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Lacunary series in QK spaces

by

Hasi Wulan (Shantou) and Kehe Zhu (Albany, NY, and Shantou)

Abstract. Under mild conditions on the weight function K we characterize lacunary
series in the so-called QK spaces.

1. Introduction. Let D be the open unit disk in the complex plane C.
The Green’s function for D is given by

g(z, w) = log
1

|σw(z)| = log

∣

∣

∣

∣

1 − wz

w − z

∣

∣

∣

∣

,

where

σw(z) =
w − z

1 − wz

is a Möbius transformation of D.

Given a function K : (0,∞) → [0,∞), we consider the space QK of all
functions f ∈ H(D) for which

‖f‖2
QK

= sup
w∈D

\
D

|f ′(z)|2K(g(z, w)) dA(z) < ∞,

where H(D) is the space of all analytic functions in D and dA is the Euclidean
area measure on D normalized so that A(D) = 1. It is easy to check that
‖ ‖QK

is a complete seminorm on QK and it is Möbius invariant, that is,

‖f ◦ σ‖QK
= ‖f‖QK

, σ ∈ Aut(D),

where Aut(D) is the group of all Möbius maps of the unit disk. Earlier
studies on QK spaces can be found in [8], [9], [15]–[18].

It is clear that each QK contains all constant functions. If QK consists
of just the constant functions, we say that it is trivial . It follows from the
general theory of Möbius invariant function spaces (see [2] for example) that
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QK is nontrivial if and only if it contains the coordinate function z, and in
this case, QK contains all polynomials.

From a change of variables we see that the coordinate function z belongs
to QK if and only if

sup
w∈D

\
D

(1 − |w|2)2
|1 − wz|4 K

(

log
1

|z|

)

dA(z) < ∞.

Simplifying the above integral in polar coordinates, we conclude that QK is
nontrivial if and only if

sup
t∈(0,1)

1\
0

(1 − t)2

(1 − tr2)3
K

(

log
1

r

)

r dr < ∞.(1)

Throughout the paper we always assume that condition (1) above is
satisfied, so that the space QK we study is nontrivial. Another standing
assumption we make for the rest of the paper is that the weight function K
is nondecreasing.

An important tool in the study of QK spaces is the auxiliary function
ϕK defined by

ϕK(s) = sup
0<t≤1

K(st)

K(t)
, 0 < s < ∞.

The following condition has played a crucial role in the study of QK spaces
during the last few years:

∞\
1

ϕK(s)
ds

s2
< ∞.(2)

See [9], [17], [18] for example. This condition will be crucial for us here as
well. The main result of the paper is the following.

Main Theorem. If K satisfies condition (2), then a lacunary series

f(z) =
∞

∑

k=1

akz
nk

belongs to QK if and only if

∞
∑

k=1

nk|ak|2 K

(

1

nk

)

< ∞.

Recall that a function

f(z) =
∞

∑

k=1

akz
nk
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is called a lacunary series if

λ = inf
k

nk+1

nk
> 1.

Such series are often used to construct examples of analytic functions in
various function spaces.

A special case is worth mentioning. When K(t) = tp, 0 ≤ p < ∞, the
resulting QK space is usually denoted by Qp. It is well known that Qp

coincides with BMOA if p = 1, and Qp is the Bloch space B if p > 1. We
remind the reader that B consists of analytic functions f in D such that

sup
z∈D

(1 − |z|2)|f ′(z)| < ∞.

The most interesting case is when 0 < p < 1; such Qp spaces are distinct
Möbius invariant Banach spaces that are strictly contained in BMOA. See
[19] for the relatively new theory of Qp spaces.

It is well known that a lacunary series belongs to BMOA if and only if
it is in the Hardy space H2; see [5] for example. It is also well known that
a lacunary series is in the Bloch space if and only if its Taylor coefficients
are bounded; see [20] for example. Lacunary series in Qp are characterized
in [4]. More specifically, if 0 ≤ p ≤ 1, then a lacunary series

f(z) =

∞
∑

k=1

akz
nk

is in Qp if and only if
∞

∑

k=1

n1−p
k |ak|2 < ∞.

Since the function K(t) = tp satisfies condition (2) if and only if p < 1, our
main result covers Qp spaces for 0 ≤ p < 1, but it misses the classical case
of BMOA (corresponding to p = 1). Nevertheless, it should be clear from
these remarks that condition (2) is very sharp.

2. Preliminaries on weight functions. The function theory of QK

obviously depends on the properties of K. Given two weight functions K1

and K2, we write K1 . K2 if there exists a constant C > 0, independent
of t, such that K1(t) ≤ CK2(t) for all t. The notation K1 & K2 is used in a
similar fashion. When K1 . K2 . K1, we write K1 ≈ K2.

It is clear that K1 . K2 implies QK2
⊂ QK1

. In particular, K1 and K2

give rise to the same QK space whenever K1 ≈ K2. The converse is false in
general, as is demonstrated by the fact that Qp equals the Bloch space for
all p > 1.

In this section we collect several results about the weight functions that
are needed for subsequent sections and are of some independent interest.
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Although a few of the results in this section are buried in [8] and [9], we
include proofs here for the sake of completeness and ease of reference.

Lemma 1. If

K1(t) =

{

K(t), 0 < t ≤ 1,

K(1), 1 ≤ t < ∞,

then QK = QK1
.

Proof. Since K is nondecreasing, we have K1 ≤ K, so QK ⊂ QK1
. In

particular, both spaces are nontrivial Möbius invariant spaces.

Since K(log(1/|z|)) is a radial function, integration in polar coordinates
shows that f 7→ f ′(0) is a bounded linear functional on any nontrivial QK

space. By [12], each such space QK is contained in the Bloch space.

Fix a function f ∈ QK1
and consider the integrals

I(a) =
\
D

|f ′(z)|2K(g(z, a)) dA(z).

We must show that I(a) is bounded for a ∈ D. To this end, we write I(a) =
I1(a) + I2(a), where

I1(a) =
\

|ϕa(z)|>e−1

|f ′(z)|2K(g(z, a)) dA(z),

I2(a) =
\

|ϕa(z)|≤e−1

|f ′(z)|2K(g(z, a)) dA(z).

It is clear that

I1(a) ≤
\
D

|f ′(z)|2K1(g(z, a)) dA(z),

so there exists a positive constant C1 such that I1(a) ≤ C1 for all a ∈ D.

By a change of variables, we have

I2(a) =
\

|ϕa(z)|≤e−1

|f ′(z)|2K
(

log
1

|ϕa(z)|

)

dA(z)

=
\

|z|≤e−1

|f ′(ϕa(z))|2K
(

log
1

|z|

)

(1 − |a|2)2
|1 − az|4 dA(z)

=
\

|z|≤e−1

|f ′(ϕa(z))|2(1 − |ϕa(z)|2)2
(1 − |z|2)2 K

(

log
1

|z|

)

dA(z).

Since f is in the Bloch space, we can find a constant C2 > 0 such that

I2(a) ≤ C2

\
|z|≤e−1

K

(

log
1

|z|

)

dA(z) ≤ C2

\
D

K

(

log
1

|z|

)

dA(z).
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By condition (1), the last integral above is convergent, so there exists a
constant C3 > 0 such that I2(a) ≤ C3 for all a ∈ D. This shows that I(a) is
bounded in a, or equivalently, f belongs to QK .

The significance of Lemma 1 is that the space QK only depends on the
behavior of K(t) for t close to 0. In particular, when studying QK spaces,
we can always assume that K(t) = K(1) for t ≥ 1. However, we do not make
this assumption in our main theorems.

Lemma 2. If K satisfies condition (2), then the function

K∗(t) = t

∞\
t

K(s)
ds

s2
, 0 < t < ∞,

has the following properties:

(i) K∗ is nondecreasing on (0,∞).
(ii) K∗(t)/t is nonincreasing on (0,∞).
(iii) K∗(t) ≥ K(t) for all t ∈ (0,∞).
(iv) K∗ . K on (0, 1].

If K(t) = K(1) for t ≥ 1, then we also have

(v) K∗(t) = K∗(1) = K(1) for t ≥ 1, so K∗ ≈ K on (0,∞).

Proof. If t ∈ (0, 1], then a change of variables gives

K∗(t) = t

∞\
t

K(s)
ds

s2
=

∞\
1

K(ts)
ds

s2
= K(t)

∞\
1

K(ts)

K(t)

ds

s2

≤ K(t)

∞\
1

ϕK(s)
ds

s2
.

So condition (2) implies that K∗(t) . K(t) for t ∈ (0, 1]. This yields property
(iv) and shows that K∗(t) is well defined for all t > 0.

Since

K∗(t)

t
=

∞\
t

K(s)
ds

s2

and K is nonnegative, we see that the function K∗(t)/t is decreasing. This
proves (ii). Property (v) follows from a direct calculation.

Using the assumption that K is nondecreasing again, we obtain

K∗(t) = t

∞\
t

K(s)
ds

s2
≥ tK(t)

∞\
t

ds

s2
= K(t)

for all 0 < t < ∞. This proves property (iii).
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It remains for us to show that K∗ is nondecreasing. To this end, we fix
0 < t < T < ∞ and consider the difference

D = K∗(T ) − K∗(t) = T

∞\
T

K(s) ds

s2
− t

∞\
t

K(s) ds

s2

= (T − t)

∞\
T

K(s) ds

s2
− t

T\
t

K(s) ds

s2
.

Since K is nondecreasing and nonnegative, we have

D ≥ (T − t)K(T )

∞\
T

ds

s2
− tK(T )

T\
t

ds

s2
= 0.

This proves property (i) and completes the proof of the lemma.

Note that condition (2) is critically needed only in the proof of (iv).
Without condition (2), properties (i), (ii), and (iii) remain valid, provided
that K∗ is allowed to be identically infinite.

Corollary 3. If K satisfies condition (2), then there exists a constant

C > 0 such that K(2t) ≤ CK(t) for all 0 ≤ 2t ≤ 1.

Proof. For any t > 0, we have

K∗(2t)

K∗(t)
= 2

∞\
2t

K(s) ds

s2

∞\
t

K(s) ds

s2

≤ 2.

The desired estimate now follows from parts (iii) and (iv) of Lemma 2.

If we started out with a weight function K with the property that K(t) =
K(1) for t ≥ 1, then the conclusion of Corollary 3 could be strengthened to
K(2t) ≈ K(t) for t > 0.

Proposition 4. If K satisfies condition (2), then we can find another

nonnegative weight function K∗ such that QK = QK∗ and that the new

weight function K∗ has the following properties:

(a) K∗ is nondecreasing on (0,∞).
(b) K∗ satisfies condition (1).
(c) K∗ satisfies condition (2).
(d) K∗(2t) ≈ K∗(t) on (0,∞).
(e) K∗ is differentiable (up to any given order) on (0,∞).
(f) K∗ is concave on (0,∞).
(g) K∗(t) = K∗(1) for t ≥ 1.
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(h) K∗(t)/t is nonincreasing on (0,∞).
(i) K∗(t) ≈ K(t) on (0, 1].

Proof. By Lemma 1, we may assume that K(t) = K(1) for all t ≥ 1.
Under this assumption, the function K∗ from Lemma 2 then satisfies K∗ ≈
K on (0,∞). Moreover, properties (a), (b), (c), (g), (h), and (i) all hold.

Property (d) follows from the proof of Corollary 3.

If we repeat the construction K 7→ K∗, then we can make the new weight
function differentiable up to any desired order. So property (e) holds.

If the function K is differentiable, which we may assume by property (e),
then

d

dt
K∗(t) =

∞\
t

K(s) ds

s2
− K(t)

t
and

d2

dt2
K∗(t) = −K ′(t)

t
≤ 0.

This shows that K∗ is concave on (0,∞) and completes the proof of the
proposition.

Theorem 5. If K satisfies condition (2), then for any α > 0 and 0 ≤
β < 1 we have

1\
0

rα−1

(

log
1

r

)−β

K

(

log
1

r

)

dr ≈ C(β)

(

1 − β

α

)1−β

K

(

1 − β

α

)

,

where C(β) is a constant depending on β alone.

Proof. Let

I =

1\
0

rα−1

(

log
1

r

)−β

K

(

log
1

r

)

dr.

By a change of variables,

I =

∞\
0

e−αtt−βK(t) dt.

We write I = I1 + I2, where

I1 =

(1−β)/α\
0

e−αtt−βK(t) dt, I2 =

∞\
(1−β)/α

e−αtt−βK(t) dt.

Since K is nondecreasing, we have

I1 ≤ K

(

1 − β

α

) (1−β)/α\
0

e−αtt−β dt.
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Making the change of variables t = (1 − β)s/α, we obtain

I1 ≤
(

1 − β

α

)1−β

K

(

1 − β

α

) 1\
0

e−(1−β)ss−β ds

= C(β)

(

1 − β

α

)1−β

K

(

1 − β

α

)

.

By part (iii) of Lemma 2, we have

I2 ≤
∞\

(1−β)/α

e−αtt1−β K∗(t)

t
dt.

According to part (ii) of Lemma 2, the function K∗(t)/t is decreasing on
(0,∞), so

I2 ≤ K∗((1 − β)/α)

(1 − β)/α

∞\
(1−β)/α

e−αtt1−β dt.

A change of variables (t = (1 − β)s/α) in the integral above leads to

I2 ≤
(

1 − β

α

)1−β

K∗

(

1 − β

α

)∞\
1

e−(1−β)ss1−β ds.

This together with part (iv) of Lemma 2 shows that

I2 . C(β)

(

1 − β

α

)1−β

K

(

1 − β

α

)

.

Combining this with what was proved in the previous paragraph, we have

I . C(β)

(

1 − β

α

)1−β

K

(

1 − β

α

)

.

On the other hand,

I ≥
∞\

(1−β)/α

e−αtt−βK(t) dt.

The assumption that K is nondecreasing gives

I ≥ K

(

1 − β

α

) ∞\
(1−β)/α

e−αtt−β dt.

Make a change of variables according to t = (1 − β)s/α. Then

I ≥ C(β)

(

1 − β

α

)1−β

K

(

1 − β

α

)

.

This completes the proof of the theorem.



Lacunary series in QK spaces 225

3. Lacunary series in QK . We begin with an estimate of the weighted
Dirichlet integral in terms of Taylor coefficients.

Theorem 6. If K satisfies condition (2) and

f(z) =

∞
∑

n=0

anzn,

then \
D

|f ′(z)|2K
(

log
1

|z|

)

dA(z) ≈
∞
∑

n=1

n |an|2K
(

1

n

)

.

Proof. Write

I(f) =
\
D

|f ′(z)|2K
(

log
1

|z|

)

dA(z).

Integrating in polar coordinates leads to

I(f) = 2
∞

∑

n=1

n2|an|2
1\
0

r2n−1K

(

log
1

r

)

dr.

We apply Theorem 5 with β = 0 and α = 2n to obtain

I(f) ≈
∞

∑

n=1

n|an|2 K

(

1

2n

)

.

The desired result then follows from Corollary 3.

We are now ready to prove the main result of the paper.

Theorem 7. If K satisfies condition (2), then a lacunary series

f(z) =
∞

∑

k=1

akz
nk

belongs to QK if and only if
∞

∑

k=1

nk|ak|2 K

(

1

nk

)

< ∞.(3)

Proof. First assume that

f(z) =

∞
∑

k=1

akz
nk

is a lacunary series in QK . Then\
D

|f ′(z)|2K
(

log
1

|z|

)

dA(z) =
\
D

|f ′(z)|2K(g(z, 0)) dA(z) < ∞,

which, according to Theorem 6, implies condition (3).
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Next assume that condition (3) holds. We proceed to estimate the inte-
gral

I(a) =
\
D

|f ′(z)|2K(g(z, a)) dA(z), a ∈ D.

As the first step, we show that for any a ∈ D,

I(a) ≤ 2

1\
0

r
[

∞
∑

k=1

nk|ak|rnk−1
]2

K

(

log
1

r

)

dr.(4)

To this end, we write z = reiθ in polar form and observe that

|f ′(z)| ≤
∞

∑

k=1

nk|ak|rnk−1.

It follows that

I(a) ≤ 2

1\
0

[

∞
∑

k=1

nk|ak|rnk−1
]2

r dr
1

2π

2π\
0

K(g(reiθ, a)) dθ.

By Proposition 4, we may as well assume that K is concave. Then

1

2π

2π\
0

K(g(reiθ, a)) dθ ≤ K

(

1

2π

2π\
0

g(reiθ, a) dθ

)

.

By Jensen’s formula, the integral

1

2π

2π\
0

g(reiθ, a) dθ =
1

2π

2π\
0

log

∣

∣

∣

∣

1 − areiθ

reiθ − a

∣

∣

∣

∣

dθ

is equal to log(1/|a|) for 0 < r ≤ |a| and log(1/r) for |a| < r < 1. In
particular,

1

2π

2π\
0

g(reiθ, a) dθ ≤ log
1

r
.

From this we deduce inequality (4).
Our second step is to prove that inequality (4) implies

I(a) .

∞
∑

n=0

[

∑

nk∈In

nk|ak|
]2 1

2n
K

(

1

2n

)

,(5)

where
In = {k : 2n ≤ k < 2n+1, k ∈ N}.

To this end, we combine the elementary estimates

∞
∑

n=0

2n/2r2n ≤
√

2
∞

∑

n=0

2n+1\
2n

t−1/2rt/2 dt

≤
√

2

∞\
0

t−1/2rt/2 dt = 2Γ

(

1

2

)(

log
1

r

)−1/2
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with the Cauchy–Schwarz inequality to produce
[

∞
∑

k=1

nk|ak|rnk

]2
=

[

∞
∑

n=0

∑

nk∈In

nk|ak|rnk

]2
≤

[

∞
∑

n=0

∑

nk∈In

nk|ak|r2n
]2

≤
[

∞
∑

n=0

2n/2r2n
][

∞
∑

n=0

2−n/2r2n
(

∑

nk∈In

nk|ak|
)2]

≤ 2Γ (1/2)

(log(1/r))1/2

∞
∑

n=0

2−n/2r2n
[

∑

nk∈In

nk|ak|
]2

.

This together with (4) and Theorem 5 and Corollary 3 gives

I(a) ≤ 2

1\
0

r−1
[

∞
∑

k=1

nk|ak|rnk

]2
K

(

log
1

r

)

dr

.

∞
∑

n=0

2−n/2
[

∑

nk∈In

nk|ak|
]2

1\
0

r2n−1

(

log
1

r

)−1/2

K

(

log
1

r

)

dr

.

∞
∑

n=0

[

∑

nk∈In

nk|ak|
]2 1

2n
K

(

1

2n

)

.

Thus, inequality (5) holds.
If nk ∈ In, then nk < 2n+1. It follows from the monotonicity of K and

Corollary 3 that

1

nk
K

(

1

nk

)

≥ 1

2n+1
K

(

1

2n+1

)

&
1

2n
K

(

1

2n

)

.

Combining this with (5), we obtain

I(a) .

∞
∑

n=0

[

∑

nk∈In

nk|ak|
√

1

nk
K

(

1

nk

)]2

.(6)

Note that everything so far in the proof works for an arbitrary analytic
function, not just for a lacunary series. Our final step, though, does make
use of the fact that f is a lacunary series. More specifically, if

nk+1

nk
≥ λ > 1

for all k, then the Taylor series of f(z) has at most [logλ 2] + 1 terms akz
nk

such that nk ∈ In for n ∈ N. By (6) and Hölder’s inequality,

I(a) . ([logλ 2] + 1)

∞
∑

n=0

∑

nk∈In

nk|ak|2 K

(

1

nk

)

= ([logλ 2] + 1)
∞

∑

k=1

nk|ak|2K
(

1

nk

)

.
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This shows that condition (3) implies f ∈ QK . The proof of the theorem is
now complete.

4. Lacunary series in QK,0. Let QK,0 denote the subspace of QK

consisting of functions f with

lim
|a|→1−

\
D

|f ′(z)|2K(g(z, a)) dA(z) = 0.

The following result together with Theorem 7 characterizes lacunary series
in QK,0.

Theorem 8. Let

f(z) =
∞

∑

k=1

akz
nk

be a lacunary series. If K satisfies condition (2), then f ∈ QK if and only

if f ∈ QK,0.

Proof. Suppose the lacunary series f belongs to QK . We must show that
I(a) → 0 as |a| → 1−, where

I(a) =
\
D

|f ′(z)|2K(g(z, a)) dA(z), a ∈ D.

From the proof of Theorem 7, we know that f ∈ QK implies

1\
0

r
[

∞
∑

k=1

nk|ak|rnk−1
]2

K

(

log
1

r

)

dr < ∞.

Thus for any given ε > 0 there exists some σ ∈ (0, 1) such that

2

1\
σ

r
[

∞
∑

k=1

nk|ak|rnk−1
]2

K

(

log
1

r

)

dr < ε.

We may assume that

lim
|a|→1−

K

(

log
1

|a|

)

= 0.

Otherwise, QK coincides with the Dirichlet space D (see [8]), and the desired
result is obvious.

We write I(a) = I1(a) + I2(a), where

I1(a) =
\

|z|<σ

|f ′(z)|2K(g(z, a)) dA(z),

I2(a) =
\

σ≤|z|<1

|f ′(z)|2K(g(z, a)) dA(z).
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By arguments used in the second paragraph of the proof of Theorem 7, we
have

I1(a) ≤ 2K

(

log
1

|a|

) σ\
0

[

∞
∑

k=1

nk|ak|rnk−1
]2

r dr

whenever σ < |a| < 1, because in this case

1

2π

2π\
0

g(reiθ, a) dθ = log
1

|a| .

In particular, I1(a) → 0 as |a| → 1−. Similarly, we have

I2(a) ≤ 2

1\
σ

[

∞
∑

k=1

nk|ak|rnk−1
]2

K

(

log
1

r

)

r dr < ε.

It follows that
lim sup
|a|→1−

I(a) ≤ ε.

Since ε is arbitrary, we conclude that I(a) → 0 as |a| → 1−. So f ∈ QK,0

and the proof is complete.

Carefully checking the proof of Theorems 7 and 8, we also obtain the
following sufficient condition for a function to be in QK,0 (and hence in QK)
in terms of Taylor coefficients.

Theorem 9. If K satisfies condition (2), and if

f(z) =
∞
∑

n=0

anzn

satisfies the condition
∞

∑

n=0

[

∑

k∈In

k|ak|
]2 1

2n
K

(

1

2n

)

< ∞,

then f ∈ QK,0.

Proof. We leave the details to the interested reader.
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