assume that

(3.5) ‖(1− p)zn(1− p)‖E(M,τ) ≥ ε

for all sufficiently large n ∈ N. For all such n ∈ N, it then follows from (3.4)
that

(3.6) ‖(1− p)yn(1− p)‖E(M,τ) ≥ 7ε/8.

Since E is separable, there exist positive real numbers r ≤ s such that

(3.7) ‖µ(y1)χ[0,r)‖E < ε/16, ‖µ(y1)χ[s,∞)‖E < ε/16.
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Using the fact that (M, τ) is non-atomic, and the remark following Propo-

sition 1.1, for each n ∈ N, there exist disjoint projections e
(1)
n , e

(2)
n , e

(3)
n in

M such that

τ(e(1)n ) = r, τ(e(2)n ) = s− r,

(1− p)yn(1− p) = (1− p)yn(1− p)e
(1)
n + (1− p)yn(1− p)e

(2)
n

+ (1− p)yn(1− p)e
(3)
n

and

(3.8)

µ((1− p)yn(1− p)e
(1)
n ) = µ(µ((1− p)yn(1− p))χ[0,r))

≤ µ(µ(y1)χ[0,r)),

µ((1− p)yn(1− p)e
(2)
n ) = µ(µ((1− p)yn(1− p))χ[r,s)),

µ((1− p)yn(1− p)e
(3)
n ) = µ(µ((1− p)yn(1− p))χ[s,∞))

≤ µ(µ(y1)χ[s,∞)).

From (3.7) and (3.8), it follows immediately that

(3.9)
‖(1− p)yn(1− p)e

(1)
n ‖E(M,τ) < ε/16,

‖(1− p)yn(1− p)e
(3)
n ‖E(M,τ) < ε/16.

From (3.6) and (3.9), we obtain

(3.10) ‖(1− p)yn(1− p)e
(2)
n ‖E(M,τ) ≥ 6ε/8

for all sufficiently large n. Since τ(p) < ∞ and since τ(e
(2)
n ) = s − r for all

n ∈ N, it follows from (3.2) that ‖znp‖E(M,τ) → 0 and ‖zne
(2)
n ‖E(M,τ) → 0.

This in turn implies that

(3.11) ‖(1−p)zn(1−p)e
(2)
n ‖E(M,τ) ≤ ‖zne

(2)
n ‖E(M,τ)+‖znp‖E(M,τ) → 0.

It now follows from (3.10) and (3.11) that

lim sup
n
‖(1− p)(yn + zn)(1− p)‖E(M,τ)

≥ lim sup
n
‖(1− p)(yn + zn)(1− p)e

(2)
n ‖E(M,τ)

≥ lim sup
n
‖(1− p)yn(1− p)e

(2)
n ‖E(M,τ) ≥ 6ε/8.

This contradicts (3.4) and serves to complete the proof of the lemma.

By taking yn = 0 for all n ∈ N in the preceding Lemma 3.5, we obtain
the following consequence, which in the commutative setting reduces to a
well known theorem of Vitali. An alternative proof of this corollary may be
based directly on Lemma 2.4.
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Corollary 3.6. If {xn}∞n=1⊆E(M, τ) is bounded and E-equiintegrable,
then ‖xn‖E(M,τ) → 0 if and only if xn → 0 for the measure topology.

Corollary 3.7. Suppose that E has the Fatou property and that (M, τ)
is non-atomic. If {xn}∞n=1 ⊆ E(M, τ) is weakly null and E-equiintegrable,
then {xn}∞n=1 contains a Banach–Saks subsequence.

Proof. It follows from Proposition 2.7 and Lemma 3.5 that we may, in
addition, assume that the sequence {xn}∞n=1 is equimeasurable. Passing to
a subsequence and relabelling, we may assume by an appeal to Theorem 2.8
that there exists y ∈ L1(M, τ) +M such that

n−1
n∑

j=1

xj → y

in measure. Since {xn}∞n=1 is weakly null, so also is {n
−1
∑n
j=1 xj}

∞
n=1.

From Lemma 2.9, it follows that y = 0. We now observe that the sequence
{n−1

∑n
j=1 xj}

∞
n=1 is E-equiintegrable. Indeed, for any sequence {en}

∞
n=1 of

projections inM with en ↓ 0,

sup
k∈N

∥∥∥en
(
k−1

k∑

j=1

xj

)
en

∥∥∥
E(M,τ)

≤ sup
j∈N

‖enxjen‖E(M,τ) → 0.

It now follows from Corollary 3.6 that

n−1
∥∥∥
n∑

j=1

xj

∥∥∥
E(M,τ)

→ 0,

and this suffices to complete the proof.

If E = L1[0,∞), then, via the Akemann criterion (see the remarks fol-
lowing Definition 3.3), the preceding Corollary 3.7 is a non-commutative
extension of the classical theorem of Szlenk [Sz], and the method of the
preceding corollary is quite different from the lifting argument based on
Theorem 2.13. We remark, however, that the commutative specialisation of
Corollary 3.7 is valid under only the assumption that E is separable, without
requiring that E have the Fatou property. See [DSS, Theorem 4.10].
Before proceeding, we recall that a sequence {xn}∞n=1 in a Banach spaceX

is called unconditional if there exists a constant K > 0 such that
∥∥∥
n∑

i=1

αicixi

∥∥∥ ≤ K
∥∥∥
n∑

i=1

cixi

∥∥∥

for all n ∈ N and for all scalars c1, . . . , cn and α1, . . . αn with |αi| = 1 for
all 1 ≤ i ≤ n. Such a sequence will be called K-unconditional. A set W
in a Banach space X is said to be seminormalised if there exist constants
0 < C1 ≤ C2 < ∞ such that C1 ≤ ‖x‖X ≤ C2 for all x ∈ W. We shall
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need the following consequence of a well known result due to Brunel and
Sucheston. See [BrS1,2], [HRS].

Lemma 3.8. Let {xj}∞j=1 be a seminormalised weakly null sequence in a
Banach space X. There exists a subsequence {yj}∞j=1 ⊆ {xj}

∞
j=1 such that ,

for every k ≥ 1, the sequence {yj}2
k

j=k is 4-unconditional.

Theorem 3.9. Suppose that (M, τ) is non-atomic. If E is p-convex
and q-concave for some 1 < p < 2 ≤ q < ∞, then each weakly null ,
E-equiintegrable sequence in E(M, τ) contains a strong p-Banach–Saks sub-
sequence.

Proof. It is clear that we may assume in addition that x∗n = xn for
all n ∈ N. Let us note first that it follows from [LT, Theorems 1.f.10 and
1.c.4] that E is separable and has the Fatou property. Using Proposition 2.7
and appealing to Lemma 3.5, it is readily seen that we may, in addition,
assume that the sequence {xn}∞n=1 is equimeasurable. It is clear that we may
assume that ‖xn‖E(M,τ) = ‖x1‖E(M,τ) > 0 for all n ∈ N. SinceM is non-
atomic, by Proposition 1.1 there exist rearrangement-preserving mappings
Jn : E → E(M, τ), n ∈ N, such that Jn(µ(xn)) = |xn|; let un be (self-
adjoint) unitary operators such that xn = un|xn| for all n ∈ N. Given ε > 0,
and using the separability of E, there exist 0 < δ ≤ ∆ <∞ such that

‖µ(x1)(χ[0,δ) + χ[∆,∞))‖E < ε, n ∈ N.

Setting en = Jn(χ[δ,∆)), observe that xnen = enxn for all n ∈ N, that

µ(xnen) = µ(µ(x1)χ[δ,∆)), n ∈ N,

and that

µ(xn(1− en)) = µ(µ(x1))(χ[0,δ) + χ(∆,∞)), n ∈ N.

It follows immediately that

(3.12) sup
n
‖xn(1− en)‖E(M,τ) < ε.

Since the sequence {xn}∞n=1 is E-equiintegrable, and using the same argu-
ment as in the proof of Lemma 3.5, we may assume that there exists a
projection e ∈M with τ(1− e) <∞ such that

(3.13) ‖exne‖E(M,τ) < ε, n ∈ N.

By (3.12), it follows that

‖exn(1− en)e‖E(M,τ) ≤ ‖xn(1− en)‖E(M,τ) < ε, n ∈ N,

and consequently, by (3.13),

(3.14) ‖exnene‖E(M,τ) < 2ε, n ∈ N.
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Further, observe that

(3.15) sup
n∈N

‖xnen(1− e)‖M ≤ sup
n∈N

‖xnen‖M = µδ(x1).

Using Lemma 3.8, and passing to a subsequence if necessary and rela-

belling, we may assume further that the sequence {xn}2
k

n=k is 4-unconditional
for each k ≥ 1. Given n ≥ 1, let k ∈ N satisfy 2k−1 ≤ n < 2k. Since

n−1/p
∥∥∥
k−1∑

i=1

xi

∥∥∥
E(M,τ)

≤
lnn

n1/p ln 2
‖x1‖E(M,τ) → 0,

it will suffice to show that

(3.16) lim
n→∞

n−1/p
∥∥∥
n∑

i=k

xi

∥∥∥
E(M,τ)

= 0

whenever n, k ∈ N satisfy k ≤ n < 2k. From the assumption that {xn}2
k

n=k

is 4-unconditional, it follows that

(3.17)
∥∥∥
n∑

i=k

xi

∥∥∥
E(M,τ)

≤ 4
∥∥∥
n∑

i=k

xiri

∥∥∥
L2([0,1),E(M,τ))

.

Setting f = 1− e, it is clear that

∥∥∥
n∑

i=k

xiri

∥∥∥
L2([0,1),E(M,τ))

≤
∥∥∥
n∑

i=k

xi(1− ei)ri

∥∥∥
L2([0,1),E(M,τ))

+
∥∥∥
n∑

i=k

exieieri

∥∥∥
L2([0,1),E(M,τ))

+
∥∥∥
n∑

i=k

xieifri

∥∥∥
L2([0,1),E(M,τ))

+
∥∥∥
n∑

i=k

fxieieri

∥∥∥
L2([0,1),E(M,τ))

.

We now estimate each of the summands on the right hand side. It follows
from the given assumptions on E and from [Xu1] that E(M, τ) is of type p.
Using (3.12), (3.14) and letting Mp denote the constant in the definition of
type, we obtain

∥∥∥
n∑

i=k

xi(1− ei)ri

∥∥∥
L2([0,1),E(M,τ))

≤Mp(n− k)
1/pε,(3.18)

∥∥∥
n∑

i=k

exieieri

∥∥∥
L2([0,1),E(M,τ))

≤ 2Mp(n− k)
1/pε.(3.19)

It follows from the fact that τ(f) <∞ and from [LT, Remark 2, p. 133] that

(3.20) Lq([0, τ(f))) ⊆ E[0, τ(f)),
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with embedding constant C1 = C1(τ(f)) which depends on τ(f). For brevity,
we denote by (Mf , τf ) the von Neumann algebra fMf equipped with the
(finite) trace τ(f · f). Since xiei ∈M, i ∈ N, Lemma 3.4(i) shows that, for
all ω ∈ [0, 1),

∣∣∣
n∑

i=k

xieiri(ω)f
∣∣∣ ∈Mf ⊆ Lq(M

f , τf ) ⊆ E(Mf , τf ).

Since q ≥ 2, it follows from [Fa] that Lq(Mf , τf ) has type 2. LetM2 denote
the type 2 constant. Using (3.15), (3.20), we obtain

(3.21)
∥∥∥
n∑

i=k

xieifri

∥∥∥
L2([0,1),E(M,τ))

=
∥∥∥
n∑

i=k

xieifri

∥∥∥
L2([0,1),E(Mf ,τf ))

≤ C1

∥∥∥
n∑

i=k

xieifri

∥∥∥
L2([0,1),Lq(Mf ,τf ))

≤M2C1
( n∑

i=k

‖xieif‖
2
Lq(Mf ,τf )

)1/2

≤M2C1( sup
k≤i≤n

‖xieif‖Mf )(n− k)1/2τ(f)1/q

≤M2C1µδ(x1)(n−k)
1/2τ(f)1/q.

Passing to adjoints, we obtain similarly

(3.22)
∥∥∥
n∑

i=k

fxieieri

∥∥∥
L2([0,1),E(M,τ))

≤M2C1K(n− k)
1/2τ(f)1/q.

If we combine (3.17), (3.18), (3.19), (3.21), (3.22), it follows that

n−1/p
∥∥∥
n∑

i=k

xi

∥∥∥
E(M,τ)

≤ 12Mpε+ 8C1M2µδ(x1)τ(f)
1/qn1/2−1/p

for all n ∈ N. Since p < 2, this yields

lim sup
n→∞

n−1/p
∥∥∥
n∑

i=k

xi

∥∥∥
E(M,τ)

≤ 12Mpε.

As ε > 0 is arbitrary, the assertion of the theorem follows.

Lemma 3.10. If {xn}∞n=1 ⊆ M̃ converges to 0 in measure, and if p > 0,
then there exists a subsequence {yn}∞n=1 ⊆ {xn}

∞
n=1 such that n

−1/p
∑n
j=1 wj

→ 0 in measure for all further subsequences {wn}∞n=1 ⊆ {yn}
∞
n=1.

Proof. It will suffice to show that if ε > 0, δ > 0 are given, and if
N(ε, δ) is the corresponding neighbourhood of 0 for the measure topology,
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then there exists a subsequence {yn}∞n=1 ⊆ {xn}
∞
n=1 such that, for all further

subsequences {wn}∞n=1 ⊆ {yn}
∞
n=1,

n−1/p
n∑

j=1

wj ∈ N(ε, δ)

for all sufficiently large n ∈ N. The assertion of the lemma then follows from
a diagonal argument, since the measure topology has a countable base of
neighbourhoods at 0.

Let ε > 0, δ > 0 be given. Since xn → 0 in measure, it follows from a
straightforward argument that there exists a projection e ∈M with τ(1−e)
< δ and a subsequence {yn}∞n=1 ⊆ {xn}

∞
n=1 such that ‖yne‖∞ ≤ 2

−n−1 for
all n ∈ N. If {wn}∞n=1 ⊆ {yn}

∞
n=1 is any further subsequence, then

∥∥∥
(
n−1/p

n∑

j=1

wj

)
e
∥∥∥
∞
≤ n−1/p < ε

for all sufficiently large n ∈ N, and, together with the above remarks, this
suffices to complete the proof of the lemma.

We may now state the following complement to Theorem 3.9.

Theorem 3.11. Let E be p-convex and q-concave for some 1 < p < 2 ≤
q <∞. If {xn}∞n=1 ⊆ E(M, τ) is weakly null , then there exists a subsequence
{yn}∞n=1 ⊆ {xn}

∞
n=1 such that n

−1/p
∑n
j=1 wj → 0 in measure for all further

subsequences {wn}∞n=1 ⊆ {yn}
∞
n=1.

Proof. By the same argument as in the final paragraph of the proof of
Theorem 2.14, we may assume in addition that (M, τ) is non-atomic. It
will suffice to show that if ε > 0 is given and N(ε, ε) is the corresponding

neighbourhood of 0 in M̃ for the measure topology, then there exists a sub-
sequence {yn}∞n=1 ⊆ {xn}

∞
n=1 such that the sequence {n

−1/p
∑n
j=1 wj}

∞
n=1

is eventually in N(ε, ε) for all further subsequences {wn}∞n=1 ⊆ {yn}
∞
n=1. If

this is the case, then the assertion of the theorem will follow from a diagonal
argument, since the measure topology has a countable base at 0.

From Proposition 2.7, we may assume that

xn = yn + zn, n ∈ N,

where {yn}∞n=1 is equimeasurable and zn → 0 in measure. Since E is re-
flexive, it follows that E(M, τ) is reflexive [DDP3]. Passing to a subse-
quence if necessary, we may assume that {zn}∞n=1 is relatively weakly com-
pact. By Lemma 2.9, we may assume that {zn}∞n=1, and so also {yn}

∞
n=1,

is weakly null. By Lemma 3.10 applied to {zn}∞n=1, we may assume that
n−1/p

∑∞
j=1 zj → 0 in measure. We may therefore assume further that

{xn}∞n=1 is equimeasurable so that µ(xn) = µ(x1) for all n ∈ N. It is also
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clear that we may assume xn = x∗n for all n ∈ N. By the continuity of the

embedding of E(M, τ) into M̃, there exists η > 0 such that

(3.23) x ∈ E(M, τ), ‖x‖E(M,τ) < η ⇒ x ∈ N(ε/2, ε/2).

As observed earlier, the given assumptions on E imply that E(M, τ) has
type p, with constant Mp. Since E is separable, there exist 0 < δ < ∆ <∞
such that

(3.24) ‖µ(x1)(χ(0,δ) + χ[∆,∞))‖E(M,τ) < η/16Mp.

As in the proof of Theorem 3.9, there exists a sequence {en}∞n=1 ⊆ M
of projections such that xnen = enxn for all n ∈ N and such that

(3.25)
µ(xnen) = µ(µ(x1)χ[δ,∆)),

µ(xn(1− en)) = µ(µ(x1)(χ(0,δ) + χ[∆,∞)))

for all n ∈ N. Since {xnen}∞n=1 is equimeasurable, it is simultaneously
bounded, and hence relatively weakly compact, in E(M, τ) and in L2(M, τ).
Since {xn}∞n=1 is weakly null, and passing to a further subsequence if nec-
essary, we may assume that there exists a ∈ E(M, τ) ∩ L2(M, τ) such that
{xnen}∞n=1 converges weakly to a in E(M, τ) and in L2(M, τ), and such
that {xn(1 − en)}∞n=1 converges weakly in E(M, τ) to −a. By (3.24) and
(3.25), observe that

‖a‖E(M,τ) ≤ lim inf
n→∞

‖xn(1− en)‖E(M,τ)(3.26)

= lim
n→∞
‖xn(1− en)‖E(M,τ) < η/16Mp.

By passing to a further subsequence, we may assume that the weakly null
sequence {xn(1 − en) + a}∞n=1 satisfies the assertion of Lemma 3.8. Given
n ≥ 1, let k ∈ N satisfy 2k−1 ≤ n < 2k, and observe that

1

n1/p

∥∥∥
n∑

j=1

(xj(1− ej) + a)
∥∥∥
E(M,τ)

≤
1

n1/p

∥∥∥
k−1∑

j=1

(xj(1− ej) + a)
∥∥∥
E(M,τ)

+
1

n1/p

∥∥∥
n∑

j=k

(xj(1− ej) + a)
∥∥∥
E(M,τ)

≤
lnn

n1/p ln 2
2η +

1

n1/p

∥∥∥
n∑

j=k

(xj(1− ej) + a)
∥∥∥
E(M,τ)

< η/2 +
1

n1/p

∥∥∥
n∑

j=k

(xj(1− ej) + a)
∥∥∥
E(M,τ)

for all sufficiently large n ∈ N. Using now the fact that the sequence

{xj(1− ej) + a}2
k

j=k is 4-unconditional, from (3.24)–(3.26) and the fact that
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E(M, τ) is of type p with constant Mp, we obtain

(3.27)
1

n1/p

∥∥∥
n∑

j=k

(xj(1− ej) + a)
∥∥∥
E(M,τ)

≤
4Mp

n1/p

( n∑

j=k

‖xj(1− ej) + a‖
p
E(M,τ)

)1/p

≤ 4Mp max
k≤j≤n

‖xj(1− ej) + a‖E(M,τ) ≤ 4Mp2η/16Mp < η/2.

It now follows that

1

n1/p

∥∥∥
n∑

j=1

(xj(1− ej) + a)
∥∥∥
E(M,τ)

< η

for all sufficiently large n ∈ N. This in turn implies that

(3.28)
1

n1/p

n∑

j=1

(xj(1− ej) + a) ∈ N(ε/2, ε/2)

for all sufficiently large n ∈ N. By Proposition 3.2, the space L2(M, τ) has
the 2-Banach–Saks property, and so there exists a constant C(δ,∆) > 0 such
that

n−1/2
∥∥∥
n∑

j=1

(xjej − a)
∥∥∥
L2(M,τ)

≤ C(δ,∆)

for all n ∈ N. Thus,

n−1/p
∥∥∥
n∑

j=1

(xjej − a)
∥∥∥
L2(M,τ)

≤ C(δ,∆)n1/2−1/p

for all n ∈ N and this implies that n−1/p
∑n
j=1(xjej − a) → 0 in L2(M, τ)

and hence also for the measure topology. Consequently,

n−1/p
n∑

j=1

(xjej − a) ∈ N(ε/2, ε/2)

for all sufficiently large n ∈ N. Together with (3.28), this shows that

n−1/p
n∑

j=1

xj ∈ N(ε, ε)

for all sufficiently large n ∈ N, and this completes the proof of the theorem.

If X ⊆ E(M, τ) is a closed linear subspace, then a sequence {xn}∞n=1
⊆ X is said to be almost disjointly supported if there exists a sequence



158 P. G. Dodds et al.

{yn}∞n=1 ⊆ E(M, τ) which is right and left disjointly supported such that
‖xn − yn‖E(M,τ) → 0 as n→∞.

Proposition 3.12. Suppose that E is p-convex and q-concave for some
1 < p < 2 ≤ q <∞, that (M, τ) is non-atomic and that X ⊆ E(M, τ) is a
closed linear subspace. If X does not have the strong p-Banach–Saks prop-
erty , then X contains a seminormalised almost disjointly supported sequence
which converges to zero in measure.

Proof. Suppose that {xj}∞j=1 ⊆ X is a weakly null sequence which con-
tains no strong p-Banach–Saks subsequence. Passing to subsequences if nec-
essary, and appealing to [Ran2], we may assume that

xj = yj + zj , j ≥ 1,

where {yj}∞j=1, {zj}
∞
j=1 are bounded sequences such that {yj}

∞
j=1 is E-equi-

integrable and {zj}∞j=1 is two-sided disjointly supported. SinceE(M, τ) is re-
flexive, we may assume that {zj}∞j=1 is weakly convergent, and hence weakly
null by Lemma 2.4. It follows that we may now also assume that {yj}∞j=1
is weakly null. By Theorem 3.11, we may assume that n−1/p

∑n
k=1 xk → 0

for the measure topology. By Theorem 3.9, we may assume further that
{yj}∞j=1 is a strong p-Banach–Saks sequence. It follows that {zn}

∞
n=1 con-

tains no strong p-Banach–Saks subsequence. Let εk ↓ 0. There exists δ > 0
and an increasing sequence n(k) ↑ ∞ such that

n(k)−1/p
∥∥∥
n(k)∑

j=1

zj

∥∥∥
E(M,τ)

≥ δ, k ≥ 1,(3.29)

n(k)−1/pmax
{∥∥∥

n(k)∑

j=1

yj

∥∥∥
E(M,τ)

,
∥∥∥
n(k−1)∑

j=1

zj

∥∥∥
E(M,τ)

}
≤ εk, k ≥ 1.(3.30)

It follows from (3.29) and (3.30) that

(3.31) n(k)−1/p
∥∥∥

n(k)∑

j=n(k−1)+1

zj

∥∥∥
E(M,τ)

≥ δ/2, k ≥ 1.

We define the sequence {wk}∞k=1 ⊆ E(M, τ) by setting

wk := n(k)
−1/p

n(k)∑

j=n(k−1)+1

zj , k ≥ 1.

It is clear that {wk}∞k=1 is two-sided disjointly supported. As shown in [CDS,
Lemma2.6], there exists a pairwise disjointly supported sequence {fn}∞n=1⊆E
such that

µ(fn) = µ(zn), n ≥ 1.
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It follows readily that

µ
( n∑

j=1

cjfj

)
= µ
( n∑

j=1

|cj | |zj|
)
= µ
( n∑

j=1

cjzj

)

for every n ≥ 1 and every finite sequence c1, . . . , cn of scalars. Since E is
p-convex, we obtain

(3.32) ‖wk‖E(M,τ)

= n(k)−1/p
∥∥∥

n(k)∑

j=n(k−1)+1

zj

∥∥∥
E(M,τ)

= n(k)−1/p
∥∥∥

n(k)∑

j=n(k−1)+1

fj

∥∥∥
E

≤ n(k)−1/p
( n(k)∑

j=n(k−1)+1

‖µ(zj)‖
p
E

)1/p
≤Mp sup

j∈N

‖zj‖E(M,τ), k ∈ N.

It follows from (3.31), (3.32) that {wn}∞n=1 ⊆ E(M, τ) is seminormalised. If
we now set

un := n
−1/p

n∑

j=1

xj , n ≥ 1,

then the sequence {un}∞n=1 ⊂ X converges to zero for the measure topol-
ogy and ‖un − wn‖E(M,τ) → 0. This suffices to complete the proof of the
proposition.

We now consider the case that E is a Lorentz space Λψ,p = Λψ,p[0, α),
1 ≤ p < ∞, on some interval [0, α), 0 < α ≤ ∞. We suppose that ψ is a
positive concave function on [0,∞) with ψ(0+) = 0 and ψ(∞) = ∞. The
Lorentz space Λψ,p is the space of all measurable functions f on the interval
[0, α) such that

‖f‖ψ,p =
( \
[0,α)

µ(f)p dψ
)1/p

<∞.

From [KPS, Lemma II.5.1], the space Λψ,p is separable, and it follows
directly that Λψ,p has the Fatou property. Further, since Λψ,p is the p-
convexification [LT] of the 1-convex Banach lattice Λψ,1 = Λψ, it follows
that Λψ,p is p-convex. The Köthe dual Λ

×
ψ is the Marcinkiewicz space Mψ

consisting of all measurable functions f on [0, α) such that

‖f‖Mψ
= sup
0<t<α

ψ(t)−1
t\
0

µs(f) ds <∞.

It is easy to see that if α = ∞, then L∞ ⊆ Mψ = Λ×ψ if and only if

limt→∞ ψ(t)/t > 0. Equivalently, Λ×ψ ⊆ L0 if and only if limt→∞ ψ(t)/t = 0.
The concave function ψ will be called regular if there exists a constant k > 1
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such that ψ(2t) > kψ(t) for all t > 0. It is shown in [Re] (see also [Dil], [No])
that Λψ,p is q-concave for some q <∞ if and only if ψ is regular.

While various special cases of the lemma which follows are known, we
include details for the sake of completeness.

Lemma 3.13. Let {xn}∞n=1 ⊆ Λψ,p[0, α) be seminormalised and disjointly
supported. If α < ∞, or if α = ∞ and xn → 0 in measure, then {xn}∞n=1
contains a subsequence equivalent to the unit vector basis of lp.

Proof. In the case that α < ∞, the lemma is proved in [FJT, Theo-
rem 5.1]. The argument in the case that α =∞ is similar. It is well known
(cf. [KPS, Lemma II 2.1 and Theorem II 3.4]) that if x ∈ Λψ,p, then

‖x‖Λψ,p = sup
(∞\
0

|x ◦ σ(t)|p dψ(t)
)1/p

where the supremum is taken over all measure-preserving mappings σ of
[0,∞) into itself. If A ⊆ [0,∞) is any measurable subset, we denote by |A|
the Lebesgue measure of A. We may assume that ‖xn‖Λψ,p ≤ 1 for all n ∈ N.
Let εn ↓ 0. We may assume that |{|xn| > εn}| < εn. We set

yn = xnχ{|xn|>εn}, zn = xn − yn, n ∈ N.

It is clear that supp yn < εn and |zn| ≤ εn a.e. for all n ∈ N. We may
assume that inf ‖yn‖Λψ,p > 2δ and that inf ‖zn‖Λψ,p > 2δ, for some δ > 0.
By separability of E, we may assume that zn is compactly supported and
we set sn = supp zn for all n ∈ N. Observing that

‖zn‖Λψ,p ≤ εnψ(sn)
1/p, n ∈ N,

we may assume that sn ↑n ∞. Passing to a subsequence and relabelling if
necessary, we may assume there exist measure-preserving transformations

σn : [0, εn)→ supp yn, ωn : [0, sn)→ supp zn

such that\
[εn+1,εn)

|yn ◦ σn(t)|
p dψ(t) > δp,

\
[sn−1,sn)

|zn ◦ ωn(t)|
p dψ(t) > δp

for all n ∈ N. It is clear that we may assume that ε1 < s1. Let now σ be any
measure-preserving transformation on [0,∞) such that σ coincides with σn
on [εn+1, εn) and with ωn on [sn−1, sn) for all n ∈ N. Let {an}Nn=1 be any
finite scalar sequence. We obtain
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∥∥∥
N∑

n=1

anxn

∥∥∥
p

Λψ,p

≥
∞\
0

∣∣∣
N∑

n=1

anxn ◦ σ(t)
∣∣∣
p

dψ(t)

≥
N∑

n=1

|an|
p
εn\
εn+1

|xn ◦ σn(t)|
p dψ(t) +

N∑

n=1

|an|
p

sn\
sn−1

|xn ◦ ωn(t)|
p dψ(t)

=
N∑

n=1

|an|
p
εn\
εn+1

|yn ◦ σn(t)|
p dψ(t) +

N∑

n=1

|an|
p

sn\
sn−1

|zn ◦ ωn(t)|
p dψ(t)

≥ 2δp
( N∑

n=1

|an|
p
)
.

On the other hand, since Λψ,p is p-convex and therefore satisfies an upper
p-estimate, we deduce that

∥∥∥
N∑

n=1

anxn

∥∥∥
Λψ,p
≤
( N∑

n=1

|an|
p
)1/p

,

and this suffices to conclude the proof.

Theorem 3.14.

(i) If 1 ≤ p < ∞, then Λψ,p(M, τ) has the Banach–Saks property for
all semifinite (M, τ).

(ii) If 1 < p < 2 and if ψ is regular then, for all semifinite (M, τ),

(a) Λψ,p(M, τ) has the p-Banach–Saks property ;

(b) a closed linear subspace X⊆Λψ,p(M, τ) has the strong p-Banach–
Saks property if and only if X contains no subspace isomorphic
to lp;

(c) if (M, τ) is non-atomic, then a weakly null sequence {xj}∞j=1 ⊆
Λψ,p(M, τ) which is Λψ,p-equiintegrable has a strong p-Banach–
Saks subsequence.

Proof. (i) By the commutative specialisation of Theorem 2.13 (see also
[DSS, Theorem 4.5]) and by Theorem 2.14, it will suffice to show that if
{xn}∞n=1 ⊆ Λψ,p is weakly null and disjointly supported then {xn}

∞
n=1 con-

tains a Banach–Saks subsequence. We may suppose that supn ‖xn‖Λψ,p ≤ 1.
If p > 1, then Λψ,p is p-convex and therefore satisfies an upper p-estimate.
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In this case, there exists a constant M > 0 such that

∥∥∥n−1
n∑

j=1

xj

∥∥∥
Λψ,p
≤Mn1/p−1 → 0.

Consequently, {xn}∞n=1 is a Banach–Saks sequence. We may then suppose
that p = 1. If α < ∞, or if α = ∞ and limt→∞ ψ(t)/t > 0, then it follows
from [CSS, Theorem 1] that the sequence {xn}∞n=1 is Λψ-equiintegrable.
Since {xn}∞n=1 is disjointly supported, this implies that ‖xn‖Λψ → 0 so that
{xn}∞n=1 is a Banach–Saks sequence.

We may therefore assume that α = ∞ and that limt→∞ ψ(t)/t = 0. By
the commutative specialisation of Proposition 2.7 (see also [DSS, Proposi-
tion 3.2]), passing to a subsequence and relabelling if necessary we set

xn = yn + zn,

where the sequences {yn}∞n=1, {zn}
∞
n=1 are disjointly supported, {yn}

∞
n=1 is

equimeasurable, and {zn}∞n=1 converges to 0 for the measure topology. The
condition limt→∞ ψ(t)/t = 0 implies that Λ×ψ ⊆ L0[0,∞) and so by Propo-
sition 2.7(ii), we may assume that each of the sequences {yn}∞n=1, {zn}

∞
n=1

is weakly null. We may also assume that {xn}∞n=1 is not a Banach–Saks
sequence, and for ease of notation, we assume that there exists δ > 0 such
that

(3.33) n−1
∥∥∥
n∑

j=1

xj

∥∥∥
Λψ

> δ > 0

for all n ∈ N. We set

Xn =
1

n

n∑

j=1

xj , Yn =
1

n

n∑

j=1

yj , Zn =
1

n

n∑

j=1

zj

for all n ∈ N.

We show that ‖Yn‖Λψ → 0. We set f = µ(yn), n ∈ N, and observe that

µt(Yn) =
1

n
f

(
t

n

)
, t > 0, n ∈ N.

It follows that

‖Yn‖Λψ =
∞\
0

1

n
f

(
t

n

)
ψ′(t) dt =

∞\
0

f(s)ψ′(ns) ds

for all n ∈ N. Now, since 0 ≤ ψ′ is non-increasing,

fψ′(n ·) ≤ fψ′

for all n ∈ N. Since limt→∞ ψ(t)/t = 0, it follows from the concavity of ψ
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that limt→∞ ψ′(t) = 0. The dominated convergence theorem now implies

‖Yn‖Λψ =
∞\
0

f(s)ψ′(ns) ds→ 0.

It now follows from (3.33) that ‖Zn‖Λψ > δ/4 for all sufficiently large n ∈ N.
Let εk ↓ 0. We may assume there exists an increasing sequence n(k) ↑ ∞
such that

n(k + 1)−1
∥∥∥
n(k)∑

j=1

zj

∥∥∥
Λψ

< εk, n(k + 1)−1
∥∥∥
n(k+1)∑

j=n(k)+1

zj

∥∥∥
Λψ

>
δ

8
.

If we set

Z ′k = n(k + 1)
−1

n(k+1)∑

j=n(k)+1

zj

then the sequence {Z ′n}
∞
n=1 is disjointly supported, seminormalised and con-

verges to 0 in measure. By Lemma 3.13, {Z ′n}
∞
n=1 contains a subsequence

equivalent to the unit vector basis of l1. From this, it follows that {Z ′n}
∞
n=1

is not weakly null, and this implies that the sequence {zn}∞n=1 is not weakly
null, which is a contradiction.

(ii)(a) This follows from Proposition 3.2 and from the remarks preceding
Lemma 3.13.

(ii)(b) Assume first that (M, τ) is non-atomic. It is clear that if X
contains a subspace isomorphic to lp, then X does not have the strong p-
Banach–Saks property. Conversely, if X does not have the strong p-Banach–
Saks property, then it follows from Proposition 3.12 that X contains a semi-
normalised almost disjointly supported sequence {xn}∞n=1 which converges
to 0 in measure. The argument in the proof of Proposition 3.12 shows that
the sequence {xn}∞n=1 is equivalent to some disjointly supported seminor-
malised sequence {gn}∞n=1 in Λψ,p which converges to zero in measure. That
{gn}∞n=1, and consequently also {xn}

∞
n=1, contains a subsequence equivalent

to the unit vector basis in lp follows from Lemma 3.13. The assumption that
M is non-atomic is now removed as in the proof of Theorem 2.14.

(ii)(c) This follows from Theorem 3.9 and the remarks preceding Lem-
ma 3.13.

The preceding theorem extends several results proved in [HRS, Theo-
rem 4.6] for the special case that Λψ,p = Lp[0, 1], and appears to be new,
even in the commutative setting. The assertion of (i) for p = 1 is given in
[DSS, Theorem 5.7(i)], but the proof given there is valid only in the case of
finite intervals.
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