STUDIA MATHEMATICA 178 (3) (2007)

Lacunary series in Q_K spaces

by

HASI WULAN (Shantou) and KEHE ZHU (Albany, NY, and Shantou)

Abstract. Under mild conditions on the weight function K we characterize lacunary series in the so-called \mathcal{Q}_K spaces.

1. Introduction. Let \mathbb{D} be the open unit disk in the complex plane \mathbb{C} . The Green's function for \mathbb{D} is given by

$$g(z,w) = \log \frac{1}{|\sigma_w(z)|} = \log \left| \frac{1 - \overline{w}z}{w - z} \right|,$$

where

$$\sigma_w(z) = \frac{w-z}{1-\overline{w}z}$$

is a Möbius transformation of \mathbb{D} .

Given a function $K : (0, \infty) \to [0, \infty)$, we consider the space \mathcal{Q}_K of all functions $f \in H(\mathbb{D})$ for which

$$\|f\|_{\mathcal{Q}_K}^2 = \sup_{w \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 K(g(z,w)) \, dA(z) < \infty,$$

where $H(\mathbb{D})$ is the space of all analytic functions in \mathbb{D} and dA is the Euclidean area measure on \mathbb{D} normalized so that $A(\mathbb{D}) = 1$. It is easy to check that $\| \|_{\mathcal{Q}_K}$ is a complete seminorm on \mathcal{Q}_K and it is Möbius invariant, that is,

$$||f \circ \sigma||_{\mathcal{Q}_K} = ||f||_{\mathcal{Q}_K}, \quad \sigma \in \operatorname{Aut}(\mathbb{D}),$$

where $\operatorname{Aut}(\mathbb{D})$ is the group of all Möbius maps of the unit disk. Earlier studies on \mathcal{Q}_K spaces can be found in [8], [9], [15]–[18].

It is clear that each Q_K contains all constant functions. If Q_K consists of just the constant functions, we say that it is *trivial*. It follows from the general theory of Möbius invariant function spaces (see [2] for example) that

²⁰⁰⁰ Mathematics Subject Classification: Primary 30B10, 30H05; Secondary 46E15.

Key words and phrases: Q_K spaces, lacunary series, Q_p spaces.

The first author supported by NSF-China.

The second author partially supported by NSF-USA.

 Q_K is nontrivial if and only if it contains the coordinate function z, and in this case, Q_K contains all polynomials.

From a change of variables we see that the coordinate function z belongs to Q_K if and only if

$$\sup_{w\in\mathbb{D}}\int_{\mathbb{D}}\frac{(1-|w|^2)^2}{|1-\overline{w}z|^4}\,K\!\left(\log\frac{1}{|z|}\right)dA(z)<\infty.$$

Simplifying the above integral in polar coordinates, we conclude that Q_K is nontrivial if and only if

(1)
$$\sup_{t \in (0,1)} \int_{0}^{1} \frac{(1-t)^2}{(1-tr^2)^3} K\left(\log \frac{1}{r}\right) r \, dr < \infty.$$

Throughout the paper we always assume that condition (1) above is satisfied, so that the space Q_K we study is nontrivial. Another standing assumption we make for the rest of the paper is that the weight function Kis nondecreasing.

An important tool in the study of \mathcal{Q}_K spaces is the auxiliary function φ_K defined by

$$\varphi_K(s) = \sup_{0 < t \le 1} \frac{K(st)}{K(t)}, \quad 0 < s < \infty.$$

The following condition has played a crucial role in the study of Q_K spaces during the last few years:

(2)
$$\int_{1}^{\infty} \varphi_K(s) \frac{ds}{s^2} < \infty.$$

See [9], [17], [18] for example. This condition will be crucial for us here as well. The main result of the paper is the following.

MAIN THEOREM. If K satisfies condition (2), then a lacunary series

$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$$

belongs to \mathcal{Q}_K if and only if

$$\sum_{k=1}^{\infty} n_k |a_k|^2 K\left(\frac{1}{n_k}\right) < \infty.$$

Recall that a function

$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$$

is called a *lacunary series* if

$$\lambda = \inf_k \frac{n_{k+1}}{n_k} > 1.$$

Such series are often used to construct examples of analytic functions in various function spaces.

A special case is worth mentioning. When $K(t) = t^p$, $0 \le p < \infty$, the resulting \mathcal{Q}_K space is usually denoted by \mathcal{Q}_p . It is well known that \mathcal{Q}_p coincides with BMOA if p = 1, and \mathcal{Q}_p is the Bloch space \mathcal{B} if p > 1. We remind the reader that \mathcal{B} consists of analytic functions f in \mathbb{D} such that

$$\sup_{z\in\mathbb{D}}(1-|z|^2)|f'(z)|<\infty.$$

The most interesting case is when $0 ; such <math>\mathcal{Q}_p$ spaces are distinct Möbius invariant Banach spaces that are strictly contained in BMOA. See [19] for the relatively new theory of \mathcal{Q}_p spaces.

It is well known that a lacunary series belongs to BMOA if and only if it is in the Hardy space H^2 ; see [5] for example. It is also well known that a lacunary series is in the Bloch space if and only if its Taylor coefficients are bounded; see [20] for example. Lacunary series in Q_p are characterized in [4]. More specifically, if $0 \le p \le 1$, then a lacunary series

$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$$

is in \mathcal{Q}_p if and only if

$$\sum_{k=1}^{\infty} n_k^{1-p} |a_k|^2 < \infty.$$

Since the function $K(t) = t^p$ satisfies condition (2) if and only if p < 1, our main result covers Q_p spaces for $0 \le p < 1$, but it misses the classical case of BMOA (corresponding to p = 1). Nevertheless, it should be clear from these remarks that condition (2) is very sharp.

2. Preliminaries on weight functions. The function theory of \mathcal{Q}_K obviously depends on the properties of K. Given two weight functions K_1 and K_2 , we write $K_1 \leq K_2$ if there exists a constant C > 0, independent of t, such that $K_1(t) \leq CK_2(t)$ for all t. The notation $K_1 \gtrsim K_2$ is used in a similar fashion. When $K_1 \leq K_2 \leq K_1$, we write $K_1 \approx K_2$.

It is clear that $K_1 \leq K_2$ implies $\mathcal{Q}_{K_2} \subset \mathcal{Q}_{K_1}$. In particular, K_1 and K_2 give rise to the same \mathcal{Q}_K space whenever $K_1 \approx K_2$. The converse is false in general, as is demonstrated by the fact that \mathcal{Q}_p equals the Bloch space for all p > 1.

In this section we collect several results about the weight functions that are needed for subsequent sections and are of some independent interest. Although a few of the results in this section are buried in [8] and [9], we include proofs here for the sake of completeness and ease of reference.

LEMMA 1. If

$$K_1(t) = \begin{cases} K(t), & 0 < t \le 1, \\ K(1), & 1 \le t < \infty, \end{cases}$$

then $\mathcal{Q}_K = \mathcal{Q}_{K_1}$.

Proof. Since K is nondecreasing, we have $K_1 \leq K$, so $\mathcal{Q}_K \subset \mathcal{Q}_{K_1}$. In particular, both spaces are nontrivial Möbius invariant spaces.

Since $K(\log(1/|z|))$ is a radial function, integration in polar coordinates shows that $f \mapsto f'(0)$ is a bounded linear functional on any nontrivial \mathcal{Q}_K space. By [12], each such space \mathcal{Q}_K is contained in the Bloch space.

Fix a function $f \in \mathcal{Q}_{K_1}$ and consider the integrals

$$I(a) = \int_{\mathbb{D}} |f'(z)|^2 K(g(z,a)) \, dA(z).$$

We must show that I(a) is bounded for $a \in \mathbb{D}$. To this end, we write $I(a) = I_1(a) + I_2(a)$, where

$$I_1(a) = \int_{|\varphi_a(z)| > e^{-1}} |f'(z)|^2 K(g(z, a)) \, dA(z),$$

$$I_2(a) = \int_{|\varphi_a(z)| \le e^{-1}} |f'(z)|^2 K(g(z, a)) \, dA(z).$$

It is clear that

$$I_1(a) \le \int_{\mathbb{D}} |f'(z)|^2 K_1(g(z,a)) \, dA(z),$$

so there exists a positive constant C_1 such that $I_1(a) \leq C_1$ for all $a \in \mathbb{D}$.

By a change of variables, we have

$$I_{2}(a) = \int_{|\varphi_{a}(z)| \le e^{-1}} |f'(z)|^{2} K\left(\log \frac{1}{|\varphi_{a}(z)|}\right) dA(z)$$

$$= \int_{|z| \le e^{-1}} |f'(\varphi_{a}(z))|^{2} K\left(\log \frac{1}{|z|}\right) \frac{(1-|a|^{2})^{2}}{|1-\overline{a}z|^{4}} dA(z)$$

$$= \int_{|z| \le e^{-1}} \frac{|f'(\varphi_{a}(z))|^{2} (1-|\varphi_{a}(z)|^{2})^{2}}{(1-|z|^{2})^{2}} K\left(\log \frac{1}{|z|}\right) dA(z).$$

Since f is in the Bloch space, we can find a constant $C_2 > 0$ such that

$$I_2(a) \le C_2 \int_{|z| \le e^{-1}} K\left(\log \frac{1}{|z|}\right) dA(z) \le C_2 \int_{\mathbb{D}} K\left(\log \frac{1}{|z|}\right) dA(z).$$

By condition (1), the last integral above is convergent, so there exists a constant $C_3 > 0$ such that $I_2(a) \leq C_3$ for all $a \in \mathbb{D}$. This shows that I(a) is bounded in a, or equivalently, f belongs to \mathcal{Q}_K .

The significance of Lemma 1 is that the space \mathcal{Q}_K only depends on the behavior of K(t) for t close to 0. In particular, when studying \mathcal{Q}_K spaces, we can always assume that K(t) = K(1) for $t \ge 1$. However, we do not make this assumption in our main theorems.

LEMMA 2. If K satisfies condition (2), then the function

$$K^*(t) = t \int_t^\infty K(s) \frac{ds}{s^2}, \quad 0 < t < \infty,$$

has the following properties:

(i) K^* is nondecreasing on $(0, \infty)$.

- (ii) $K^*(t)/t$ is nonincreasing on $(0, \infty)$.
- (iii) $K^*(t) \ge K(t)$ for all $t \in (0, \infty)$.
- (iv) $K^* \leq K \text{ on } (0,1].$

If K(t) = K(1) for $t \ge 1$, then we also have

(v)
$$K^*(t) = K^*(1) = K(1)$$
 for $t \ge 1$, so $K^* \approx K$ on $(0, \infty)$.

Proof. If $t \in (0, 1]$, then a change of variables gives

$$K^*(t) = t \int_t^\infty K(s) \frac{ds}{s^2} = \int_1^\infty K(ts) \frac{ds}{s^2} = K(t) \int_1^\infty \frac{K(ts)}{K(t)} \frac{ds}{s^2}$$
$$\leq K(t) \int_1^\infty \varphi_K(s) \frac{ds}{s^2}.$$

So condition (2) implies that $K^*(t) \leq K(t)$ for $t \in (0, 1]$. This yields property (iv) and shows that $K^*(t)$ is well defined for all t > 0.

Since

$$\frac{K^*(t)}{t} = \int_t^\infty K(s) \, \frac{ds}{s^2}$$

and K is nonnegative, we see that the function $K^*(t)/t$ is decreasing. This proves (ii). Property (v) follows from a direct calculation.

Using the assumption that K is nondecreasing again, we obtain

$$K^*(t) = t \int_t^\infty K(s) \frac{ds}{s^2} \ge tK(t) \int_t^\infty \frac{ds}{s^2} = K(t)$$

for all $0 < t < \infty$. This proves property (iii).

It remains for us to show that K^* is nondecreasing. To this end, we fix $0 < t < T < \infty$ and consider the difference

$$D = K^{*}(T) - K^{*}(t) = T \int_{T}^{\infty} \frac{K(s) \, ds}{s^{2}} - t \int_{t}^{\infty} \frac{K(s) \, ds}{s^{2}}$$
$$= (T - t) \int_{T}^{\infty} \frac{K(s) \, ds}{s^{2}} - t \int_{t}^{T} \frac{K(s) \, ds}{s^{2}}.$$

Since K is nondecreasing and nonnegative, we have

$$D \ge (T-t)K(T)\int_{T}^{\infty} \frac{ds}{s^2} - tK(T)\int_{t}^{T} \frac{ds}{s^2} = 0.$$

This proves property (i) and completes the proof of the lemma. \blacksquare

Note that condition (2) is critically needed only in the proof of (iv). Without condition (2), properties (i), (ii), and (iii) remain valid, provided that K^* is allowed to be identically infinite.

COROLLARY 3. If K satisfies condition (2), then there exists a constant C > 0 such that $K(2t) \leq CK(t)$ for all $0 \leq 2t \leq 1$.

Proof. For any t > 0, we have

$$\frac{K^*(2t)}{K^*(t)} = 2\frac{\int\limits_{2t}^{\infty} \frac{K(s)\,ds}{s^2}}{\int\limits_{t}^{\infty} \frac{K(s)\,ds}{s^2}} \le 2.$$

The desired estimate now follows from parts (iii) and (iv) of Lemma 2. \blacksquare

If we started out with a weight function K with the property that K(t) = K(1) for $t \ge 1$, then the conclusion of Corollary 3 could be strengthened to $K(2t) \approx K(t)$ for t > 0.

PROPOSITION 4. If K satisfies condition (2), then we can find another nonnegative weight function K^* such that $Q_K = Q_{K^*}$ and that the new weight function K^* has the following properties:

- (a) K^* is nondecreasing on $(0, \infty)$.
- (b) K^* satisfies condition (1).
- (c) K^* satisfies condition (2).
- (d) $K^*(2t) \approx K^*(t)$ on $(0, \infty)$.
- (e) K^* is differentiable (up to any given order) on $(0, \infty)$.
- (f) K^* is concave on $(0, \infty)$.
- (g) $K^*(t) = K^*(1)$ for $t \ge 1$.

(h) $K^*(t)/t$ is nonincreasing on $(0,\infty)$.

(i) $K^*(t) \approx K(t)$ on (0, 1].

Proof. By Lemma 1, we may assume that K(t) = K(1) for all $t \ge 1$. Under this assumption, the function K^* from Lemma 2 then satisfies $K^* \approx K$ on $(0, \infty)$. Moreover, properties (a), (b), (c), (g), (h), and (i) all hold.

Property (d) follows from the proof of Corollary 3.

If we repeat the construction $K \mapsto K^*$, then we can make the new weight function differentiable up to any desired order. So property (e) holds.

If the function K is differentiable, which we may assume by property (e), then

$$\frac{d}{dt}K^{*}(t) = \int_{t}^{\infty} \frac{K(s)\,ds}{s^{2}} - \frac{K(t)}{t} \quad \text{and} \quad \frac{d^{2}}{dt^{2}}K^{*}(t) = -\frac{K'(t)}{t} \le 0.$$

This shows that K^* is concave on $(0,\infty)$ and completes the proof of the proposition. \blacksquare

THEOREM 5. If K satisfies condition (2), then for any $\alpha > 0$ and $0 \le \beta < 1$ we have

$$\int_{0}^{1} r^{\alpha-1} \left(\log \frac{1}{r} \right)^{-\beta} K\left(\log \frac{1}{r} \right) dr \approx C(\beta) \left(\frac{1-\beta}{\alpha} \right)^{1-\beta} K\left(\frac{1-\beta}{\alpha} \right),$$

where $C(\beta)$ is a constant depending on β alone.

Proof. Let

$$I = \int_{0}^{1} r^{\alpha - 1} \left(\log \frac{1}{r} \right)^{-\beta} K \left(\log \frac{1}{r} \right) dr.$$

By a change of variables,

$$I = \int_{0}^{\infty} e^{-\alpha t} t^{-\beta} K(t) \, dt.$$

We write $I = I_1 + I_2$, where

$$I_{1} = \int_{0}^{(1-\beta)/\alpha} e^{-\alpha t} t^{-\beta} K(t) dt, \quad I_{2} = \int_{(1-\beta)/\alpha}^{\infty} e^{-\alpha t} t^{-\beta} K(t) dt.$$

Since K is nondecreasing, we have

$$I_1 \le K \left(\frac{1-\beta}{\alpha}\right) \int_{0}^{(1-\beta)/\alpha} e^{-\alpha t} t^{-\beta} dt.$$

Making the change of variables $t = (1 - \beta)s/\alpha$, we obtain

$$I_{1} \leq \left(\frac{1-\beta}{\alpha}\right)^{1-\beta} K\left(\frac{1-\beta}{\alpha}\right) \int_{0}^{1} e^{-(1-\beta)s} s^{-\beta} ds$$
$$= C(\beta) \left(\frac{1-\beta}{\alpha}\right)^{1-\beta} K\left(\frac{1-\beta}{\alpha}\right).$$

By part (iii) of Lemma 2, we have

$$I_2 \le \int_{(1-\beta)/\alpha}^{\infty} e^{-\alpha t} t^{1-\beta} \, \frac{K^*(t)}{t} \, dt.$$

According to part (ii) of Lemma 2, the function $K^*(t)/t$ is decreasing on $(0,\infty)$, so

$$I_2 \le \frac{K^*((1-\beta)/\alpha)}{(1-\beta)/\alpha} \int_{(1-\beta)/\alpha}^{\infty} e^{-\alpha t} t^{1-\beta} dt.$$

A change of variables $(t = (1 - \beta)s/\alpha)$ in the integral above leads to

$$I_2 \le \left(\frac{1-\beta}{\alpha}\right)^{1-\beta} K^*\left(\frac{1-\beta}{\alpha}\right) \int_{1}^{\infty} e^{-(1-\beta)s} s^{1-\beta} \, ds$$

This together with part (iv) of Lemma 2 shows that

$$I_2 \lesssim C(\beta) \left(\frac{1-\beta}{\alpha}\right)^{1-\beta} K\left(\frac{1-\beta}{\alpha}\right).$$

Combining this with what was proved in the previous paragraph, we have

$$I \lesssim C(\beta) \left(\frac{1-\beta}{\alpha}\right)^{1-\beta} K\left(\frac{1-\beta}{\alpha}\right).$$

On the other hand,

$$I \ge \int_{(1-\beta)/\alpha}^{\infty} e^{-\alpha t} t^{-\beta} K(t) \, dt.$$

The assumption that K is nondecreasing gives

$$I \ge K\left(\frac{1-\beta}{\alpha}\right) \int_{(1-\beta)/\alpha}^{\infty} e^{-\alpha t} t^{-\beta} dt.$$

Make a change of variables according to $t = (1 - \beta)s/\alpha$. Then

$$I \ge C(\beta) \left(\frac{1-\beta}{\alpha}\right)^{1-\beta} K\left(\frac{1-\beta}{\alpha}\right).$$

This completes the proof of the theorem.

3. Lacunary series in Q_K . We begin with an estimate of the weighted Dirichlet integral in terms of Taylor coefficients.

THEOREM 6. If K satisfies condition (2) and

$$f(z) = \sum_{n=0}^{\infty} a_n z^n,$$

then

$$\int_{\mathbb{D}} |f'(z)|^2 K\left(\log\frac{1}{|z|}\right) dA(z) \approx \sum_{n=1}^{\infty} n |a_n|^2 K\left(\frac{1}{n}\right).$$

Proof. Write

$$I(f) = \int_{\mathbb{D}} |f'(z)|^2 K\left(\log\frac{1}{|z|}\right) dA(z).$$

Integrating in polar coordinates leads to

$$I(f) = 2\sum_{n=1}^{\infty} n^2 |a_n|^2 \int_0^1 r^{2n-1} K\left(\log\frac{1}{r}\right) dr.$$

We apply Theorem 5 with $\beta = 0$ and $\alpha = 2n$ to obtain

$$I(f) \approx \sum_{n=1}^{\infty} n|a_n|^2 K\left(\frac{1}{2n}\right).$$

The desired result then follows from Corollary 3. \blacksquare

We are now ready to prove the main result of the paper.

THEOREM 7. If K satisfies condition (2), then a lacunary series

$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$$

belongs to \mathcal{Q}_K if and only if

(3)
$$\sum_{k=1}^{\infty} n_k |a_k|^2 K\left(\frac{1}{n_k}\right) < \infty.$$

Proof. First assume that

$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$$

is a lacunary series in \mathcal{Q}_K . Then

$$\int_{\mathbb{D}} |f'(z)|^2 K\left(\log \frac{1}{|z|}\right) dA(z) = \int_{\mathbb{D}} |f'(z)|^2 K(g(z,0)) dA(z) < \infty,$$

which, according to Theorem 6, implies condition (3).

Next assume that condition (3) holds. We proceed to estimate the integral

$$I(a) = \int_{\mathbb{D}} |f'(z)|^2 K(g(z, a)) \, dA(z), \quad a \in \mathbb{D}.$$

As the first step, we show that for any $a \in \mathbb{D}$,

(4)
$$I(a) \le 2 \int_{0}^{1} r \Big[\sum_{\substack{k=1 \ i = n}}^{\infty} n_k |a_k| r^{n_k - 1} \Big]^2 K \left(\log \frac{1}{r} \right) dr.$$

To this end, we write $z = re^{i\theta}$ in polar form and observe that

$$|f'(z)| \le \sum_{k=1}^{\infty} n_k |a_k| r^{n_k - 1}.$$

It follows that

$$I(a) \le 2\int_{0}^{1} \left[\sum_{k=1}^{\infty} n_{k} |a_{k}| r^{n_{k}-1}\right]^{2} r \, dr \, \frac{1}{2\pi} \int_{0}^{2\pi} K(g(re^{i\theta}, a)) \, d\theta.$$

By Proposition 4, we may as well assume that K is concave. Then

$$\frac{1}{2\pi}\int_{0}^{2\pi}K(g(re^{i\theta},a))\,d\theta \le K\bigg(\frac{1}{2\pi}\int_{0}^{2\pi}g(re^{i\theta},a)\,d\theta\bigg).$$

By Jensen's formula, the integral

$$\frac{1}{2\pi}\int_{0}^{2\pi}g(re^{i\theta},a)\,d\theta = \frac{1}{2\pi}\int_{0}^{2\pi}\log\left|\frac{1-\overline{a}re^{i\theta}}{re^{i\theta}-a}\right|d\theta$$

is equal to $\log(1/|a|)$ for $0 < r \le |a|$ and $\log(1/r)$ for |a| < r < 1. In particular,

$$\frac{1}{2\pi} \int_{0}^{2\pi} g(re^{i\theta}, a) \, d\theta \le \log \frac{1}{r}.$$

From this we deduce inequality (4).

Our second step is to prove that inequality (4) implies

(5)
$$I(a) \lesssim \sum_{n=0}^{\infty} \left[\sum_{n_k \in I_n} n_k |a_k| \right]^2 \frac{1}{2^n} K\left(\frac{1}{2^n}\right),$$

where

$$I_n = \{k : 2^n \le k < 2^{n+1}, \, k \in \mathbb{N}\}.$$

To this end, we combine the elementary estimates

$$\sum_{n=0}^{\infty} 2^{n/2} r^{2^n} \le \sqrt{2} \sum_{\substack{n=0\\ 0}}^{\infty} \int_{2^n}^{2^{n+1}} t^{-1/2} r^{t/2} dt$$
$$\le \sqrt{2} \int_{0}^{\infty} t^{-1/2} r^{t/2} dt = 2 \Gamma\left(\frac{1}{2}\right) \left(\log\frac{1}{r}\right)^{-1/2}$$

226

with the Cauchy-Schwarz inequality to produce

$$\left[\sum_{k=1}^{\infty} n_k |a_k| r^{n_k}\right]^2 = \left[\sum_{n=0}^{\infty} \sum_{n_k \in I_n} n_k |a_k| r^{n_k}\right]^2 \le \left[\sum_{n=0}^{\infty} \sum_{n_k \in I_n} n_k |a_k| r^{2^n}\right]^2$$
$$\le \left[\sum_{n=0}^{\infty} 2^{n/2} r^{2^n}\right] \left[\sum_{n=0}^{\infty} 2^{-n/2} r^{2^n} \left(\sum_{n_k \in I_n} n_k |a_k|\right)^2\right]$$
$$\le \frac{2 \Gamma(1/2)}{(\log(1/r))^{1/2}} \sum_{n=0}^{\infty} 2^{-n/2} r^{2^n} \left[\sum_{n_k \in I_n} n_k |a_k|\right]^2.$$

This together with (4) and Theorem 5 and Corollary 3 gives

$$\begin{split} I(a) &\leq 2 \int_{0}^{1} r^{-1} \Big[\sum_{k=1}^{\infty} n_{k} |a_{k}| r^{n_{k}} \Big]^{2} K \left(\log \frac{1}{r} \right) dr \\ &\lesssim \sum_{n=0}^{\infty} 2^{-n/2} \Big[\sum_{n_{k} \in I_{n}} n_{k} |a_{k}| \Big]^{2} \int_{0}^{1} r^{2^{n}-1} \left(\log \frac{1}{r} \right)^{-1/2} K \left(\log \frac{1}{r} \right) dr \\ &\lesssim \sum_{n=0}^{\infty} \Big[\sum_{n_{k} \in I_{n}} n_{k} |a_{k}| \Big]^{2} \frac{1}{2^{n}} K \left(\frac{1}{2^{n}} \right). \end{split}$$

Thus, inequality (5) holds.

If $n_k \in I_n$, then $n_k < 2^{n+1}$. It follows from the monotonicity of K and Corollary 3 that

$$\frac{1}{n_k} K\left(\frac{1}{n_k}\right) \ge \frac{1}{2^{n+1}} K\left(\frac{1}{2^{n+1}}\right) \gtrsim \frac{1}{2^n} K\left(\frac{1}{2^n}\right).$$

Combining this with (5), we obtain

(6)
$$I(a) \lesssim \sum_{n=0}^{\infty} \left[\sum_{n_k \in I_n} n_k |a_k| \sqrt{\frac{1}{n_k} K\left(\frac{1}{n_k}\right)} \right]^2.$$

Note that everything so far in the proof works for an arbitrary analytic function, not just for a lacunary series. Our final step, though, does make use of the fact that f is a lacunary series. More specifically, if

$$\frac{n_{k+1}}{n_k} \ge \lambda > 1$$

for all k, then the Taylor series of f(z) has at most $[\log_{\lambda} 2] + 1$ terms $a_k z^{n_k}$ such that $n_k \in I_n$ for $n \in \mathbb{N}$. By (6) and Hölder's inequality,

$$I(a) \lesssim \left([\log_{\lambda} 2] + 1 \right) \sum_{n=0}^{\infty} \sum_{n_k \in I_n} n_k |a_k|^2 K\left(\frac{1}{n_k}\right)$$
$$= \left([\log_{\lambda} 2] + 1 \right) \sum_{k=1}^{\infty} n_k |a_k|^2 K\left(\frac{1}{n_k}\right).$$

This shows that condition (3) implies $f \in Q_K$. The proof of the theorem is now complete.

4. Lacunary series in $\mathcal{Q}_{K,0}$. Let $\mathcal{Q}_{K,0}$ denote the subspace of \mathcal{Q}_K consisting of functions f with

$$\lim_{|a| \to 1^{-}} \int_{\mathbb{D}} |f'(z)|^2 K(g(z,a)) \, dA(z) = 0.$$

The following result together with Theorem 7 characterizes lacunary series in $\mathcal{Q}_{K,0}$.

THEOREM 8. Let

$$f(z) = \sum_{k=1}^{\infty} a_k z^{n_k}$$

be a lacunary series. If K satisfies condition (2), then $f \in \mathcal{Q}_K$ if and only if $f \in \mathcal{Q}_{K,0}$.

Proof. Suppose the lacunary series f belongs to \mathcal{Q}_K . We must show that $I(a) \to 0$ as $|a| \to 1^-$, where

$$I(a) = \int_{\mathbb{D}} |f'(z)|^2 K(g(z, a)) \, dA(z), \quad a \in \mathbb{D}.$$

From the proof of Theorem 7, we know that $f \in \mathcal{Q}_K$ implies

$$\int_{0}^{1} r \left[\sum_{k=1}^{\infty} n_k |a_k| r^{n_k - 1} \right]^2 K\left(\log \frac{1}{r} \right) dr < \infty.$$

Thus for any given $\varepsilon > 0$ there exists some $\sigma \in (0, 1)$ such that

$$2\int_{\sigma}^{1} r \left[\sum_{k=1}^{\infty} n_k |a_k| r^{n_k-1}\right]^2 K\left(\log \frac{1}{r}\right) dr < \varepsilon.$$

We may assume that

$$\lim_{|a| \to 1^-} K\left(\log \frac{1}{|a|}\right) = 0.$$

Otherwise, Q_K coincides with the Dirichlet space \mathcal{D} (see [8]), and the desired result is obvious.

We write $I(a) = I_1(a) + I_2(a)$, where

$$I_1(a) = \int_{|z| < \sigma} |f'(z)|^2 K(g(z, a)) \, dA(z),$$

$$I_2(a) = \int_{\sigma \le |z| < 1} |f'(z)|^2 K(g(z, a)) \, dA(z).$$

228

By arguments used in the second paragraph of the proof of Theorem 7, we have

$$I_1(a) \le 2K \left(\log \frac{1}{|a|} \right) \int_0^o \left[\sum_{k=1}^\infty n_k |a_k| r^{n_k - 1} \right]^2 r \, dr$$

whenever $\sigma < |a| < 1$, because in this case

$$\frac{1}{2\pi} \int_{0}^{2\pi} g(re^{i\theta}, a) \, d\theta = \log \frac{1}{|a|}.$$

In particular, $I_1(a) \to 0$ as $|a| \to 1^-$. Similarly, we have

$$I_2(a) \le 2\int_{\sigma}^{1} \left[\sum_{k=1}^{\infty} n_k |a_k| r^{n_k - 1}\right]^2 K\left(\log \frac{1}{r}\right) r \, dr < \varepsilon.$$

It follows that

$$\limsup_{|a| \to 1^-} I(a) \le \varepsilon.$$

Since ε is arbitrary, we conclude that $I(a) \to 0$ as $|a| \to 1^-$. So $f \in \mathcal{Q}_{K,0}$ and the proof is complete.

Carefully checking the proof of Theorems 7 and 8, we also obtain the following sufficient condition for a function to be in $\mathcal{Q}_{K,0}$ (and hence in \mathcal{Q}_K) in terms of Taylor coefficients.

THEOREM 9. If K satisfies condition (2), and if

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

satisfies the condition

$$\sum_{n=0}^{\infty} \left[\sum_{k \in I_n} k|a_k|\right]^2 \frac{1}{2^n} K\left(\frac{1}{2^n}\right) < \infty,$$

then $f \in \mathcal{Q}_{K,0}$.

Proof. We leave the details to the interested reader.

References

- A. Aleman, Hilbert spaces of analytic functions between the Hardy and the Dirichlet space, Proc. Amer. Math. Soc. 115 (1992), 97–104.
- J. Arazy, S. Fisher, and J. Peetre, *Möbius invariant function spaces*, J. Reine Angew. Math. 363 (1985), 110–145.
- [3] R. Aulaskari, D. Stegenga, and J. Xiao, Some subclasses of BMOA and their characterization in terms of Carleson measures, Rocky Mountain J. Math. 26 (1996), 485–506.

- R. Aulaskari, J. Xiao, and R. Zhao, On subspaces and subsets of BMOA and UBC, Analysis 15 (1995), 101–121.
- [5] A. Baernstein II, Analytic functions of bounded mean oscillation, in: Aspects of Contemporary Complex Analysis, Academic Press, London, 1980, 3–36.
- [6] K. Dyakonov, Absolute values of BMOA functions, Rev. Mat. Iberoamer. 15 (1999), 1–23.
- M. Essén, A survey of Q-spaces and Q[#]-classes, in: Analysis and Applications— ISAAC 2001, Kluwer, Dordrecht, 2003, 73–87.
- [8] M. Essén and H. Wulan, On analytic and meromorphic functions and spaces of Q_K-type, Illinois J. Math. 46 (2002), 1233–1258.
- M. Essén, H. Wulan, and J. Xiao, Several function-theoretic characterizations of Möbius invariant Q_K spaces, J. Funct. Anal. 230 (2006), 78–115.
- [10] M. Essén and J. Xiao, Some results on Q_p spaces, 0 , J. Reine Angew.Math. 485 (1997), 173–195.
- [11] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- [12] L. Rubel and R. Timoney, An extremal property of the Bloch space, Proc. Amer. Math. Soc. 75 (1979), 45–49.
- [13] W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974.
- [14] D. Stegenga, Multipliers of the Dirichlet space, Illinois J. Math. 24 (1980), 113–139.
- [15] H. Wulan, On some classes of meromorphic functions, Ann. Acad. Sci. Fenn. Math. Diss. 116 (1998), 57 pp.
- [16] H. Wulan and P. Wu, Characterizations of Q_T spaces, J. Math. Anal. Appl. 254 (2001), 484–497.
- [17] H. Wulan and K. Zhu, Q_K spaces via higher order derivatives, Rocky Mountain J. Math., to appear.
- [18] —, —, Derivative free characterizations of \mathcal{Q}_K spaces, J. Austral. Math. Soc., to appear.
- [19] J. Xiao, Holomorphic Q Classes, Lecture Notes in Math. 1767, Springer, Berlin, 2001.
- [20] K. Zhu, Operator Theory in Function Spaces, Dekker, New York, 1990.

Department of Mathematics Shantou University Shantou, China E-mail: wulan@stu.edu.cn Department of Mathematics SUNY Albany, NY 12222, U.S.A. E-mail: kzhu@math.albany.edu and Department of Mathematics Shantou University Shantou, China

Received October 31, 2005 Revised version December 4, 2006 (5788)