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Noncommutative function theory and unique extensions

by

David P. Blecher (Houston, TX) and Louis E. Labuschagne (Unisa)

Abstract. We generalize, to the setting of Arveson’s maximal subdiagonal subalge-
bras of finite von Neumann algebras, the Szegő Lp-distance estimate and classical theo-
rems of F. and M. Riesz, Gleason and Whitney, and Kolmogorov. As a byproduct, this
completes the noncommutative analog of the famous cycle of theorems characterizing the
function algebraic generalizations of H∞ from the 1960’s. A sample of our other results:
we prove a Kaplansky density result for a large class of these algebras, and give a neces-
sary condition for every completely contractive homomorphism on a unital subalgebra of
a C∗-algebra to have a unique completely positive extension.

1. Introduction. Function algebras are subalgebras of C(K) spaces, or
equivalently, subalgebras of commutative C∗-algebras. Thus function alge-
bras are examples of operator algebras (subalgebras of general C∗-algebras).
With this in mind, much work has been done to transfer results or perspec-
tives from function theory to operator algebraic settings. One such setting
where this transfer is particularly striking, is the theory of noncommutative
Hp spaces associated with Arveson’s maximal subdiagonal subalgebras of
finite von Neumann algebras. Remarkably, many of the central results from
abstract analytic function theory, and in particular much of the classical
generalized Hp function theory from the 1960’s, may be generalized almost
verbatim to subdiagonal algebras. The proofs in the noncommutative case
however, while often modeled loosely on the “commutative” arguments of
Helson and Lowdenslager [15] and others, usually require substantial input
from the theory of von Neumann algebras and noncommutative Lp spaces.
This has been done for example in [1, 24, 28, 23, 25, 26, 21, 4, 5, 7]. In fact
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in many cases—like Szegő’s theorem—completely new proofs have had to
be invented.

In the present paper we tackle what appears to us to be the main “clas-
sical” results which have resisted generalization to date, namely those re-
ferred to in the generalized function theory literature from the 1960’s as,
respectively, the F. and M. Riesz, Gleason and Whitney, Szegő Lp, and Kol-
mogorov, theorems. As a byproduct, this together with the main theorem
in [4], and some results in our other papers [5, 7], completes the noncom-
mutative analog of the famous cycle of theorems characterizing the function
algebraic generalizations of H∞ from the 1960’s (see Theorem 1.2 in our
survey [6] for a full statement of the cycle of results). In fact we are now at
last able to make the following statement: all of the generalized Hp function
theory, as summarized in [30] for example, extends further to the setting of
subdiagonal algebras.

In Arveson’s setting, and we will use this notation in the rest of this
paper, we have a weak∗ closed unital subalgebra A of a von Neumann al-
gebra M with a faithful normal tracial state τ such that if Φ is the unique
conditional expectation from M onto D = A ∩ A∗ satisfying τ = τ ◦ Φ,
then Φ is a homomorphism on A. Take note that here A∗ denotes the set
{a : a∗ ∈ A} and not the Banach dual of A. For the sake of clarity we
will write X⋆ for the Banach dual of a normed space X. We say that a
subalgebra A of the type described above is a tracial subalgebra of M . If
in addition A + A∗ is weak∗ dense in M then we say that A is maximal

subdiagonal (see [1, 10]). A large number of very interesting examples of
these objects were given by Arveson [1] and others (see e.g. [33, 24]). If D
is one-dimensional we say that A is antisymmetric; if further M is com-
mutative then A is called a weak∗ Dirichlet algebra [30]. Surprisingly, for
antisymmetric maximal subdiagonal algebras, many of the “commutative”
proofs from [30] require almost no change at all! It is worth saying that
classical notions of “analyticity” correspond in some very vague sense to
the case that D is “small”. Indeed, if A = M then D = M and Φ is the
identity map, so that the theory essentially collapses to the theory of finite
von Neumann algebras, which is clearly far away from classical concepts
of “analyticity”. Thus the reader should not be surprised that some of our
theorems require as a hypothesis that D be small. Indeed, for our F. and
M. Riesz theorem to hold, we show that it is necessary and sufficient for
D to be finite-dimensional. Because of this, in several applications of this
theorem we assume dim(D) <∞.

A subsidiary theme in our paper is “unique extensions” of maps on A.
We begin with some results on this topic in Section 2. Recall from [4] that a
subalgebra A of M has the unique normal state extension property if there
is a unique normal state on M extending τ|A. If, on the other hand, for
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every state ω of M with ω ◦ Φ = ω on A, we always have ω ◦ Φ = ω on M ,
then we say that A has the Φ-state property (1). The major unresolved ques-
tion in [4] was whether a tracial subalgebra with the unique normal state
extension property is maximal subdiagonal. We make what we feel is sub-
stantial progress on this question. In particular, we show that the question
is equivalent to the question of whether every tracial subalgebra with the
Φ-state property is maximal subdiagonal, and equivalent to whether every
tracial subalgebra satisfying a certain variant of the well known “factoriza-
tion” property actually has “factorization”. In Section 2 we also give an
interesting necessary condition for completely contractive homomorphisms
to have a unique completely positive extension. Our unique extension re-
sults play a role in the proof of our F. and M. Riesz theorem in Section 3,
and are the primary thrust of the Gleason–Whitney theorem in Section 4.
In Section 5 we prove our Szegő Lp formula, and generalized Kolmogorov
theorem.

Historically, the first noncommutative F. and M. Riesz theorem for sub-
diagonal algebras was the pretty theorem of Exel in [11]. This result assumes
norm density (2) of A+A∗, and antisymmetry. (We are aware of the F. and
M. Riesz theorem of Arveson [2] and Zsido’s extension thereof [33], but this
result is quite distinct from the ones discussed above.) Although some of the
steps of our proof parallel those of [11], the arguments are for the most part
quite different. Indeed, generally in our paper the proofs will be modeled on
the classical ones, but do however require some rather delicate additional
machinery.

Finally, we remark that there are other, more recent, noncommutative
variants of H∞ besides the subdiagonal algebras—see e.g. [27] and refer-
ences therein. Although here too one finds noncommutative generalizations
of classical Hp-theoretic results, such as the Szegő infimum theorem, these
variants are in general quite unrelated, with only a formal correspondence
to the present context. Although this other theory is extremely important
in its own right, it seems to be the theory of finite subdiagonal algebras that
is more conditioned to the application of noncommutative Lp space tech-
niques. Having said this, we are not aware of analogues of any of the results
from our present paper in that literature. In fact, as was pointed out to us
by G. Popescu, there is as yet no clear noncommutative analogue of L∞(T)
in that approach, and also no clear analogue of Hp for p /∈ {2,∞}. Thus it
is not at all obvious how one could even formulate a Gleason–Whitney or
F. and M. Riesz theorem in that context.

(1) One could replace states here by positive unital B(H)-valued maps, for a Hilbert
space H, but this formulation is easily seen to be equivalent.

(2) This is perhaps an appropriate hypothesis for an F. and M. Riesz theorem, but
unfortunately it does not cover the case of maximal subdiagonal algebras.
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2. Some results on unique extensions. For a functional ω ∈M⋆, we
will need to compare the property ω = ω ◦Φ on A with ω = ω ◦Φ on M . We
begin with the following remarks. It is easy to see, since Φ is idempotent,
that ω = ω ◦ Φ on A iff A0 ⊂ Ker(ω). Here and throughout our paper,
A0 = A ∩ Ker(Φ), a closed two-sided ideal in A.

For normal functionals one can say more, although this will not play an
important role for us. If f ∈ L1(M) let ωf = τ(f · ). From the last paragraph,
ωf = ωf ◦ Φ on A iff τ(fA0) = (0). On the other hand, ωf = ωf ◦ Φ on M
iff τ(fa) = τ(fΦ(a)) = τ(Φ(f)a) for all a ∈ M iff f = Φ(f) iff f ∈ L1(D).
(For some of these relations the reader may need to look e.g. at the second
paragraph of the proof of [4, Lemma 4.1].)

Proposition 2.1. If A is a tracial subalgebra of M then the unique nor-

mal state extension property is equivalent to the following property : whenever

ω is a normal state of M satisfying ω = ω ◦ Φ on A, then ω = ω ◦ Φ on M .

Proof. Suppose that A has the unique normal state extension property,
and that ω is a normal state of M satisfying ω = ω ◦ Φ on A. If ω = τ(f · ),
where f ∈ L1(M)+, then by the remarks preceding Proposition 2.1 we have
τ(fA0) = (0). Hence f ∈ L1(D) by [4, Lemma 4.1]. Hence ω = ω ◦Φ on M .

For the converse, note that if g ∈ L1(M)+ with τ = τ(g · ) on A, then
since τ = τ ◦Φ, we have τ(g · ) = τ(g · )◦Φ on A, and hence τ(g · ) = τ(g · )◦Φ
on M . By the remarks above, g ∈ L1(D)+. But then the fact that τ = τ(g · )
on D is enough to force g = 1. So A has the unique normal state extension
property.

We say that a subalgebra A ofM has factorization if given b ∈M+∩M−1

we can find a ∈ A−1 with b = a∗a (or equivalently b = aa∗). It is shown
in [1] that any maximal subdiagonal algebra has factorization. Thus it is
logmodular, namely any such b is a uniform limit of terms of the form a∗a
with a ∈ A−1. In fact, in the category of tracial algebras, factorization or
logmodularity are equivalent to maximal subdiagonality [4]. By the next
result such algebras have a formally much stronger property than that of
the last proposition:

Theorem 2.2. Let A be a logmodular subalgebra of a C∗-algebra M ,
and let Ψ be a positive contractive projection from M onto a subalgebra of

A containing 1M , which is a homomorphism on A. Then for any state (3)
ω of M , we have ω = ω ◦ Ψ on M whenever ω = ω ◦ Ψ on A.

Proof. If a ∈ A−1 then by hypothesis we have

ω(Ψ(a)a−1) = ω(Ψ(Ψ(a)a−1)) = ω(Ψ(a)Ψ(a−1)) = ω(1) = 1.

(3) As before it is not difficult to see that one could here replace states by positive
unital B(H)-valued maps.
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By the Cauchy–Schwarz and Kadison–Schwarz inequalities we deduce

1 ≤ ω(Ψ(a)Ψ(a)∗)ω((a−1)∗a−1) ≤ ω(Ψ(aa∗))ω((a−1)∗a−1)

= ω(Ψ(aa∗))ω((aa∗)−1).

We can now follow the proof of [8, Theorem 4.3.11] or [3, Theorem 4.4].
Since A is logmodular, for any b ∈ M−1 ∩M+ we have 1 ≤ ω(Ψ(b))ω(b−1).
This leads to the inequality 1 ≤ ω(Ψ(etu))ω(e−tu) = f(t) for u ∈ Msa.
Differentiating and noting that f ′(0) = 0 yields ω(u) = ω(Ψ(u)) as required.

When applied to tracial algebras and their associated canonical condi-
tional expectations, the preceding result still holds under a formally weaker
hypothesis. Specifically we say that a tracial subalgebra A of M with canon-
ical conditional expectation Φ has conditional factorization if given any
b ∈ M+ ∩ M−1, we have b = |a| for some element a ∈ A ∩ M−1 with
Φ(a)Φ(a−1) = 1.

Corollary 2.3. A tracial subalgebra of M with conditional factoriza-

tion has the Φ-state property.

Proof. The proof of the preceding theorem readily adapts, upon replac-
ing a with a−1 and b with b−1.

We say that A has the unique state extension property if there is a unique
state on M extending τ|A. This property is formally weaker than the Φ-state
property:

Proposition 2.4. Let A be a weak∗ closed unital subalgebra of M . If A
has the Φ-state property then it has the unique state extension property. The

converse is true if A is antisymmetric.

Proof. Suppose that ω is a state ofM extending τ|A. Then ω◦Φ = τ ◦Φ =
τ = ω on A. By the Φ-state property, on M we have ω = ω ◦Φ = τ ◦Φ = τ .
For the converse we need only note that if A is antisymmetric, then ω◦Φ = ω
on A forces τ = ω on A.

Corollary 2.5. Suppose that A is a tracial subalgebra of M with the

unique normal state extension property. Then A∞ = M ∩ [A]2 is a tracial

subalgebra with the Φ-state property.

Proof. First note that by [4, Theorem 4.4], A∞ is a tracial subalgebra
of M with respect to the same Φ and τ . By [4, Theorem 4.6], A∞ has
conditional factorization. Corollary 2.3 now gives the conclusion.

Corollary 2.6. The open question from [4] as to whether every tra-

cial subalgebra with the unique normal state extension property is maximal

subdiagonal , is equivalent to the question of whether every tracial subalgebra

with the Φ-state property is maximal subdiagonal. It is also equivalent to

whether every tracial subalgebra with the unique state extension property is



182 D. P. Blecher and L. E. Labuschagne

maximal subdiagonal. It is also equivalent to whether every tracial subalgebra

with conditional factorization has factorization.

Proof. Suppose that every tracial subalgebra with the Φ-state property
is maximal subdiagonal, and that A has the unique normal state extension
property. By Corollary 2.5, A∞ has the Φ-state property. Hence it is maximal
subdiagonal, and therefore satisfies L2 density. Consequently, A satisfies L2

density, and so A is maximal subdiagonal by [4].

Similarly, suppose that every tracial subalgebra with conditional factor-
ization has factorization, and suppose that A has the Φ-state property. By
the results above, A has the unique normal state extension property, and so
by [4, Theorem 4.6], A∞ has conditional factorization. By hypothesis, A∞

has factorization. Thus it is maximal subdiagonal by [4], and thus, as in the
last paragraph, A is maximal subdiagonal.

The other directions are obvious from the above.

Remark. Since the factorization property has been well studied, we
would guess that those more familiar than ourselves with factorization for
concrete examples such as CSL algebras may be able to easily resolve the
final question in the last corollary.

In [22], Lumer considered the property of “uniqueness of representing
measure”, namely that every multiplicative functional on A ⊂ C(K) has a
unique extension to a state on C(K). He showed how this condition could be
used as another possible axiom from which all the generalizedHp theory may
be derived. The natural noncommutative generalization of Lumer’s prop-
erty is that every completely contractive representation of A has a unique
completely positive extension to M . It is known that maximal subdiagonal
algebras have this property [3, 8]. Although we have not settled the converse
yet, we can say that every unital subalgebra of M which has this property
must in some sense be a large subalgebra of M . In this regard the follow-
ing result represents some sort of converse to many of the preceding results
which established various unique extension properties as a consequence of
maximal subdiagonality.

In the following result we use the C∗-envelope C∗
e (A) of an operator

algebra A. See e.g. [8, Section 4.3] for the definition of this, and for its
universal property.

Theorem 2.7. Suppose that A is a subalgebra of a unital C∗-algebra

B such that 1B ∈ A, and suppose that for every Hilbert space H, every

completely contractive unital homomorphism π : A → B(H) has a unique

completely contractive (or equivalently completely positive) extension B →
B(H). Then B = C∗

e (A), the C∗-envelope of A.
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Proof. Case 1: A is a C∗-subalgebra of B. In this case, since con-
tractive homomorphisms on C∗-algebras are ∗-homomorphisms (see e.g. [8,
Proposition 1.2.4]), we must prove that if every unital ∗-homomorphism
π : A → B(H) has a unique completely contractive extension B → B(H),
then A = B. To see this, let ̺ : B → B(H) be the universal representation
of B. Then ̺ is unital, and hence so is π = ̺|A. Let U be a unitary in π(A)′.
Since U∗̺(·)U = ̺ on A, by hypothesis we have U∗̺(·)U = ̺ on B, and
thus U ∈ ̺(B)′. Thus π(A)′ = ̺(B)′, and it follows that π(A)′′ = ̺(B)′′. If
˜̺ is the unique normal extension of ̺ to B⋆⋆, then ˜̺ is faithful on B⋆⋆ and
it has range ̺(B)′′. The restriction of ˜̺ to the copy A⊥⊥ of A⋆⋆ inside B⋆⋆

has range π(A)′′ = π(A)
w∗

, and is therefore surjective. This forces the copy
of A⋆⋆ inside B⋆⋆ to be all of B⋆⋆. Thus A = B ∩A⊥⊥ = B.

Case 2: general. Let C = C∗(A), the C∗-algebra generated by A in B.
Since A ⊂ C, it follows from the hypothesis that every unital ∗-homo-
morphism π : C → B(H) has a unique completely contractive extension
B → B(H). By Case 1, C = B.

By virtue of this fact, we need only prove that C∗(A) = C∗
e (A) under the

assumptions of the theorem. By the universal property of C∗
e (A), there is a

∗-epimorphism θ : B = C∗(A) → C∗
e (A) restricting to the “identity map”

on A. If B ⊂ B(H) then the canonical map from the copy of A in C∗
e (A) to

A ⊂ B(H) has a completely positive extension Φ : C∗
e (A) → B(H). On A,

the map Φ ◦ θ is the identity map, so that by hypothesis Φ ◦ θ = iB. Thus θ
is one-to-one, and hence C∗(A) is the C∗-envelope of A.

Corollary 2.8. Suppose that A is a tracial subalgebra of M such that

for every Hilbert space H, every completely contractive unital homomor-

phism π : A → B(H) has a unique completely contractive (or equivalently

completely positive) extension B → B(H). Then A generates M as a C∗-

algebra. Indeed , M is the C∗-envelope of A.

3. A noncommutative F. and M. Riesz theorem. The classical
form of the F. and M. Riesz theorem (see e.g. [18]) is known to fail for
weak∗ Dirichlet algebras; and hence it will also fail for subdiagonal algebras.
However, there is an equivalent version of the theorem which is true for
weak∗ Dirichlet algebras [17, 30], and we will focus on this variant here.
Namely, we shall say that a tracial subalgebra A of M has the F & M Riesz

property if for every bounded functional (4) ̺ on M which annihilates A0,
the normal and singular parts ̺n and ̺s annihilate A0 and A respectively.
During our investigation we shall have occasion to make use of the polar

(4) One could replace ̺ here by a B(H)-valued map, for a Hilbert space H, but this
formulation is easily seen to be equivalent.
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decomposition of normal functionals on a von Neumann algebra. We take
the opportunity to point out that for our purposes we shall assume such
a polar decomposition to be of the form ω(a) = |ω|(ua) for some partial
isometry u, rather than ω(a) = |ω|(au) which seems to be more common
among the proponents of noncommutative Lp spaces.

The following result shows that to study the F & M Riesz property, we
may restrict our attention to algebras for which the diagonal D is finite-
dimensional:

Proposition 3.1. If a tracial subalgebra A of M has the F & M Riesz

property then the diagonal D is finite-dimensional.

Proof. Let ψ ∈ D⋆. Then ψ ◦ Φ ∈ M⋆ annihilates A0. By the F & M
Riesz property, ψ ◦Φ agrees with (ψ ◦Φ)n on A, and so ψ = ψ ◦Φ|D is weak∗

continuous on D. Thus D is reflexive, and therefore finite-dimensional.

Lemma 3.2. Let A be a maximal subdiagonal subalgebra of M . Let ω be a

state of M , and let (πω, hω, Ωω) be the GNS representation of ω. Further , let

Ω0 be the orthogonal projection of Ωω onto the closed subspace πω(A0)Ωω.

(a) (i) There exists a central projection p0 in πω(M)′′ such that for any

ξ, ψ ∈ hω the functionals a 7→ 〈πω(a)p0ξ, ψ〉 and a 7→ 〈πω(a)(1−
p0)ξ, ψ〉 on M are respectively the normal and singular parts of

the functional a 7→ 〈πω(a)ξ, ψ〉. In particular , the triples (p0πω,
p0hω, p0Ωω) and ((1 − p0)πω, (1 − p0)hω, (1 − p0)Ωω) are copies

of the GNS representations of ωn and ωs respectively.

(ii) ω0 : a 7→ 〈πω(a)(Ωω −Ω0), Ωω −Ω0〉 defines a positive functional

on M satisfying ω0 = ω0 ◦ Φ.

(b) Suppose that in addition dim(D) <∞.

(i) Then ω0 is a normal functional of the form ω0 = τ(g1/2 · g1/2)
for some g ∈ D+. Moreover p0(Ωω − Ω0) = Ωω −Ω0, and p0Ω0

is the orthogonal projection of p0Ωω onto p0(πω(A0)Ωω).
(ii) If ω is singular , then πω(f)Ωω ∈ πω(A0)Ωω for any f ∈ D.

(c) Suppose that dim(D) < ∞ and Ωω 6∈ πω(A0)Ωω. If ω0 is faithful

on D, then there is a sequence {an} ⊂ A such that πω(an)(Ωω −Ω0)
→ p0Ωω.

Proof. (a)(i) This is essentially the content of [31, III.2.14].
(a)(ii) Let (πω, hω, Ωω) and Ω0 be as in the hypothesis, and define a

positive functional ω0 on M by

ω0 : a 7→ 〈πω(a)(Ωω −Ω0), Ωω −Ω0〉.

Let f ∈ A0 be given. By construction

πω(f)Ωω ⊥ (Ωω −Ω0).
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Since A0 is an ideal, πω(fa)Ωω ∈ πω(A0)Ωω for each a ∈ A0. Since Ω0

belongs to πω(A0)Ωω, we may of course select a sequence {bn} ⊂ A0 for
which πω(bn)Ωω converges to Ω0. Hence πω(fbn)Ωω converges to πω(f)Ω0.
Thus πω(f)Ω0 ∈ πω(A0)Ωω, which forces

πω(f)Ω0 ⊥ (Ωω −Ω0).

From the last two centered equations it is now clear that A0 ⊂ Ker(ω0).
Thus ω0 = ω0 ◦ Φ on A by the remarks preceding Proposition 2.1. Hence
ω0 = ω0 ◦ Φ on M by Corollary 2.3.

(b)(i) Since D is finite-dimensional, we can find g ∈ D+ so that

ω0(a) = τ(ga) for all a ∈ D.

Since ω0 ◦ Φ = ω0, we conclude that for any a ∈M ,

ω0(a) = ω0(Φ(a)) = τ(gΦ(a)) = τ(Φ(ga)) = τ(ga),

thereby establishing the first part of the claim.

For the second part, note that since ω0 is clearly normal, by (a)(i) we
have

0 = 〈πω(a)(1− p0)(Ωω −Ω0), Ωω −Ω0〉 for all a ∈M.

For a = 1 this yields 0 = ‖(1− p0)(Ωω −Ω0)‖, or equivalently

p0(Ωω −Ω0) = Ωω −Ω0.

From this fact, we may now conclude that

〈p0πω(a)Ωω, p0(Ωω −Ω0)〉 = 〈πω(a)Ωω, Ωω −Ω0〉 = 0 for all a ∈ A0.

Thus p0(Ωω −Ω0) ⊥ p0πω(A0)Ωω. Now select a sequence {bn} ⊂ A0 so that
πω(bn)Ωω → Ω0. By continuity, p0Ω0 = limn p0πω(bn)Ωω ∈ p0πω(A0)Ωω.
From these considerations it is clear that p0Ω0 is the orthogonal projection
of p0Ωω onto p0πω(A0)Ωω.

(b)(ii) If ω is singular, then

0 = ωn(ab) = 〈πω(ab)p0Ωω, Ωω〉 = 〈p0πω(b)Ωω, πω(a∗)Ωω〉 for all a, b ∈M.

Since Ωω is cyclic, this is sufficient to force p0 = 0. But then Ωω − Ω0 =
p0(Ωω −Ω0) = 0 by (b)(i). As before select {bn} ⊂ A0 so that πω(bn)Ωω →
Ω0 = Ωω. For any f ∈ D the ideal property of A0 then ensures that
πω(f)Ωω = limn πω(fbn)Ωω ∈ πω(A0)Ωω.

(c) Suppose that ωn, the normal part of ω, is of the form ωn = τ(h · ) for
some h ∈ L1(M)+. As noted earlier, (p0πω, p0hω, p0Ωω) is a copy of the GNS
representation generated by ωn. If we now compute the GNS representation
of ωn from first principles, it is clear that p0hω corresponds to the weighted

Hilbert space L2(M,h) obtained by equipping M with the inner product

〈a, b〉h = τ(h1/2b∗ah1/2), a, b ∈M,
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and taking the completion. Note that L2(M,h) can be identified unitarily,
and as M -modules, with the closure of Mh1/2 in L2(M). For any a ∈ M
considered as an element of L2(M,h) we will write Ψa instead of a. The
canonical ∗-homomorphism representing M as an algebra of bounded oper-
ators on L2(M,h) is of course given by defining

πn(b)Ψa = Ψba, a, b ∈M,

and then extending this action to all of L2(M,h). Since ωn is normal, πn (cor-
responding to p0πω) is σ-weakly continuous and satisfies πn(M) = πn(M)′′.
Thus Ker(πn) is a σ-weakly closed two-sided ideal, and hence we can find
a central projection e ∈ M so that (1 − e)M = Ker(πn). Restrict πn to a
∗-isomorphism from eM onto πn(M). Then for any a, b, c ∈M we have

〈πn(c)Ψa, Ψb〉h = τ(h1/2b∗(ece)ah1/2).

Let Ψ (0) denote the orthogonal projection of Ψ1 onto the closure of {Ψa :
a ∈ A0}. (Note that Ψ1 and Ψ (0) of course correspond to p0Ωω and p0Ω0 in
parts (a) and (b) of the proof.) Since L2(M,h) may be viewed as a subspace
of L2(M), let F ∈ L2(M) be the element corresponding to Ψ (0). It is easy
to see that eF = F . From (a) and (b) we now have

ω0 = 〈πn(·)(Ψ1 − Ψ (0)), Ψ1 − Ψ (0)〉h = τ((h1/2e− F ∗) · (h1/2e− F )).

This in turn ensures that

|h1/2e− F ∗|2 = g

where g is as in (b). Thus h1/2e−F ∈M . Since by assumption ω0 is faithful
on D, it follows that Supp(g) = 1. Since D is finite-dimensional, g must be
invertible. But then h1/2e− F must also be invertible, by the last centered
equation. (Recall that if ab is invertible in a finite von Neumann algebra
then both a and b are invertible.) The polar decomposition of h1/2e − F ∗

is of the form h1/2e − F ∗ = ug1/2 for some unitary u ∈ M . From this it is
clear that

(h1/2e− F )−1 = ug−1/2.

Clearly h1/2ug−1/2 ∈ L2(M). Hence we may select {an} ⊂M converging
in L2(M) to h1/2ug−1/2 = h1/2(h1/2e−F )−1. By the previously established
correspondences we then have

‖Ψ1 − πn(an)(Ψ1 − Ψ (0))‖h = τ(|h1/2e− (ane)(h
1/2e− F )|2)1/2

→ τ(|h1/2e− h1/2e|2)1/2 = 0.

This implies, in the notation of (a) and (b), that πω(an)(Ωω −Ω0) → p0Ωω.

It remains to show that we may select {an} ⊂ A, or equivalently, that
h1/2ug−1/2 ∈ [A]2. For this, it suffices by the L2 density of A+A∗ to show
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that h1/2ug−1/2 ⊥ [A∗
0]2. So let a ∈ A0 be given, and observe that

τ(ah1/2ug−1/2) = τ(g−1ah1/2ug−1/2g) = τ(g−1ah1/2ug1/2)

= τ((g−1ah1/2)(h1/2e− F ∗)) = τ((h1/2e− F ∗)(g−1ah1/2))

= 〈Ψg−1a, Ψ1 − Ψ (0)〉h = 0.

(The last equality follows from the ideal property of A0 and the fact that
Ψ1 − Ψ (0) is orthogonal to {Ψa : a ∈ A0}.) The claim therefore follows.

Corollary 3.3. Let A be a maximal subdiagonal algebra with dim(D)
<∞. The following are equivalent :

(i) A has the F & M Riesz property.

(ii) Whenever ω annihilates A0, the normal and singular parts, ωn and

ωs, separately annihilate A0.

(iii) Whenever ω annihilates A, ωn and ωs separately annihilate A0.

(iv) Whenever ω annihilates A, ωn and ωs separately annihilate A.

Proof. The implications (i)⇒(ii)⇒(iii) are clear. If (iii) holds, let ω be
a bounded linear functional which annihilates A0. Since Φ is a normal map
onto D, and D is finite-dimensional, the functional defined by

ωD = ω|D ◦ Φ

is normal. Then ̺ = ω− ωD defines a functional which annihilates A. From
(iii) we then find that ̺n and ̺s separately annihilate A0. The normality of
ωD ensures that

̺n = ωn − ωD, ̺s = ωs.

Since by construction ωD annihilates A0, we conclude that ωn and ωs sepa-
rately annihilate A0. This proves (ii).

To prove the validity of (i), it remains to show that any singular func-
tional ω which annihilates A0 also annihilates D. For such ω, the “modulus”
|ω| is still singular (see e.g. [16, 11], or the argument in the first part of the
proof of the next theorem). Let (πω, hω, Ωω) be the GNS representation of
|ω|. For each a ∈M we have |ω(a)|2 ≤ ‖ω‖ |ω|(a∗a). By a standard argument
this implies that there exists a vector η ∈ hω such that

ω(·) = 〈πω(·)Ωω, η〉.

Let d ∈ D be given. By Lemma 3.2(b)(ii) we may select a sequence {fn} ⊂
A0 so that πω(d)Ωω = limn πω(fn)Ωω. But then

ω(d) = 〈πω(d)Ωω, η〉 = lim
n

〈πω(fn)Ωω, η〉 = lim
n
ω(fn) = 0

as required.
The equivalence with (iv) is now obvious.

Theorem 3.4. Let A be a maximal subdiagonal algebra. Then A has the

F & M Riesz property if and only if dim(D) <∞.
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Proof. We proved one direction in Proposition 3.1. For the other, let
ω be a bounded linear functional on M which annihilates A0, and let ωn

and ωs be the normal and singular parts of ω. Write ωn = τ(h·) for some
h ∈ L1(M). We extend ω, ωn, and ωs uniquely to normal functionals on
the enveloping von Neumann algebra (the double commutant in the univer-
sal representation) and define |ω|, |ωn|, and |ωs| to be the absolute values
of these extensions restricted to M . Then from for example [16] (cf. [11,
Proposition 7]) applied to ω and τ , we deduce that as functionals on M ,
|ωn| and |ωs| are respectively the normal and singular parts of |ω|, and that
|ω| = |ωn| + |ωs|. We note from [9, p. 270] that there is no danger of con-
fusion as regards the absolute values of ωn since the absolute value of ωn

as a functional on M and as a functional on the enveloping von Neumann
algebra coincide on M . Now consider the positive functional ̺ given by

̺ = τ + |ω|.

Let (π̺, h̺, Ω̺) be the GNS representation constructed from ̺, and de-
fine ̺0 by ̺0(a) = 〈π̺(a)(Ω̺ − Ω0), Ω̺ − Ω0〉, where Ω0 is the orthogonal
projection of Ω̺ onto the closure of {π̺(a)Ω̺ : a ∈ A0}. For any f ∈ A0

and any d ∈ D+, by construction we have

‖π̺(d
1/2)(Ω̺ − π̺(f)Ω̺)‖

2 = ̺(|d1/2(1− f)|2) ≥ τ(|d1/2(1− f)|2)

= τ(d− df − f∗d+ |d1/2f |2)

= τ(d+ |d1/2f |2) ≥ τ(d).

On selecting a sequence {fn} ⊂ A0 so that π̺(fn)Ω̺ → Ω0, it follows
that ̺0(d) = ‖π̺(d

1/2)(Ω̺ − Ω0)‖
2 ≥ τ(d). Hence ̺0 is faithful on D, and

Ω̺ 6= Ω0. Thus we may apply all of Lemma 3.2 to (π̺, h̺, Ω̺).
Next notice that for each a in the enveloping von Neumann algebra we

have
|ω(a)|2 ≤ ‖ω‖ |ω|(a∗a) ≤ ‖ω‖̺(a∗a).

Thus on restricting to elements of M , and employing a standard argument,
this implies that there exists a vector η ∈ h̺ such that

ω(·) = 〈π̺(·)Ω̺, η〉.

Now consider the related functional

ω̃(·) = 〈π̺(·)(Ω̺ −Ω0), η〉.

Select a sequence {fn} ⊂ A0 so that π̺(fn)Ω̺ → Ω0. Let a ∈ A0 be given.
Since A0 is an ideal, and since ω annihilates A0, we conclude that

ω̃(a) = 〈π̺(a)(Ω̺ −Ω0), η〉 = lim
n
〈π̺(a(1− fn))Ω̺, η〉

= lim
n
ω(a(1− fn)) = 0.

Thus ω̃ also annihilates A0.
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By Lemma 3.2(c) we can find a sequence {an} ⊂ A with π̺(an)(Ω̺−Ω0)
→ p0Ω̺. Let a ∈ A0 be given. Since A0 is an ideal, and since ω̃ annihilates
A0, we may now conclude that

ωn(a) = 〈π̺(a)p0Ω̺, η〉 = lim
n
〈π̺(aan)(Ω̺ −Ω0), η〉 = lim

n
ω̃(aan) = 0.

Thus ωn annihilates A0. But then so does ωs = ω − ωn. It now follows from
Corollary 3.3 that A has the F & M Riesz property.

Corollary 3.5. If A is a maximal subdiagonal algebra with D finite-

dimensional , and if ω ∈M∗ annihilates A+A∗, then ω is singular.

Proof. Since A has the F & M Riesz property, ωn annihilates A. Simi-
larly, since A∗ has the F & M Riesz property, ωn annihilates A∗. Since A is
subdiagonal, ωn = 0.

Corollary 3.6. If A has the F & M Riesz property , then any positive

functional on M which annihilates A0 is normal.

Proof. If ω is a state on M which annihilates A0, and if A has the F &
M Riesz property, then the (positive) singular part of ω is 0 since it must
annihilate 1.

4. The Gleason–Whitney theorem. We now look at some properties
which are stronger than the normal state extension property. We say that
an extension in M⋆ of a functional in A⋆ is a Hahn–Banach extension if
it has the same norm. If A is a weak∗ closed subalgebra of M then we
say that A has property (GW1) if every Hahn–Banach extension to M of
any normal functional on A is normal on M . We say that A has property

(GW2) if there is at most one normal Hahn–Banach extension to M of any
normal functional on A. We say that A has the Gleason–Whitney property

(GW) if it has (GW1) and (GW2). This is simply saying that there is a
unique Hahn–Banach extension to M of any normal functional on A, and
this extension is normal. Of course normal functionals on A or on M have
to be of the form τ(g · ) for some g ∈ L1(M).

Theorem 4.1. If A is a tracial subalgebra of M then A is maximal

subdiagonal if and only if it has property (GW2). If D is finite-dimensional ,
then A is maximal subdiagonal if and only if it has property (GW).

Proof. Suppose that A has property (GW2). To show that A is maximal
subdiagonal, it suffices to show that if g ∈ L1(M) with τ(g(A + A∗)) = 0,
then g = 0. By considering real and imaginary parts we may assume that
g = g∗. Then τ(|g|·) and τ((|g| + g)·) are positive normal functionals on M
which agree on A. They are also Hahn–Banach extensions, since the norm
of a positive functional is achieved at 1. Thus by (GW2), these functionals
agree on M , and so |g| + g = |g|. That is, g = 0.
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In the remainder of the proof suppose that A is maximal subdiagonal.
Suppose that f, g ∈ L1(M) correspond to two normal Hahn–Banach exten-
sions to M of a given functional on A. Then ‖f‖1 = ‖g‖1, and this quantity
equals the norm of the restriction to A. We have τ((f − g)A) = 0; since A is
subdiagonal it follows from [28, Lemma 4] that h = g − f ∈ [A0]1. In order
to establish (GW2), we need to show that h = 0. Since Ball(A) is weak∗

compact, and since ‖f‖1 equals the norm of the above-mentioned restriction
to A, there exists a ∈ A of norm 1 with τ(fa) = ‖f‖1. It is evident that

|af |2 = f∗a∗af ≤ f∗f = |f |2.

Now 0 ≤ T ≤ S in Lp(M) implies that T 1/2 ≤ S1/2 (see e.g. [29, Lemma 2.3];
we thank David Sherman for this reference). It follows that |af | ≤ |f |. On
the other hand, τ(|f |) = τ(fa) = τ(af) ≤ τ(|af |). Thus ‖ |f | − |af | ‖1 =
τ(|f | − |af |) = 0, and so |f | = |af |. The functional ψ = τ(af ·) on M must
be positive since ψ(1) = τ(af) = τ(|f |) = τ(|af |) = ‖ψ‖. Thus af ≥ 0, and
af = |af | = |f |.

Since h ∈ [A0]1 we have

τ((f + h)a) = τ(fa) = ‖f‖1 = ‖g‖1 = ‖f + h‖1.

An argument similar to that of the last paragraph shows that a(f + h) =
|f + h| ≥ 0. Thus ah is self-adjoint. Since h ∈ [A0]1 it is easy to see that
τ(ahA) = 0. Therefore from the self-adjointness of ah one may deduce that
τ(ah(A+A∗)) = 0. Because A is subdiagonal, it follows that ah = 0. Thus

|f | = af = a(f + h) = |f + h|.

Let e be the left support projection of a. Then e⊥ is the projection onto
Ker(a∗). We have |f |e⊥ = f∗a∗e⊥ = 0. It follows that fe⊥ = 0. Thus

0 = e⊥f∗fe⊥ = e⊥|f + h|2e⊥ = e⊥(f + h)∗(f + h)e⊥ = e⊥h∗he⊥.

Hence he⊥ = 0. To show that he = 0, we reproduce the ideas in the argument
in the second paragraph of the proof. Namely, note that |(fa)∗|2 ≤ |f∗|2 ,
so that |(fa)∗| ≤ |f∗|. But τ(|f∗|) = ‖f‖1 = τ(fa) ≤ τ(|(fa)∗|), and as
before this shows that |(fa)∗| = |f∗|. Then also τ(fa) = τ(|(fa)∗|), and
as before this shows that fa ≥ 0. Similarly, (f + h)a ≥ 0. So ha is again
self-adjoint, and this implies as before that ha = 0. Thus he = 0, and so
h = he+ he⊥ = 0 as required.

Now suppose that, in addition, D is finite-dimensional, and that ̺ is a
Hahn–Banach extension of a normal functional ω on A. By basic functional
analysis, ω is the restriction of a normal functional ω̃ on M . We may write
̺ = ̺n +̺s, where ̺n and ̺s are respectively the normal and singular parts,
and ‖̺‖ = ‖̺n‖+‖̺s‖. Then ̺−ω̃ annihilates A, and hence by Corollary 3.3
and our F. and M. Riesz theorem both the normal and singular parts, ̺n−ω̃
and ̺s respectively, annihilate A. In particular ̺n = ω on A. But this implies
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that
‖̺n‖ + ‖̺s‖ = ‖̺‖ = ‖ω‖ ≤ ‖̺n‖.

We conclude that ̺s = 0. Thus A also satisfies (GW1), and hence (GW).

As an immediate consequence, one sees that a tracial algebra A is max-
imal subdiagonal iff every normal contractive unital B(H)-valued map has
at most one normal positive B(H)-valued extension to M .

There is another (simpler) variant of the Gleason–Whitney theorem [17,
p. 305], which transfers more easily to our setting:

Theorem 4.2. Let A be a maximal subdiagonal subalgebra of M with D
finite-dimensional. If ω is a normal functional on M then ω is the unique

Hahn–Banach extension of its restriction to A + A∗. In particular , ‖ω‖ =
‖ω|A+A∗‖ for any ω ∈M∗.

Proof. Let ̺ be a Hahn–Banach extension of the restriction of ω to
A + A∗. We may write ̺ = ̺n + ̺s, where ̺n and ̺s are respectively the
normal and singular parts, and ‖̺‖ = ‖̺n‖ + ‖̺s‖. Then ̺ − ω annihilates
A+A∗. By Corollary 3.5, ̺n − ω = (̺− ω)n = 0. As in the last part of the
previous proof, this implies that ̺s = 0. So ̺ = ̺n = ω.

Remark. If g ∈ L1(M), and ω = τ(g · ), then the last result shows that
‖g‖1 is the norm of the restriction of ω to A+A∗.

Corollary 4.3 (Kaplansky density theorem for subdiagonal algebras).
Let A be a maximal subdiagonal subalgebra of M with D finite-dimensional.

Then the unit ball of A+A∗ is weak∗ dense in Ball(M).

Proof. If C is the unit ball of A + A∗, it follows from the last remark
that the pre-polar of C is Ball(M⋆). By the bipolar theorem, C is weak∗

dense in Ball(M).

Remark. We do not know if the last few results hold without the as-
sumption that D be finite-dimensional. We also remark that there are B(H)-
valued versions of these results.

5. Szegő and Kolmogorov theorems for Lp(M). Arveson formu-
lated the Szegő theorem for L2(M) in terms of the Kadison–Fuglede deter-
minant ∆(·). The long-standing open question of whether general maximal
subdiagonal algebras satisfy the Szegő theorem for L2(M) was eventually
settled in the affirmative in [21]. We will now extend this result to Lp(M).
We refer the reader to [1, 4] for the properties of the Kadison–Fuglede de-
terminant which we shall need.

Lemma 5.1. ∆(bp) = ∆(b)p for p ≥ 1 and b ∈M+.

Proof. By the multiplicativity of ∆, the relation clearly holds for dyadic
rationals. We may assume that 0 ≤ b ≤ 1. In this case, by the functional
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calculus it is clear that bq ≤ bp if 0 < p ≤ q. If q is any dyadic rational larger
than p then

∆(b)q = ∆(bq) ≤ ∆(bp).

It follows that ∆(b)p ≤ ∆(bp). Replacing p by 1/p, we have ∆(bp)1/p ≤
∆((bp)1/p) = ∆(b), which gives the other direction.

Theorem 5.2 (An Lp variant of Szegő’s theorem). Suppose that A is

maximal subdiagonal , and 1 ≤ p < ∞. If h ∈ L1(M)+ then ∆(h) =
inf{τ(h|a+ d|p) : a ∈ A0, d ∈ D, ∆(d) ≥ 1}.

Proof. We set

Sp = {|a|p : a ∈ A, ∆(Φ(a)) ≥ 1},

S = {a∗a : a ∈ A−1, ∆(a) ≥ 1}.

By the modification in [4, Proposition 3.5] of a trick of Arveson’s from [1,
Theorem 4.4.3], it suffices to show that the closure of Sp equals the closure
of S. First we show that S ⊂ Sp. Indeed, if b ∈ S then b is invertible, and
therefore so is b1/p. Since A has factorization, there is an a ∈ A−1 with
|a| = b1/p. By Lemma 5.1 and Jensen’s formula [1, 21] we have

∆(Φ(a)) = ∆(a) = ∆(|a|) = ∆(b1/p) = ∆(b)1/p ≥ 1.

Hence b = |a|p ∈ Sp.
Suppose that b ∈ Sp. If b = |a|p where ∆(Φ(a)) ≥ 1 then by Jensen’s

inequality [1, 21] we have ∆(a) = ∆(|a|) ≥ 1. Hence by Lemma 5.1 we have
∆(b) ≥ 1. If n ∈ N then since A has factorization, there exists a c ∈ A−1

with b+ (1/n)1 = c∗c. Thus

∆(c)2 = ∆

(
b+

1

n
1

)
≥ ∆(b) ≥ 1.

Hence b+ (1/n)1 = c∗c ∈ S, and we deduce that b ∈ S. Hence Sp ⊂ S.

Note that the following generalized Kolmogorov theorem is not true for
all maximal subdiagonal algebras. For example, take A = M = L∞[0, 1].

Theorem 5.3. Suppose that A is an antisymmetric maximal subdiag-

onal algebra. If h ∈ L1(M)+ then inf{τ(h|1 + f |2) : f ∈ A0 + A∗
0} is

either τ(h−1)−1/2 if h−1 exists in the sense of unbounded operators and

is in L1(M); or 0 if h−1 /∈ L1(M). More generally , if 1 ≤ p < ∞ then

inf{τ(|(1 + f)h1/p|p) : f ∈ A0 + A∗
0} is either 0 if h−1 /∈ L1/(p−1)(M), or

τ(h−1/(p−1))1/p−1 if h−1 ∈ L1/(p−1)(M).

Proof. We formally follow the proof of Forelli as adapted in [30, p. 247].
Let h ∈ L1(M)+, and 1/p+ 1/q = 1. Define Lp(M,h) to be the completion
in Lp(M) of Mh1/p. Note that if e is the support projection of a positive
x ∈ Lp(M) then it is well known (see e.g. [20, Lemma 2.2]) that Lp(M)e
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equals the closure of Mx in Lp(M). Hence Lp(M,h) = Lp(M)e, where e
is the support projection of h. Now for any projection e ∈ M it is an easy
exercise to prove that the dual of Lp(M)e is eLq(M) (see e.g. [20]). It follows
that the dual of Lp(M,h) is Lq(M,h).

If k ∈ Lp(M,h) then kh1/q ∈ Lp(M)Lq(M) ⊂ L1(M). We view A0 +A∗
0

in Lp(M,h) as its image (A0 +A∗
0)h

1/p, and let N be the annihilator of this
in Lq(M,h). That is, g ∈ N iff g ∈ Lq(M,h) and

0 = τ(h1/p(A0 +A∗
0)g) = τ((A0 +A∗

0)gh
1/p).

Since gh1/p ∈ L1(M) the last equation holds iff gh1/p = c1, where c is a
constant. Since h is self-adjoint, if c 6= 0 then it follows that h−1/p exists in
the sense of unbounded operators, and its closure is the constant multiple
dg ∈ Lq(M), where d = c−1. (Since we are in the finite case, there is no
difficulty with τ -measurability here, which is automatic [32].) If c = 0 then
gh1/p = 0, which implies that g = 0. To see the last statement note that
if h1/p is viewed as a self-adjoint unbounded operator on a Hilbert space
H, and if e is its support projection, which equals the support projection

of h1/q, then eh1/p = h1/p, and so h1/pe = h1/p. Since g ∈ Mh1/q, we have
ge = g. However, ge = 0 since gh1/p = 0. Thus if g has norm 1 then c 6= 0,
h−1/p ∈ Lq(M) and |d| = ‖h−1/p‖Lq(M) = τ(h−q/p)1/q.

The infimum in the theorem is the pth power of the norm of 1 in the
quotient space of Lp(M,h) modulo the closure of A0 + A∗

0. Since the dual
of this quotient is (A0 + A∗

0)
⊥ = N , this infimum equals the pth power

of sup{|τ(gh1/p)| : g ∈ N, ‖g‖Lq(M) ≤ 1}. This equals 0 if no g ∈ N has

norm 1; otherwise it equals τ(h−q/p)−1/q = τ(h−1/(p−1))−1/q by the above.
Indeed, the infimum is 0 iff τ(gh1/p) = 0 for all g ∈ N . Since gh1/p is
constant, this occurs iff gh1/p = 0, which as we saw above happens iff g = 0.
Thus the infimum is 0 iff N = (0) iff (A0 + A∗

0)h
1/p is dense in Lp(M,h).

Since h1/p ∈ Lp(M,h), the latter condition implies that there is a sequence
(gn) in A0 + A∗

0 with gnh
1/p → h1/p in p-norm. If h−1/p ∈ Lq(M) then

by Hölder’s inequality we have τ(|gn − 1|) → 0, which is impossible since
1 = |τ(gn − 1)| ≤ τ(|gn − 1|).

Acknowledgements. We thank Mike Marsalli for many valuable dis-
cussions, and Marius Junge for a helpful insight concerning Theorem 2.7.

Note added in proof. Other variants of Theorem 5.2 have been es-
tablished in the forthcoming paper [7]. These variants seem more useful
when generalizing many of the classical results concerning outer functions
to the noncommutative Hp context. For all practical purposes, the results
of that paper therefore complete the noncommutative extension of the basic
“generalized” Hardy space theory for abstract function algebras surveyed
in [30].
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