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Wave front set for positive operators and

for positive elements in non-commutative

convolution algebras

by

Joachim Toft (Växjö)

Abstract. Let WF∗ be the wave front set with respect to C∞, quasi analyticity or
analyticity, and let K be the kernel of a positive operator from C∞

0 to D
′. We prove that

if ξ 6= 0 and (x, x, ξ,−ξ) /∈ WF∗(K), then (x, y, ξ,−η) /∈ WF∗(K) and (y, x, η,−ξ) /∈
WF∗(K) for any y, η. We apply this property to positive elements with respect to the
weighted convolution

u ∗B ϕ(x) =
\
u(x − y)ϕ(y)B(x, y) dy,

where B ∈ C∞ is appropriate, and prove that if (u ∗B ϕ, ϕ) ≥ 0 for every ϕ ∈ C∞

0 and
(0, ξ) /∈ WF∗(u), then (x, ξ) /∈ WF∗(u) for any x.

0. Introduction. The aim of the paper is to discuss propagation of
singularities in terms of different types of wave front sets for distribution
kernels of positive operators, and for distributions which are positive with
respect to some non-commutative convolution. For example we prove that
kernels of positive operators in some sense are at most singular at the di-
agonal. As a consequence, a distribution which is positive with respect to
some (non-commutative) convolution is at most singular at the origin. In
particular we recover some results in [4, 12, 17, 18], where similar investiga-
tions were done for the usual convolution. We also recover some results in
[15] where the twisted convolution is considered.

The positivity properties related to our investigations in part go back
to [1], where Bochner proved that a function is positive definite if and only
if it is the Fourier transform of a measure with finite mass. Recall that a
(complex-valued) function u on Rn is called positive definite if it is contin-

2000 Mathematics Subject Classification: Primary 35A18, 47B65, 35A21; Secondary
43A35, 35S05.

Key words and phrases: wave front set, non-commutative convolution, distribution
kernel, positive operator.

[63]



64 J. Toft

uous and for any finite sequences {xj} ⊆ Rn and {cj} ⊆ C we have
∑

j,k

u(xj − xk)cjck ≥ 0.

The latter condition on u can be reformulated by means of the convolution
∗ between appropriate functions (or distributions) on Rn. More precisely, it
can be proved that u is positive definite if and only if u is continuous and
(u ∗ ϕ,ϕ) ≥ 0 for every test function ϕ on Rn.

By taking this fact into account, Bochner’s theorem can be formulated
in the following way.

Assume that u ∈ C(Rn). Then (u ∗ ϕ,ϕ) ≥ 0 for every ϕ ∈ C∞
0 (Rn) if

and only if û is a positive measure of finite mass, and then

(0.1) (2π)−n/2‖û‖ = ‖u‖L∞ = u(0) (<∞).

Here and in what follows we use the standard notation for the usual
function and distribution spaces, and we let ( · , · ) be the extension of the
L2 product from C∞

0 to D ′ × C∞
0 . (See e.g. [8].) Furthermore, we let the

Fourier transform on S ′(Rn) be chosen in such a way that it takes the form

Fu(ξ) = û(ξ) = (2π)−n/2
\
u(x)e−i〈x,ξ〉 dx

when u ∈ L1(Rn).

As a consequence of (0.1), if u is a positive definite function, then the
total mass of û only depends on the size of u at the origin. It follows by
straightforward approximations that the condition u ∈ C(Rn) in Bochner’s
theorem may be replaced by the weaker condition that u ∈ D ′(Rn) is a
continuous function near the origin (see e.g. [15] in the case of twisted con-
volution). The following “smooth Bochner theorem” is now a fairly simple
consequence of Bochner’s theorem (see e.g. [4, 12, 17] or [18]).

Assume that u ∈ D ′(Rn) is a positive definite function which is smooth

near the origin. Then it is smooth everywhere.

In fact, if u ∈ D ′(Rn) is smooth near the origin and (u∗ϕ,ϕ) ≥ 0 for every
ϕ ∈ C∞

0 (Rn), then the same is true with u replaced by (1 − ∆)Nu. Hence
Bochner’s theorem shows that (1 + |ξ|2)N û(ξ) is a positive measure with
finite mass. Since N is arbitrary it is easily seen that the Fourier transform
of û must be smooth everywhere, i.e. u(x) = (F 2u)(−x) is smooth, which
proves the assertion.

The smooth Bochner theorem can also be reformulated in terms of pos-
itive (semi-definite) operators. More precisely, assume that T is a linear
and continuous operator from C∞

0 (Rn) to D ′(Rn). Then T is called posi-

tive (semi-definite) if (Tϕ, ϕ) ≥ 0 for every ϕ ∈ C∞
0 (Rn). By the kernel
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theorem of Schwartz there is a unique distribution K ∈ D ′(R2n) (the ker-
nel of T ) such that (Tϕ, ψ) = (K,ψ ⊗ ϕ) for every ϕ, ψ ∈ C∞

0 (Rn). For
convenience we let D ′

◦(R
2n) be the set of all distribution kernels of positive

operators from C∞
0 (Rn) to D ′(Rn). This means that K ∈ D ′

◦(R
2n) if and

only if K ∈ D ′(R2n) satisfies

(0.2) (K,ϕ⊗ ϕ) ≥ 0 for every ϕ ∈ C∞
0 (Rn).

Since the kernel of the operator ϕ 7→ u ∗ ϕ is equal to K(x, y) =
Ku(x, y) = u(x − y), it follows that u is a positive definite function if and
only if Ku is continuous and belongs to D ′

◦(R
2n). Evidently, the smoothness

property for positive definite functions can be reformulated as:

Assume that Ku ∈ D ′
◦(R

2n) is smooth along the diagonal x = y. Then it

is smooth everywhere.

In Section 2 we extend the latter result in several directions. For example
we prove that it holds for general K ∈ D ′

◦(R
2n). These investigations are

based on techniques which involve different types of wave front sets. Roughly
speaking, the wave front set WF∗(u) of a distribution u with respect to C∞

or C L = CL (see Sections 8.1 and 8.4 in [8], or Section 1 below for the
definitions) gives information where the distribution is singular, i.e. where
it fails to belong to C∞ or C L respectively, as well as the directions of the
propagating singularities.

In this context we prove in Section 2 the following:

Assume that K ∈ D ′
◦(R

2n), ξ ∈ Rn \ 0 and (x, x, ξ,−ξ) /∈ WF∗(K).
Then (x, y, ξ,−η) /∈ WF∗(K) and (y, x, η,−ξ) /∈ WF∗(K) for any y, η ∈ Rn.

Consequently , if K is smooth (resp. real-analytic) along the diagonal x = y,
then it is smooth (resp. real-analytic) everywhere.

Furthermore, in Section 2 we prove that if K ∈ S ′(R2n) and KF (ξ, η) =

K̂(ξ,−η), then K ∈ D ′
◦ if and only if KF ∈ D ′

◦. Hence the latter wave
front result gives similar wave front properties for the Fourier transform of
elements in D ′

◦.

In Section 3 we apply these results to distributions which are positive
with respect to some non-commutative convolution, where, in contrast to
the usual convolution, a weight function is included in the definitions. More
precisely, let C∗(Rn) be the set of all smooth and complex-valued functions
on Rn which are non-zero everywhere, and assume that B ∈ C∗(R2n) and
u, ϕ ∈ C∞

0 (Rn). Then let

u ∗B ϕ(x) =
\
u(x− y)ϕ(y)B(x, y) dy

be the B-convolution of u and ϕ. The definition of ∗B extends in the usual
way to a continuous map from D ′(Rn) × C∞

0 (Rn) to D ′(Rn) ∩ C∞(Rn). If
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in addition there exists a polynomial Pα on R2n such that

(0.3) |∂αB| + |B|−1 ≤ Pα

for every multi-index α, then straightforward computations show that ∗B

extends to a continuous map from S ′(Rn) × S (Rn) to S ′(Rn) ∩ C∞(Rn).

We note that if B = 1 everywhere, then ∗B coincides with the usual
convolution. Assume instead that R2n is considered as the phase space with
variables X = (x, ξ) ∈ R2n and Y = (y, η) ∈ R2n, and let

(0.4) B(X,Y ) = (2/π)n/2e2iσ(X,Y ), where σ(X,Y ) = 〈y, ξ〉 − 〈x, η〉

is the symplectic form. Then ∗B agrees with the twisted convolution ∗σ,
which is important in the theory of pseudo-differential operators, since pos-
itivity and continuity properties in Weyl calculus can easily be reformulated
in terms of positivity and continuity properties for the twisted convolution.
(See [7, 14–16] or the end of Section 1.)

For an arbitrary B ∈ C∗(R2n), we are especially concerned with the set
D ′

B,+(Rn), consisting of all u ∈ D ′(Rn) such that (u ∗B ϕ,ϕ) ≥ 0 for every

ϕ ∈ C∞
0 (Rn). In particular, D ′

1,+ is the set of positive definite distributions.

Since the distribution kernel of the operator ϕ 7→ u ∗B ϕ is equal to
KB,u(x, y) ≡ u(x − y)B(x, y), it follows that u ∈ D ′

B,+(Rn) if and only if

KB,u ∈ D ′
◦(R

2n). In particular, any smoothness or wave front property on
D ′

◦ carries over to D ′
B,+, and in Section 3 we apply the results in Section 2

to prove the following:

Assume that B ∈ C∗(R2n) is “appropriate”, u ∈ D ′
B,+(Rn) and (0, ξ) /∈

WF∗(u). Then (x, ξ) /∈ WF∗(u). Consequently , if u is smooth (resp. real-

analytic) near the origin, then it is smooth (resp. real-analytic) everywhere.

Here the condition that B should be “appropriate” means that some
extra assumptions are included, which depend on the wave front sets under
consideration.

In the last section we make some additional remarks on S ′
+, the set of

distributions which are positive with respect to the twisted convolution. In
[16] it is proved that if u ∈ S ′

+ and (0, Y ) /∈ WF(u) for some Y ∈ R2n \ 0,
then u ∈ S ′, (X,Y ) /∈ WF(u) and (X,Y ) /∈ WF(Fσu) for all X ∈ R2n.
Here WF denotes the wave front set with respect to C∞ and Fσ denotes
the symplectic Fourier transform (see Section 1 for precise definitions). In
Section 4 we extend the latter property and prove that it also holds for other
types of wave front set.

Finally, we remark that there are other ways to define wave front sets of
different types (see e.g. [2, 9]).
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1. Preliminaries. In this section we recall the definition of wave front
set and present some facts which, in part, go back to [8]. We also recall some
facts on the twisted convolution.

We start by recalling the definition of the wave front set with respect
to C∞(Rn). Assume that u ∈ S ′(Rn). Then the cone Θ(u) consists of all
ξ0 ∈ Rn \ 0 such that for some open conic neighbourhood Γ of ξ0 and each
integer N ≥ 1, there is a constant CN such that

(1.1) |û(ξ)| ≤ CN 〈ξ〉−N , ξ ∈ Γ.

Here and in what follows we let 〈ξ〉 = (1 + |ξ|2)1/2. We also let Σ(u) =
{ξ ∈ Rn \ 0 ; ξ /∈ Θ(u)}. Furthermore, for each x ∈ Rn and u ∈ D ′(Rn) we
set

(1.2) Σx(u) ≡
⋂
Σ(χu),

where the intersection is taken over all χ ∈ C∞
0 (Rn) such that χ(x) 6= 0.

Definition 1.1. Assume that u ∈ D ′(Rn). Then the wave front set of
u (with respect to C∞) is the set

WF(u) ≡ {(x, ξ) ∈ Rn × (Rn \ 0) ; ξ ∈ Σx(u)}.

The following lemma might be helpful when computing the wave front
set. We refer to (8.1.5) in [8] and its motivation for the proof.

Lemma 1.2. Assume that χN ∈C∞
0 (Rn), N≥1, are such that χN (x0) 6=0

for every N ≥ 1 and suppχN ց {x0} (i.e. the supports of χN decrease with

N and
⋂

N suppχN = {x0}). Then Σ(χNu) → Σx(u).

Next we recall other types of wave front sets which are more related to
propagation of singularities in the context of analyticity and quasi analyt-
icity. From now on we assume that L = {Lk}k≥0 is an increasing sequence
of positive real numbers such that

L0 = 1, Lk ≥ k, Lk+1 ≤ CLk

for some constant C independent of k. If Ω ⊆ Rn is open, then C L(Ω) is the
set of all smooth functions f on Rn such that for every compact set K ⊆ Ω,
there is a constant CK such that

|Dαf(x)| ≤ CK(CKL|α|)
|α|

for all multi-indices α and x ∈ K.

We note that if Lk = k when k ≥ 1, then C L(Rn) coincides with A(Rn),
the set of real-analytic functions on Rn. More generally, if it is only assumed
that

(1.3)
∞∑

k=1

1

Lk
= ∞,
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then C L(Rn) is contained in the set of quasi analytic functions on Rn.
(See [8].)

Next we recall the definition of the wave front set with respect to C L. If
(1.3) is violated (i.e. C L contains functions which are not quasi analytic),
then there exist non-trivial functions in C L∩C∞

0 . In this case, the wave front
set with respect to C L can be defined similarly to the wave front set with
respect to C∞. In order to obtain a definition of wave front sets which fits
all situations we may as in [8] proceed as follows. Assume that u ∈ D ′(Rn)
and x ∈ Rn. Let ΘL

x (u) be the cone of all ξ0 ∈ Rn \ 0 such that for some
open neighbourhood U of x, conical neighbourhood Γ of ξ0, constant C and
bounded sequence {uN} in E ′(Rn) such that uN = u on U , we have

(1.4) |F (uN)(ξ)| ≤ C(CLN/|ξ|)
N , ξ ∈ Γ.

We also set ΣL
x (u) = {ξ ∈ Rn \ 0 ; ξ /∈ ΘL

x (u)}. Then ΣL
x (u) = ∅ if and only

if u ∈ C L near x (see e.g. [8]).

Definition 1.3. Assume that u ∈ D ′(Rn). Then the wave front set with

respect to C L(Rn) of u is the set

WFL(u) = {(x, ξ) ∈ Rn × (Rn \ 0) ; ξ ∈ ΣL
x (u)}.

If Lk = k for all k ≥ 1, then WFL(u) is called the analytic wave front set of
u and is denoted by WFA(u).

We recall that for every u ∈ D ′(Rn) and all permitted sequences L,

WF(u) ⊆ WFL(u) ⊆ WFA(u).

The next lemma may be useful when computing the wave front set for
a distribution with respect to C L. The proof is omitted, since the lemma is
essentially a restatement of Lemma 8.4.4 in [8]. Here and in what follows we
let ΛL(Ω) for Ω ⊆ Rn be the set of all sequences {χN}N≥1 in C∞(Rn) such
that suppχN ⊆ Ω for every N ≥ 1, and for every multi-index α there is a
constant Cα such that

(1.5) |Dα+βχN | ≤ Cα(CαLN )|β|, |β| ≤ N.

Lemma 1.4. Assume that u ∈ D ′(Rn), K ⊆ Rn is compact , and F is

a closed cone in Rn \ 0 such that WFL(u) ∩K × F = ∅. Also assume that

{χN}N≥1 ∈ ΛL(K). Then χNu is bounded in E ′M if M is the order of u in

a neighbourhood of K, and

(1.4)′ |F (χNu)(ξ)| ≤ C(CLN/|ξ|)
N , ξ ∈ F,

for some constant C independent of N ≥ 1.

We also need the following refinement of Lemma 1.4. Again the proof is
omitted since the result follows from the same arguments as in the proof of
Lemma 8.4.4 in [8].
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Lemma 1.5. Assume that K ⊆ Rn is compact and F ⊆ Γ are cones such

that F is closed and Γ is open in Rn \ {0}. Also assume that {χN}N≥1 ∈
ΛL(K) and {uN}N≥1 is a bounded subset of E ′(K) such that (1.4) holds for

some constant C independent of N ≥ 1. Then

(1.4)′′ |F (χNuN )(ξ)| ≤ C(CLN/|ξ|)
N , ξ ∈ F,

for some constant C independent of N ≥ 1.

We also need the following converse of Lemmas 1.4 and 1.5.

Lemma 1.6. Assume that K ⊆ Rn is compact , U ⊆ K is an open neigh-

bourhood of x0 ∈ K, and ξ0 ∈ Γ , where Γ is an open cone in Rn \ {0}.
Also assume that {χN}N≥1 ∈ ΛL(Rn) with |χN (x)| ≥ c when x ∈ U for

some constant c > 0 independent of N . If u ∈ D ′(Rn) and (1.4) holds with

uN = χNu, then (x0, ξ0) /∈ WFL(u).

In the proof as well as later on we let Br(a) denote the open ball with
centre at a and radius r.

Proof. Choose r > 0 such that B3r(x0) ⊆ U . By the C L-calculus of [8]
there exists a sequence {ψN}N≥1 ∈ ΛL(∁(Br(x0))) such that

0 ≤ ψN ≤ 1 and ψN (x) = 1 when x /∈ B3r(x0).

(See e.g. the end of the proof of Lemma 8.4.4 in [8].) Then

ϕN = χN/(ψN + |χN |2) ∈ C∞
0 (K)

satisfies (1.5) with χN replaced by ϕN , and Cα replaced by larger constants
if necessary.

Now let vN = ϕNχNu = ϕNuN . Then {vN} is a bounded set in E ′(K).
If F is a closed conic neighbourhood of ξ0 such that F ⊆ Γ , then Lemma
1.5 shows that

|v̂N (ξ)| ≤ C(CLN/|ξ|)
N , ξ ∈ F.

Since vN = u in Br(x0), the last inequality means that (x0, ξ0) /∈ WFL(u).

Remark 1.7. We note that for any sequence L = {L0, L1, . . . } which
satisfies the required conditions, we can always find a sequence {χN}N≥0

such that the assumptions in Lemma 1.6 are fulfilled. (Cf. Sections 1.4 and
8.4 in [8].)

We finish the section by giving some remarks on twisted convolution.
Recall that if u, ψ ∈ L1(R2n), then the twisted convolution of u and ψ is
defined by the formula

(u ∗σ ψ)(X) = (2/π)n/2
\
u(X − Y )ψ(Y )e2iσ(X,Y ) dY.

Here R2n is considered as the phase space with variables X = (x, ξ) ∈ R2n

and Y = (y, η) ∈ R2n, and σ(X,Y ) = 〈y, ξ〉 − 〈x, η〉 is the (standard)
symplectic form on R2n.
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The twisted convolution is briefly investigated in [7, 14–16], where con-
nections between twisted convolution and Weyl calculus of pseudo-differ-
ential operators, concerning positivity and continuity, are presented. Recall
that if u ∈ S (R2n), then the Weyl operator for u is defined by

uw(x,D)f(x) = (2π)−n
\\
u((x+ y)/2, ξ)f(y)ei〈x−y,ξ〉 dy dξ

when f ∈ S (Rn). It follows that uw(x,D) is continuous on S (Rn). Fur-
thermore, the definition of uw(x,D) extends to any u ∈ S ′(R2n), and then
uw(x,D) is continuous from S (Rn) to S ′(Rn). (See [8].)

In Proposition 1.8 below we point out some important links between
twisted convolution and Weyl calculus. Here and in what follows, Fσ denotes
the symplectic Fourier transform, defined by the formula

Fσu(X) = û(X) ≡ π−n
\
u(Y )e2iσ(X,Y ) dY

when u ∈ L1(R2n). Then Fσ is continuous on S (R2n) and extends in the
usual way to a continuous map on S ′(R2n) and on L2(R2n). Furthermore,
F 2

σ is the identity operator. We also let ǔ(x) = u(−x) and ũ(x) = u(−x)
when u ∈ D ′(Rn).

Proposition 1.8. Assume that u ∈ S ′(R2n) and v, w ∈ S (R2n), and

that (0.4) holds. Then the following hold :

(1) (u ∗σ v, w) = (u,w ∗σ ṽ);
(2) (u ∗σ v) ∗σ w = u ∗σ (v ∗σ w);
(3) Fσ(u ∗σ v) = (Fσu) ∗σ v = ǔ ∗σ (Fσv);
(4) uw(x,D) ≥ 0 if and only if Fσu ∈ S ′

+(R2n);

(5) uw(x,D)vw(x,D) = (2π)−n/2(u ∗σ (Fσv))
w(x,D).

2. Wave front set of kernels of positive operators. In this section
we discuss the properties of the wave front set of kernels of positive operators
from C∞

0 to D ′. Recall from the introduction that K is the Schwartz kernel
of a positive operator if and only if (0.2) holds. Also recall that D ′

◦(R
2n) is

the set of all kernels K ∈ D ′(R2n) of positive operators.

We start by discussing invariance properties of D ′
◦(R

2n) under multipli-
cation with elements in D ′

1,+ (cf. the introduction). Here and in what follows
it is convenient to set fτ (x, y) = f(x− y) when f ∈ D ′(Rn).

Proposition 2.1. Assume that K ∈ D ′
◦(R

2n) and f ∈ D ′
1,+(Rn) ∩

C∞(Rn). Then fτK ∈ D ′
◦(R

2n).

Remark 2.2. Assume that K ∈ D ′
◦(R

2n) and ξ ∈ Rn. Then Proposition
2.1 shows that if K1(x, y) = ei〈x−y,ξ〉K(x, y), then K1 ∈ D ′

◦(R
2n), since

ei〈 · ,ξ〉 ∈ D ′
1,+ ∩ C∞.
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Proof of Proposition 2.1. Let K1 = fτK. We first prove the assertion
when f = hξ ≡ ei〈 · ,ξ〉 (∈ D ′

1,+∩C
∞). Let ϕ ∈ C∞

0 (Rn). Then straightforward
computations yield

(K1, ϕ⊗ ϕ) = (K, (e−i〈 · ,ξ〉ϕ) ⊗ (e−i〈 · ,ξ〉ϕ)) ≥ 0,

and the assertion follows.

Next assume that f ∈ D ′
1,+∩C∞ and µ = f̂ has compact support. Since

µ is a positive measure, the first part of the proof implies

0 ≤ (2π)−n/2
\
((hξ)τK,ϕ⊗ ϕ) dµ(ξ)

=
(
(2π)−n/2

(\
hξ dµ(ξ)

)
τ
K,ϕ⊗ ϕ

)
= (fτK,ϕ⊗ ϕ),

and the assertion follows in this case.

Finally, let f ∈ D ′
1,+ ∩ C∞ be arbitrary. For every ε > 0, let fε ∈

D ′
1,+ ∩ C∞ be defined by the formula f̂ε = f̂ χ(ε · ), where χ ∈ C∞

0 (Rn) is

fixed and satisfies 0 ≤ χ ≤ 1 and χ(0) = 1. Since f̂ is a positive measure

with bounded mass, it follows that the same is true for fε. Furthermore, f̂ε

has compact support and fε → f in C∞ as ε → 0. Hence by the first part
of the proof,

(2.1) (fτK,ϕ⊗ ϕ) = lim
ε→0

((fε)τK,ϕ⊗ ϕ) ≥ 0 when ϕ ∈ C∞
0 (Rn).

The next result concerns the smallest wave front set of elements in D ′
◦,

i.e. the one with respect to C∞(Rn).

Theorem 2.3. Assume that K ∈ D ′
◦(R

2n) and x, y, η ∈ Rn. If ξ ∈ Rn \0
and (x, x, ξ,−ξ) /∈ WF(K), then (x, y, ξ,−η) /∈ WF(K) and (y, x, η,−ξ) /∈
WF(K).

Proof. First note that the positivity of K implies that

(ψ1, ψ2) 7→ (K,ψ2 ⊗ ψ1)

is a semi-scalar product on C∞
0 . Hence Cauchy’s inequality holds for this

product, i.e.

(2.2) |(K,ϕ⊗ ψ)|2 ≤ (K,ϕ⊗ ϕ)(K,ψ ⊗ ψ)

for all ϕ, ψ ∈ C∞
0 (Rn).

Let now ϕ ∈ C∞
0 (Rn) be such that ϕ(0) 6= 0, and let ϕx = ϕ( · − x)

for x ∈ Rn. Choose x0 and ξ0 6= 0 with (x0, x0, ξ0,−ξ0) /∈ WF(K), and let
y0 ∈ Rn,

χ = ϕx0
⊗ ϕy0

, χ1 = ϕx0
⊗ ϕx0

, χ2 = ϕy0
⊗ ϕy0

.
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By the Cauchy–Schwarz inequality we get

(2.3) |F (χK)(ξ,−η)|2 = |(K, (ϕxe
i〈 · ,ξ〉) ⊗ (ϕyei〈 · ,η〉))|2

≤ (K, (ϕxe
i〈 · ,ξ〉) ⊗ (ϕxei〈 · ,ξ〉))(K, (ϕye

i〈 · ,η〉) ⊗ (ϕyei〈 · ,η〉))

= F (χ1K)(ξ,−ξ)F (χ2K)(η,−η).

By choosing ϕ with support small enough, it follows from the assump-
tions that for some conical neighbourhood Γ of ξ0 we have

(2.4) |F (χ1K)(ξ1,−ξ2)| ≤ CN 〈(ξ1, ξ2)〉
−N , ξ1, ξ2 ∈ Γ, N = 1, 2, . . . .

Furthermore, since χ2K has compact support,

(2.5) |F (χ2K)(η1, η2)| ≤ C〈(η1, η2)〉
M , η1, η2 ∈ Rn,

for some M <∞.
Next let η0 ∈ Rn be arbitrary, choose r > 0 such that B2r(ξ0) ⊆ Γ ,

and let Γ0 be the smallest open cone in R2n \ 0 which contains the ball
Br(ξ0,−η0) in R2n. Then there is a constant c > 0 such that |ξ| ≥ c when
(ξ, η) ∈ Br(ξ0,−η0). This gives

(2.6) C|(ξ,−η)| ≤ |ξ| ≤ |(ξ,−η)|, C|η| ≤ |ξ|, (ξ,−η) ∈ Γ0,

for some constant C > 0.
Hence a combination of (2.3)–(2.6) gives

|F (χK)(ξ,−η)|2 ≤ F (χ1K)(ξ,−ξ)F (χ2K)(η,−η)

≤ CCN+M 〈ξ〉−(N+M)〈η〉M ≤ C ′CN 〈ξ〉−N ≤ C ′′CN 〈(ξ, η)〉−N

when (ξ,−η) ∈ Γ0. This proves that (ξ0,−η0) /∈ Σ(χK). If χ is replaced
by χ0 = ϕy0

⊗ ϕx0
, then similar calculations yield (η0,−ξ0) /∈ Σ(χK). This

proves that (x0, y0, ξ0,−η0) /∈ WF(K) and (y0, x0, η0,−ξ0) /∈ WF(K), and
the result follows.

As an immediate consequence of Theorem 2.3 we have the following.

Corollary 2.4. Assume that K ∈ D ′
◦(R

2n) ∩ C∞(U), where U ⊆ R2n

is an open neighbourhood of the diagonal x = y. Then K ∈ C∞(Rn).

Next we discuss wave front properties with respect to C L. The following
result corresponds to Theorem 2.3.

Theorem 2.5. Assume that K ∈ D ′
◦(R

2n) and x, y, η ∈ Rn. If ξ ∈ Rn \0
and (x, x, ξ,−ξ) /∈ WF∗(K), then (x, y, ξ,−η) /∈ WF∗(K) and (y, x, η,−ξ) /∈
WF∗(K), where WF∗ stands for WFL or WFA.

For the proof we need the following lemma.

Lemma 2.6. Assume that U1, U2 ⊆ Rn, {ϕN} ∈ ΛL(U1) and {ψN} ∈
ΛL(U2). Then {ϕN ⊗ ψN} ∈ ΛL(U1 × U2).
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Proof. This follows immediately from Proposition 8.4.1 in [8] and its
proof.

Proof of Theorem 2.5. It suffices to prove the assertion for WFL. Choose
x0, ξ0 ∈ Rn with ξ0 6= 0 and (x0, x0, ξ0,−ξ0) /∈ WFL(K), and set Ux,y =
(x, y) + U , when U ⊆ R2n and x, y ∈ Rn. From the assumptions it follows
that there is a neighbourhood U ⊆ R2n of the origin, an open conical neigh-
bourhood Γ of ξ0, a constant C > 0 and a bounded sequence {KN}N≥0 in
E ′ such that KN = K on Ux0,x0

and

(2.7) |F (KN)(ξ,−η)| ≤ C(CLN/|(ξ, η)|)
N , ξ, η ∈ Γ.

Next let y0 ∈ Rn be arbitrary, and choose r1 > 0 such that B2r1
(0) ⊆ U .

Also let ϕN ∈ C∞
0 (Rn) be such that {ϕN} ∈ ΛL(B2r(0)) and ϕN (x) = 1

when x ∈ Br1
(0). Then it follows from Lemma 2.6 that if

χN = ϕN ( · − x0) ⊗ ϕN ( · − y0),

then {χN} ∈ ΛL(B2r(x0, y0)), and for some r0 > 0,

(2.8) χN (x, y) = 1 when (x, y) ∈ Br0
(x0, y0).

By (2.3) we get

(2.9) |F (χNK)(ξ,−η)|2 ≤ F (χ1,NK)(ξ,−ξ)F (χ2,NK)(η,−η)|

where

χ1,N = ϕN ( · − x0) ⊗ ϕN ( · − x0), χ2,N = ϕN ( · − y0) ⊗ ϕN ( · − y0)

Since {χ1,N} ∈ ΛL(B2r(x0, x0)), Lemma 1.4 implies that (2.7) holds for
K1,N = χ1,NK, with Γ replaced by a smaller conical neighbourhood of ξ0 if
necessary.

Next let η0, r and Γ0 be as in the proof of Theorem 2.3. Since χ2,NK is
a bounded set in E ′(U(y0,y0)), it follows that (2.5) holds when χ2 = χ2,N , for
some constants C and M independent of N . By repeating the arguments in
the proof of Theorem 2.3, a combination of (2.5)–(2.9) now gives

|F (χNK)(ξ, η)| ≤ C(CLN/|(ξ,−η)|)
(N−M)/2, (ξ,−η) ∈ Γ0,

for some constant C independent of N . Since χN = 1 in Br0
(x0, y0), Lemma

1.6 shows that (x0, y0, ξ0,−η0) /∈ WFL(K). If χN is replaced by

χ0,N = ϕN ( · − y0) ⊗ ϕN ( · − x0),

then similar arguments show that (y0, x0, η0,−ξ0) /∈ WFL(K).

As an immediate consequence of Theorem 2.5 we have the following.

Corollary 2.7. Assume that K ∈ D ′
◦(R

2n) ∩ C L(U), where U ⊆ R2n

is an open neighbourhood of the diagonal x = y. Then K ∈ C L(R2n).

Next we discuss wave front properties for the Fourier transform of ele-
ments in D ′

◦ ∩ S ′.
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Theorem 2.8. Assume that K ∈ D ′
◦(R

2n) ∩ S ′(R2n) and y, ξ, η ∈ Rn.

If x ∈ Rn \ 0 and (ξ,−ξ, x, x) /∈ WF∗(K̂), then (ξ,−η, x, y) /∈ WF∗(K̂) and

(η,−ξ, y, x) /∈ WF∗(K̂), where WF∗ stands for WF, WFL or WFA.

Theorem 2.8 is an immediate consequence of Theorem 2.3, Theorem 2.5
and the following result.

Proposition 2.9. Assume that K ∈ S ′(R2n) and let KF (ξ, η) =

K̂(ξ,−η). Then K ∈ D ′
◦(R

2n) if and only if KF ∈ D ′
◦(R

2n). In particu-

lar , if K ∈ D ′
◦(R

2n), then (2.2) and the Cauchy–Schwarz inequality

(2.2)′ |(K̂, ϕ⊗ ψ̃)|2 ≤ (K̂, ϕ⊗ ϕ̃)(K̂, ψ ⊗ ψ̃)

hold for every ϕ, ψ ∈ S (Rn).

Proof. Assume that K ∈ D ′
◦. Then (2.2) holds for all ϕ, ψ ∈ C∞

0 , and by
a simple approximation argument it also holds for all ϕ, ψ ∈ S . By Fourier’s
inversion formula it now follows that

(KF , ϕ⊗ ϕ) = (K̂, ϕ⊗ ϕ̃) = (K, (F−1ϕ) ⊗ F−1ϕ ) ≥ 0.

This proves that KF ∈ D ′
◦. The result now follows from Fourier’s inversion

and the obvious fact that K ∈ D ′
◦ if and only if Ǩ ∈ D ′

◦.

Remark 2.10. In view of the assumptions in Theorem 2.8 and Propo-
sition 2.9 we note that if K ∈ D ′

◦(R
2n) and Kφ(x, y) = φ(x− y)K(x, y) for

some φ ∈ S (Rn) such that φ(0) 6= 0, then Theorem 2.9 in [16] shows that
K ∈ S ′(R2n) if and only if Kφ ∈ S ′(R2n).

Remark 2.11. Theorems 2.3 and 2.5 do not give any non-trivial infor-
mation when K is the distribution kernel of a partial differential operator
with smooth coefficients.

In fact, any such K can be written as

K(x, y) =
∑

|α|≤N

aα(x)δ
(α)
0 (x− y).

In particular,K(x, y) is equal to zero, and hence real-analytic, outside x = y.

Remark 2.12. Proposition 2.9 can be considered as a generalization of
Bochner’s theorem. In fact, assume that u is a positive definite function or
distribution, i.e. K(x, y) = u(x − y) belongs to D ′

◦ ∩ S ′ (see Remark 3.6
in Section 3). Then Proposition 2.9 shows that KF (ξ, η) = û ⊗ δ(ξ, η − ξ)
belongs to D ′

◦. This is the same as saying that û is a positive measure.

3. Wave front set of positive elements in convolution algebras.

In this section we apply the results from the previous sections to elements
in D ′

B,+(Rn). To that end we prove that the singularities for such elements
are strongest at the origin.
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More precisely, we have the following.

Theorem 3.1. Assume that B ∈ C∗(R2n), u ∈ D ′
B,+(Rn) and ξ ∈ Rn\0.

Then the following hold :

(1) if (0, ξ) /∈ WF(u), then (x, ξ) /∈ WF(u) for every x ∈ Rn;
(2) if (0, ξ) /∈ WFL(u), and in addition B ∈ C L(R2n), then (x, ξ) /∈

WFL(u) for every x ∈ Rn;
(3) if (0, ξ) /∈ WFA(u), and in addition B ∈ A(R2n), then (x, ξ) /∈

WFA(u) for every x ∈ Rn.

Remark 3.2. Assume that B = 1 everywhere. Then assertion (3) of
Theorem 3.1 was proved by Yoshino in [17]. (See also [18].)

The proof of Theorem 3.1 is based on the following lemma.

Lemma 3.3. Assume that u ∈ D ′(Rn), f1 ∈ C∗(Rn) and f2 ∈ C∗(Rn) ∩
C L(Rn). Then

(3.1) WF(f1 u) = WF(u), WFL(f2 u) = WFL(u),

and

(3.2)
WF(uτ ) = {(x, y, ξ,−ξ) ; (x− y, ξ) ∈ WF(u)},

WFL(uτ ) = {(x, y, ξ,−ξ) ; (x− y, ξ) ∈ WFL(u)}.

Proof. The assumptions imply that 1/f1 ∈ C∗ and 1/f2 ∈ C∗ ∩ C L.
Hence (3.1) follows from the inclusions WF(f1 u) ⊆ WF(u) and WFL(f2 u)
⊆ WFL(u), which are immediate consequences of the definitions and the
results in Section 1. (See also [8].)

In order to prove the first equality in (3.2) we let v(x, y) = (u⊗1)(x, y) =
u(x). In view of Theorem 8.2.4 in [8], the result follows if we prove that

WF(v) = {(x, y, ξ, 0) ; (x, ξ) ∈ WF(u)}.

Let χ(x, y) = χ1(x)χ2(y), where χ1, χ2 ∈ C∞
0 (Rn). Then

F (χv)(ξ, η) = F (χ1u)(ξ)χ̂2(η).

Since χ̂2 is rapidly decreasing, and |F (χ1u)(ξ)| ≤ C〈ξ〉M when ξ ∈ Rn,
for some constants C and M , it follows that (ξ, η) ∈ Σ(χv) if and only if
ξ ∈ Σ(u) and η = 0. This proves the first equality in (3.2).

The second equality follows by similar arguments, using Theorem 8.5.1
instead of Theorem 8.2.4 in [8].

Proof of Theorem 3.1. (1) Let K = uτB, and assume that (0, ξ) /∈
WF(u). Then it follows from Lemma 3.3 that

(x, x, ξ,−ξ) /∈ WF(uτ ) = WF(K).

Since we have K ∈ D ′
◦, Theorem 2.3 implies that (x, 0, ξ,−ξ) /∈ WF(K), i.e.

(x, 0, ξ,−ξ) /∈ WF(uτ ). Hence (3.2) shows that (x, ξ) /∈ WF(u).
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Assertions (2) and (3) follow by similar arguments, using Theorem 2.5
instead of Theorem 2.3. The details are left for the reader.

Next we list some consequences of Theorem 3.1. The first result concerns
smoothness near the origin. (See [4, 12, 17] or [18] in the case of standard
convolution, i.e. the case when B = 1.)

Corollary 3.4. Assume that B ∈ C∗(R2n), u ∈ D ′
B,+(Rn), and U ⊆

Rn is an open neighbourhood of origin. Then the following holds:

(1) if in addition u ∈ C∞(U), then u ∈ C∞(Rn);
(2) if in addition B ∈ C L(R2n) and u ∈ C L(U), then u ∈ C L(Rn);
(3) if in addition B ∈ A(R2n) and u ∈ A(U), then u ∈ A(Rn).

By combining Theorem 2.3 with Theorem 3.1, we are now able to prove
the following generalization of Proposition 2.1.

Proposition 2.1′. Assume that K ∈ D ′
◦(R

2n) and f ∈ D ′
1,+(Rn) are

such that

(3.3) {(x, x, ξ,−ξ) ∈ WF(K) ; (0,−ξ) ∈ WF(f)} = ∅.

Then fτK is uniquely determined as an element in D ′(R2n) by the pull-

back of the tensor product fτ ⊗K by the diagonal map (x, y) 7→ (x, y, x, y).
Furthermore, fτK ∈ D ′

◦(R
2n).

Proof. By Theorems 2.3 and 3.1 it follows that

{(x, y, ξ,−η) ∈ WF(K) ; (x, y,−ξ, η) ∈ WF(fτ )} = ∅.

Hence K1 = fτK is well-defined in view of Theorem 8.2.10 in [8]. This proves
the first part of the proposition.

It remains to prove that fτK ∈ D ′
◦. Let εj > 0 be a sequence which

decreases to zero as j goes to infinity, and set χj = ε−n
j χ( · /εj), where

χ ∈ C∞
0 (Rn) is chosen such that

T
χdx = 1 and χ̂ is non-negative. Also let

fj = f ∗χj and fj,τ = (fj)τ . If the pullback and the distribution in Theorem
8.2.4 in [8] are chosen as (x, y) 7→ (x, y, x, y) and fj,τ ⊗K respectively, then

fj,τK → fτK in D ′ as j → ∞. Since f̂j = (2π)n/2χ̂j f̂ is a non-negative
measure, it follows that fj ∈ D ′

1,+ ∩ C∞. Hence Proposition 2.1 shows that
fj,τK ∈ D ′

◦. This gives

(fτK,ϕ⊗ ϕ) = lim
j→∞

(fj,τK,ϕ⊗ ϕ) ≥ 0

when ϕ ∈ C∞
0 . Hence fτK ∈ D ′

◦, and the proof is complete.

Corollary 3.5. Assume that u ∈ D ′
B,+(Rn) and f ∈ D ′

1,+(Rn) are

such that

(3.4) {(0, ξ) ∈ WF(u) ; (0,−ξ) ∈ WF(f)} = ∅.
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Then fu is uniquely determined as the pullback of the tensor product f ⊗ u
by the diagonal map x 7→ (x, x). Furthermore fu ∈ D ′

B,+(Rn).

Proof. The result follows immediately from Lemma 3.3, Proposition 2.1′

and the fact that fu ∈ D ′
B,+ if and only if fτuτB ∈ D ′

◦.

Remark 3.6. Some other properties for D ′
B,+ can be found in [16] when

B ∈ C∗(R2n). For example, let S ′
B,+(Rn) = D ′

B,+(Rn) ∩ S ′(Rn). Also
assume that for each multi-index α, there is a polynomial Pα such that (0.3)
holds. Then it is proved in Section 2 of [16] that D ′

B,+(Rn) = S ′
B,+(Rn). In

particular, if B = 1, then “the classical” Bochner–Schwartz theorem follows.

Here, as in the proof of Theorem 2.3, an important idea for the proof is
that if u ∈ D ′

B,+, then the map (ϕ, ψ) 7→ (u ∗B ϕ, ψ) defines a semi-scalar
product on C∞

0 (Rn), which in particular implies that the Cauchy–Schwarz
inequality holds, i.e.

(3.5) |(u ∗B ϕ, ψ)|2 ≤ (u ∗B ϕ,ϕ)(u ∗B ψ, ψ).

Remark 3.7. There are several extensions of the Bochner–Schwartz the-
orem concerning the standard convolution (i.e. the case B = 1 in Remark
3.6), especially in the theory of hyperfunctions. (See e.g. [3–5, 10, 12, 13,
17, 18].)

4. Applications to positive elements in the twisted convolution

algebra. In this section we apply the results of the previous section to the
twisted convolution algebra. (Cf. Section 1.) From the definition it follows
that the twisted convolution is equal to ∗B with B as in (0.4), which is non-
zero and real-analytic everywhere. Consequently, all positivity results in the
previous sections are valid for the twisted convolution. However, by taking
into account the special structure of the twisted convolution it turns out that
regularity at the origin for positive elements does not only impose similar
regularity for such elements globally, but also for the Fourier transform of
such elements. Such questions were carefully investigated in [16], and the
considerations in the present section can be viewed as a continuation of
that discussion.

For example, the WF case in the following theorem is a restatement of
Theorem 4.14 in [16]. Here recall from the introduction that S ′

+(R2n) =
D ′

B,+(R2n) when ∗B is the twisted convolution. (Note that this implies that

S ′
+ ⊆ S ′ in view of Remark 3.6.)

Theorem 4.1. Assume that u ∈ S ′
+(R2n) and that Y ∈ R2n \ 0. If

(0, Y ) /∈ WF∗(u) and X ∈ R2n, then (X,Y ) /∈ WF∗(u) and (X,Y ) /∈
WF∗(Fσu), where WF∗ stands for WF, WFL or WFA.
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Proof. We have to prove the assertion for WFL and WFA. Since B(X,Y )
= e2iσ(X,Y ) is real-analytic, the latter assertion is a consequence of the
former.

In order to prove the assertion for WFL we observe that the assertion is
invariant under the choice of Fourier transform. Hence we may assume that
the symplectic Fourier transform has been used in the definition of wave
front set. Assume that (0, Y0) /∈ WFL(u), and that X0 ∈ R2n is arbitrary.
Then (X0, Y0) /∈ WFL(u) in view of Theorem 3.1, and from the definitions
and Lemma 1.5 there is an open neighbourhood U of the origin and a conical
neighbourhood Γ of Y0 such that

|Fσ(uφN )(Y )| ≤ C(CLN/|Y |)N , {φN} ∈ ΛL(U),

where the constant C is independent of N .
Next choose r > 0 such that B2r(0) ⊆ U and

(4.1) |arg(e2iσ(X1,Y1)) − arg(e2iσ(X2,Y2))| ≤ π/8 when

X1, X2 ∈ B2r(X0), Y1, Y2 ∈ B2r(0).

Also let {ϕN} ∈ ΛL(Br(0)) and {ψN} ∈ ΛL(Br(X0) be sequences of non-
negative functions such that ϕN (X) = ψN (X + X0) = 1 for every N and
X ∈ Br/2(0). Finally, let φN = ψ̌N , and

ϕN,Y = e−2iσ(Y, · )ϕN , ψN,Y = e2iσ(Y, · )ψN , φN,Y = ψ̌N,Y ,

χN = ψN ∗σ ϕ̃N , χ1,N = ϕN ∗σ ϕ̃N , χ2,N = φN ∗σ φ̃N .

Then {χN} ∈ ΛL(B2r(X0)) and {χj,N} ∈ ΛL(B2r(0)) for j = 1, 2, and by
(4.1) there exists a constant c > 0 such that

|χN(X +X0)| ≥ c, |χ1,N(X)| ≥ c, |χ2,N(X)| ≥ c

for every N and X ∈ Br(0).
By Proposition 1.8, (3.5) and straightforward computations we get

|Fσ(ûχN )(Y )|2 = |(e2iσ(Y, · )û, ψN ∗σ ϕ̃N )|2

= |(û, ψN,Y ∗σ ϕ̃N,Y )|2 = |(u, ψ̂N,Y ∗σ ϕ̃N,Y )|2

≤ (u, ϕN,Y ∗σ ϕ̃N,Y )(u,FσψN,Y ∗σ F̃σψN,Y )

= (u, ϕN,Y ∗σ ϕ̃N,Y )(u, φN,Y ∗σ φ̃N,Y ).

Since

ϕN,Y ∗σ ϕ̃N,Y = e−2iσ(Y, · )ϕN ∗σ ϕ̃N = e−2iσ(Y, · )χ1,N ,

φN,Y ∗σ φ̃N,Y = e−2iσ(Y, · )φN ∗σ φ̃N = e−2iσ(Y, · )χ2,N ,

by straightforward computations, it follows that

(u, ϕN,Y ∗σ ϕ̃N,Y ) = Fσ(χ1,Nu)(Y ), (u, φN,Y ∗σ φ̃N,Y ) = Fσ(χ2,Nu)(Y ).
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From the above estimates we get

|Fσ(χN û)(Y )|2 ≤ Fσ(χ1,Nu)(Y )Fσ(χ2,Nu)(Y ).

It now follows that (1.4) holds with uN = χN û. Hence (X0, Y0) /∈ WFL(û),
and the assertion follows.

As a consequence of Theorem 4.1, if u ∈ S ′
+(R2n)∩C∞(U), then u and

û belong to C∞(R2n). A stronger result in this context is (1) in the following
refinement of Corollary 3.4 in the case of twisted convolution.

Theorem 4.2. Assume that U ⊆ R2n is an open neighbourhood of the

origin. Then the following hold :

(1) if u ∈ S ′
+(R2n) ∩ C∞(U), then u ∈ S (R2n);

(2) if u ∈ S ′
+(R2n)∩C L(U), then u and û belong to C L(R2n)∩S (R2n);

(3) if u ∈ S ′
+(R2n) ∩A(U), then u and û belong to A(R2n) ∩ S (R2n).

Proof. Assertion (1) follows immediately from Theorem 3.13 in [16]. The
rest is an immediate consequence of Theorem 4.1 and (1).

Remark 4.3. Assume thatK(X−Y ) = u(X−Y )e2iσX,Y ) belongs to D ′
◦,

i.e. u ∈ S ′
+. Then the Fourier inversion formula gives that FσK(X,−Y ) =

u(Y − X)e2iσX,Y ). (See the introduction and Remark 3.6.) Hence, Propo-
sition 2.9 asserts that u ∈ S ′

+ if and only if ǔ ∈ S ′
+. On the other hand,

the last property follows immediately from the definitions, which in partic-
ular implies that Proposition 2.9 does not give any non-trivial information
for elements in S ′

+. Consequently, Theorem 2.8 does not give any further
information compared to Theorems 2.3 and 2.5 in the case of twisted con-
volution.

Remark 4.4. A question which arises here is whether the condition
WF(u) = WF(û) = ∅ (i.e. u, û ∈ C∞) for a distribution u implies that

indeed u ∈ S . The answer is negative. In fact, if u(x) = ei|x|2 , then u, û ∈
C∞ ∩ S ′ \ S . We refer to [6] for a brief investigation of such questions.
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