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Weak-Lp solutions for a model ofself-gravitating parti
les with an external potentialbyAndrzej Ra
zy«ski (Wro
ªaw)Abstra
t. The existen
e of solutions to a nonlinear paraboli
 equation des
ribing thetemporal evolution of a 
loud of self-gravitating parti
les with a given external potentialis studied in weak-Lp spa
es (i.e. Mar
inkiewi
z spa
es). The main goal is to prove theexisten
e of global solutions and to study their large time behaviour.1. Introdu
tion. We 
onsider the Cau
hy problem for the equation(1) ut = ∆u + ∇ · (u∇φ) + ∇ · (u∇Φ),
oupled with the Poisson equation ∆φ = u written in the form(2) ∇φ = ∇En ∗ u,where En(z) = −((n − 2)σn)−1|z|2−n, n ≥ 3, is the fundamental solutionof the Lapla
ian in R
n and σn is the area of the unit sphere in R

n. Wesupplement the system (1)�(2) with the initial 
ondition(3) u(x, 0) = u0(x).The system above des
ribes the temporal evolution of the density u(x, t)of a 
loud of self-gravitating parti
les and the potential φ(x, t) generated bygravitational intera
tion between them. The fun
tion Φ(x) in the third termon the right-hand side of (1) represents the given external potential.The model (1)�(3) 
an also be 
onsidered with ele
tri
 intera
tions repla
-ing the gravitational ones. In this 
ase the equation (2) should be rewrittenas
∇φ = −∇En ∗ u.Usually, the results for this model are �better� than for the gravitational one,but the methods used here for the 
onstru
tion of solutions do not allow usto obtain qualitatively di�erent results. Thus, the results we obtain for this2000 Mathemati
s Subje
t Classi�
ation: 35B40, 35K55, 35K57, 82C21.Key words and phrases: nonlinear paraboli
-ellipti
 system, Cau
hy problem, weak-Lpspa
e, external potential. [199℄ 
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200 A. Ra
zy«skimodel are the same (with similar proofs) as for the model 
onsidered in thispaper.Let us review brie�y the basi
 literature and previous results 
on
erningthe model in question.The physi
al interpretation of the system has a long history and goesba
k to Nernst and Plan
k (see [7℄ and referen
es therein). In the originalproblem ele
tri
 intera
tions were assumed and the problem was 
onsideredin a bounded smooth domain in R
n.A very good introdu
tion to mathemati
al aspe
ts of the physi
al prob-lems whi
h are modelled by our problem and its generalizations 
an be foundin [18℄ (also [19℄ is useful).A good ba
kground and physi
al motivation for the gravitational inter-pretation of the system (1)�(3) 
an be found in [22℄.The majority of the relevant papers are devoted to the problem inbounded domains of R

n with appropriate boundary 
onditions (usually no-�ux boundary 
ondition and Diri
hlet 
ondition for the potential φ). For su
ha problem the external potential Φ is usually M∗En (interpreted as puttingan additional mass or 
harge M∗ at the origin) and the results stronglydepend on the dimension of the spa
e and the type of intera
tions.Let us brie�y overview the results obtained (they 
ome mainly from thepapers [6℄, [7℄, [14℄, [22℄).For the Coulomb 
ase (with ele
tri
al intera
tions assumed) the mainresults have been obtained for radially symmetri
 solutions with integrateddensity u as a main tool. With M0 =
T
Ω u the existen
e of stationary so-lutions for n = 2, M∗ < 4π and any M0 has been established. In the two-dimensional 
ase for M∗ ≥ 4π and any M0, and for arbitrary values of M0and M∗ in three- or more dimensions, the nonexisten
e of steady states hasbeen proved.Similar results have been obtained for evolution solutions (together withtheir 
onvergen
e to stationary solutions for n = 2, 3).The same results have been obtained for the problem in the whole spa
e.For n = 2 also self-similar solutions have been 
onsidered (by the de�ni-tion, su
h solutions are de�ned in the whole spa
e R

2). Just as for radiallysymmetri
 solutions, the existen
e of solutions for M∗ < 4π and arbitrary
M0 has been proved.For more general assumptions on Φ and without radial symmetry as-sumed, the existen
e of lo
al-in-time weak solutions has also been proved,but only in bounded domains.In the gravitational 
ase the existen
e of solutions depends on the dimen-sion and the values of M∗ and M0, but in a more sophisti
ated way than inthe Coulomb 
ase.



Self-gravitating parti
les with external potential 201To be more pre
ise, for radially symmetri
 solutions in two dimensionsthe existen
e of solutions (stationary and global-in-time) depends on thequantity M0+2M∗. If this quantity is less than 8π, the existen
e of solutionsis guaranteed, while M0 + 2M∗ > 8π implies the nonexisten
e.In the three-dimensional 
ase the nonexisten
e of stationary and lo
al-in-time solutions has been proved for M∗ > 0.For the problem in the whole spa
e R
n, the nonexisten
e of lo
al-in-timesolutions has been proved for n = 2 and M∗ ≥ 4π, and for n ≥ 3 and

M∗ > 0.For self-similar solutions in R
2 the 
ondition M0 +2M∗ < 8π guaranteesthe existen
e of su
h solutions.The existen
e of weak lo
al-in-time solutions has been established (forbounded domains) also for more general assumptions on Φ.In [13℄ the assumption Φ ≡ 0 is made but the paper 
ontains a goodintrodu
tion to the problem in the whole R

n.Most of the results mentioned above 
on
ern the 
ase Φ = M∗En. Theideas used in those papers have been developed in [5℄ where the generalform of the �ux (in our paper given by ∇(φ + Φ)) has been 
onsidered (in abounded domain). Under some hypotheses on Lp estimates of this �ow theexisten
e and uniqueness of lo
al-in-time as well as stationary solutions havebeen proved.R. F. Streater extended the 
lassi
al Nernst�Plan
k�Debye�Hü
kel drift-di�usion system for 
harged but nonintera
ting parti
les (see [20℄) by intro-du
ing a new variable (temperature). The augmented model with an addi-tional equation for the heat �ow has been 
onsidered in e.g. [4℄, [8℄. Sin
eStreater's model in the general setting is di�
ult, in the present paper theexternal potential is assumed to be 0. The �rst results 
on
erning nonunique-ness of steady states with Φ 6≡ 0 
an be found in, for example, [15℄.As stated in [7℄, introdu
ing an additional potential (even in the form
Φ = M∗En) implies that the problem is more di�
ult mainly be
ause ofsingular terms 
ontaining the derivatives of the potential. This as well asexternal potentials of general form raise the question about the fun
tionalsetting in whi
h the existen
e of solutions should be 
onsidered.Results for the problem without external potentials have been given in[2℄ and [3℄.For the problem with external potential, suitable assumptions on Φ andthe proof of existen
e have been given in spa
es of pseudomeasures ([17℄).The main aim of this paper is to point out another example of spa
es inwhi
h global singular solutions 
an exist as well as to spe
ify requirementson external potentials to obtain su
h solutions.The importan
e of su
h a 
hoi
e of spa
e will be dis
ussed below.



202 A. Ra
zy«skiAdditionally, our knowledge of spa
es in whi
h singular solutions for theproblem without external potential 
an exist is also enri
hed (re
all that forsu
h problems self-similar solutions 
an also be 
onsidered).Finally, in the last se
tion a result 
on
erning asymptoti
 behaviour ofthe solutions obtained will be given.In this paper we look for solutions of the problem (1)�(3) in the Mar
in-kiewi
z spa
e Lp,∞(Rn). Let us re
all the de�nition:
Lp,∞(Rn) =

{
v ∈ L1

loc(R
n) : ‖v‖p,∞ ≡ sup

E⊂Rn
|E|−1+1/p

\
E

|v(x)| dx < ∞
}
,where p > 1, and E runs through Borel sets with �nite and positive mea-sure |E|. Sometimes, to show that f ∈ Lp,∞(Rn) it is better to use thequantity

‖f‖∗p,∞ = sup
s>0

s|{x : |f(x)| > s}|1/p(whi
h is not a norm), for whi
h the following inequalities hold:
‖f‖∗p,∞ ≤ ‖f‖p,∞ ≤ p

p − 1
‖f‖∗p,∞.The reader 
an �nd more properties of the spa
es Lp,∞(Rn) in, e.g., [9,Se
. 2℄.Notations. We denote by ‖f‖p the norm in the usual Lebesgue spa
e

Lp(Rn). The symbol C denotes various inessential 
onstants whi
h may varyfrom line to line.Let
Xp = Cw([0,∞); Lp,∞(Rn))be the spa
e of ve
tor-valued fun
tions u = u(x, t) su
h that

•
T
Rn u(x, t)φ(x) dx →

T
Rn u(x, 0)φ(x) dx as t ց 0 for ea
h test fun
tion

φ ∈ S(Rn), the S
hwartz 
lass,
• u(t) is a bounded and 
ontinuous fun
tion from (0, T ] to Lp,∞(Rn) inthe norm topology of Lp,∞(Rn).The ne
essity of 
onsidering Cw instead of the spa
e of strongly 
ontinu-ous fun
tions C([0,∞); Lp,∞(Rn)) is 
aused by the fa
t that the heat semi-group is not strongly 
ontinuous on Lp,∞(Rn) but only weakly 
ontinuous.To see this, it is enough to 
he
k that ‖et∆|x|−n/p − |x|−n/p‖p,∞ = const.
Lp,∞(Rn) is an example of a spa
e whi
h is not separable but is dual to aseparable spa
e. In fa
t, for the Lorentz spa
e Lp′,1(Rn) (p′ is the 
onjugateindex to p) we have Lp,∞(Rn) = (Lp′,1)∗(Rn) and Lp′,1(Rn) is separablewith dense subset S(Rn). Examples of appli
ations of su
h spa
es to theNavier�Stokes or nonlinear heat problems 
an be found in [10℄, [11℄.



Self-gravitating parti
les with external potential 203By a mild solution of the problem (1)�(3), we understand a solution
u ∈ Cw([0,∞); Lp,∞(Rn)) of the integral equation

u(t) = et∆u0 +

t\
0

e(t−s)∆∇ · (u(s)∇φ(s)) ds(4)
+

t\
0

e(t−s)∆∇ · (u(s)∇Φ(s)) ds,where ∇φ(s) = ∇En ∗ u(s), and the integral is the Bo
hner integral. The�rst term is well de�ned (in the paper [1, Lemmas 2&3℄ the reader 
an�nd a detailed proof that et∆u0 ∈ Xp for every u0 ∈ Lp,∞(Rn) and t ≥ 0)but su
h a meaning of a solution is not suitable for our 
onstru
tion ofsolutions of the Cau
hy problem. The di�
ulty is 
aused by the fa
t thatfor p ≥ n/2 the term e(t−s)∆∇ · (u(s)∇φ(s)) is not Bo
hner integrable on
[0, T ] with values in Lp,∞(Rn). To see this, it is enough to observe thatfor stationary solutions whi
h are homogeneous of degree −2 (see a noteabout the Chandrasekhar solution below), the term in question 
orrespondsto a tempered homogeneous distribution of degree −4. Thus, there existsa distribution H su
h that

e(t−s)∆∇ · (u(s)∇φ(s)) = (t − s)−2H

( ·√
t − s

)
.Sin
e(5) ‖f(λ ·)‖p,∞ = λ−n/p‖f‖p,∞,we have

‖e(t−s)∆∇ · (u(s)∇φ(s))‖p,∞ = (t − s)−2+n/2p‖H‖p,∞,whi
h implies that this term is not Bo
hner integrable for p ≥ n/2. Toremove this di�
ulty, the integrals with respe
t to s in equations (4) shouldbe de�ned in the weak sense (as, for example, in [3℄ and [23, Def. 2℄). For moreexplanations, we refer the reader to [3℄ and referen
es therein. Nevertheless,a distributional solution of (1)�(3) whi
h belongs to Xp is a solution of theintegral equation (4) and vi
e versa. This equivalen
e 
an be proved followingthe 
omputations for the Navier�Stokes equations in [23, Th. 5.2℄.The importan
e of the spa
e Ln/2,∞(Rn) 
omes from the fa
t that for
n ≥ 3 there exists a stationary singular solution to the problem with noexternal potential. It is 
alled the Chandrasekhar solution and has the form

uC(x) = 2(n − 2)|x|−2.It is easy to 
he
k that uC(x) belongs to Ln/2,∞(Rn) (as well as to Xn/2, if
uC is interpreted as a 
onstant fun
tion of t). Indeed, we have ‖uC‖n/2,∞ =

2(n − 2)‖ |x|−2‖n/2,∞ ≤ 2nσ
n/2
n .



204 A. Ra
zy«skiAs stated in [3℄, it is expe
ted that uC is a solution with 
riti
al singularityof the initial data in the sense that for small initial data u0 ≤ εuC, 0 < ε ≪ 1,the solution exists, and for initial 
onditions u0 su
h that u0(x) > uC thereis no solution to the problem (1)�(3).Another advantage of the use of the spa
es Lp,∞(Rn) is that this nat-ural extension of the spa
e Lp 
ontains homogeneous fun
tions of degree
−n/p (whi
h, of 
ourse, do not belong to Lp(Rn)). For our model this givesus an opportunity to 
onsider self-similar solutions to the problem (1)�(3)(with Φ ≡ 0), i.e. fun
tions u(t) with the s
aling property u(t) ≡ uλ(t) =
λ2u(λx, λ2t) for all λ > 0, in the spa
e Ln/2,∞(Rn).To simplify the notation, we will denote the quadrati
 term in (4) by
B(u, u), with the bilinear form B de�ned by

B(u, v) =

t\
0

e(t−s)∆∇ · (u(s)∇φ(s)) ds,where φ(s) is obtained from v by putting ∇φ(s) = ∇En ∗ v(s).Analogously, denote the linear term in (4) by Lu with L de�ned by
Lu =

t\
0

e(t−s)∆∇ · (u(s)∇Φ(s)) ds,where Φ is a given external potential. In this way our problem 
an be rewrit-ten as follows:
u(t) = et∆u0 + B(u, u) + Lu.2. Main tools. A modi�
ation of a well-known theorem by Y. Meyer([12℄) is the main tool whi
h will be used in this paper. The theorem belowgives the existen
e and uniqueness of the solution via a 
ontra
tion mappingargument.Theorem 2.1. Let X be a Bana
h spa
e. Assume that B : X × X → Xis a bilinear form su
h that
‖B(y, z)‖X ≤ K‖y‖X ‖z‖Xfor some K > 0 and all y, z ∈ X . Let L : X → X be a 
ontinuous linearoperator with

‖Ly‖X ≤ ℓ‖y‖Xwith some ℓ < 1.(i) For every a ∈ X su
h that ‖a‖X < (1 − ℓ)2/4K, there exists a solution
x ∈ X to the equation(6) x = a + Lx + B(x, x).



Self-gravitating parti
les with external potential 205This solution satis�es the estimate
‖x‖X ≤ 1 − ℓ −

√
(1 − ℓ)2 − 4K‖a‖X

2K
≤ 1 − ℓ

2K
.Moreover , for ‖a‖X < (1 − ℓ)2/4K, this solution is unique in theopen ball in X of radius (1 − ℓ)/2K.(ii) The solution obtained depends 
ontinuously on a in the following way.For b ∈ X su
h that ‖b‖X ≤ ε < (1 − ℓ)2/4K and for v being thesolution of the equation v = b + Lv + B(v, v) we have

‖u − v‖X ≤ ((1 − ℓ)2 − 4Kε)−1/2‖a − b‖X .The 
hoi
e of the fun
tion spa
e X is of 
ru
ial importan
e in the appli-
ation of the above theorem.We re
all a slight modi�
ation of a theorem by E. Terraneo ([21, Prop.1.5℄) whi
h will be used to estimate the bilinear form B(u, v).Theorem 2.2. Let n > 1, 1 < p < n, and 1/r = 1/p − 1/n. Let f ∈
L∞((0, T ); Lp,∞(Rn)) for any 0 < T ≤ ∞.Then there exists C = C(r, p) > 0su
h that for every a ∈ [0, t) with t ≤ T ,(7) ∥∥∥

t\
a

e(t−s)∆∇f(s) ds
∥∥∥

r,∞
≤ C sup

a<s<t
‖f(s)‖p,∞.Let us also re
all two estimates for the norm of the produ
t and 
onvo-lution of two fun
tions in Mar
inkiewi
z spa
es. The proofs of the followinglemmas (even in a more general setting) 
an be found, e.g., in [16, Theorems3.4 and 2.5℄).Lemma 2.3 (weak Hölder inequality). For 1 < p ≤ ∞ and 1 < q, r < ∞su
h that 1/r = 1/p + 1/q and for all f ∈ Lp,∞(Rn) and g ∈ Lq,∞(Rn), theprodu
t fg belongs to Lr,∞(Rn) and

‖fg‖r,∞ ≤ C‖f‖p,∞‖g‖q,∞,with a 
onstant C = C(p, q).Lemma 2.4 (weak Young inequality). For 1 < p, q < ∞ and 1 < r < ∞su
h that 1 + 1/r = 1/p + 1/q and for all f ∈ Lp,∞(Rn) and g ∈ Lq,∞(Rn),the 
onvolution f ∗ g belongs to Lr,∞(Rn) and
‖f ∗ g‖r,∞ ≤ C‖f‖p,∞‖g‖q,∞,with a 
onstant C = C(p, q, n).3. Global solutions in the spa
e Xn/2, n > 3. In this se
tion weprove the existen
e of global solutions in the spa
e Xn/2, n > 3. Sin
e thethree-dimensional 
ase needs a restri
tion to a subspa
e, a 
ounterpart ofthe result below for that 
ase will be proved in the next se
tion.



206 A. Ra
zy«skiFirst observe that the fun
tion |x|−γ for 0 < γ < n belongs to Ln/γ,∞(Rn)with
‖ |x|−γ‖n/γ,∞ ≤ n

n − γ
σγ/n

n ,so that the Chandrasekhar solution uC(x) belongs to Ln/2,∞(Rn), n ≥ 3.Next, we 
onsider some properties of the heat semigrup et∆u0 in the s
aleof Mar
inkiewi
z spa
es.Lemma 3.1. For any u0 ∈ Lp,∞(Rn), we have et∆u0 ∈ Xp with theestimate
‖et∆u0‖Xp ≤ C(n, p)‖u0‖p,∞.Proof. This is obvious due to the following inequality ([1, Lemma 1℄) for

1 < r ≤ p < ∞:(8) ‖et∆f‖p,∞ ≤ C(n, p, r)t
−n

2
( 1

r
− 1

p
)‖f‖r,∞with r = p.Combining Theorem 2.2 with the weak Hölder and Young inequalities weobtain the 
ru
ial estimate of the bilinear form B.Lemma 3.2. Let n > 3. There exists a 
onstant K = K(n) > 0 su
h thatfor any u, v ∈ Xn/2 we have

‖B(u, v)‖Xn/2
≤ K‖u‖Xn/2

‖v‖Xn/2
.Proof. Applying Theorem 2.2 we get

‖B(u, v)(t)‖r,∞ ≤ C(r, n) sup
0<s<t

‖uw‖rn/(r+n),∞with an arbitrary r > n/(n − 1). Estimating the last norm we use the weakHölder inequality to obtain
‖uw‖rn/(r+n),∞ ≤ C(r, n)‖u‖r,∞‖w‖n,∞.Sin
e w = ∇En ∗ v, due to the weak Young inequality we have

‖w‖n,∞ = ‖∇En ∗ v‖n,∞ ≤ C(r, n)‖∇En‖nr/(nr+r−n),∞‖v‖r,∞.The gradient |∇En(x)| = σ−1
n |x|1−n belongs to Ln/(n−1),∞(Rn), thus

nr/(nr + r − n) must be equal to n/(n − 1), whi
h implies that r = n/2.This 
hoi
e of r also implies that n must be greater than 3. So we have
‖∇En‖nr/(nr+r−n),∞ = σ−1

n ‖ |x|1−n‖n/(n−1),∞ ≤ nσ−1/n
n .Summing the inequalities above we arrive at

‖B(u, v)(t)‖r,∞ ≤C(n) sup
0<s<t

‖u(s)‖n/2,∞‖v(s)‖n/2,∞ ≤C(n)‖u‖Xn/2
‖v‖Xn/2

.Taking the supremum with respe
t to t > 0 
ompletes the proof.The next step is to prove a similar estimate for ‖Lu‖Xp .



Self-gravitating parti
les with external potential 207Lemma 3.3. For n > 3, any fun
tion u ∈ Lr,∞(Rn) and any externalpotential Φ su
h that ∇Φ ∈ Ln,∞(Rn) we have
‖Lu‖Xr ≤ ℓ‖u‖Xrwith a 
onstant ℓ = ℓ(n, r, Φ) independent of u.Proof. Due to Theorem 2.2 we have, for any r > n/(n − 1),

‖Lu(t)‖r,∞ ≤ C(n, r) sup
0<s<t

‖u∇Φ‖rn/(r+n),∞.As in the previous lemma we estimate
‖u∇Φ‖rn/(r+n),∞ ≤ C(r, n)‖u‖Xr‖∇Φ‖n,∞,whi
h 
ompletes the proof.Remark. In Lemma 3.3 the fun
tion u belongs to Xr(R

n) for any r >
n/(n − 1) but in the following theorem we restri
t ourselves to r = n/2 sin
ethe estimate for B(u, v) holds true only for that r.To apply Theorem 2.1 it remains to prove the weak 
ontinuity in t ofthe quantities B(u, v)(t) and Lu(t). This 
an be done by rewriting them ina similar way to what was done for the estimates above, so we leave this tothe reader.Applying Theorem 2.1 and Lemmas 3.2 and 3.3 we arrive at the followingtheorem:Theorem 3.4. Let n > 3 and u0 ∈ Ln/2,∞(Rn). For Φ su
h that ∇Φ ∈
Ln,∞(Rn) and ‖∇Φ‖n,∞ is small enough, namely ℓ = ℓ(n, Φ) de�ned inLemma 3.3 is smaller than 1, for K = K(n) (de�ned in Lemma 3.2) and u0su
h that

‖et∆u0‖Xn/2
<

(1 − ℓ)2

4K
,there exists a solution u ∈ Xn/2 of the equation(9) u = et∆u(0) + Lu + B(u, u).The solution is unique among those satisfying the 
ondition ‖u‖Xn/2

< 1−ℓ
2K .4. Existen
e of a solution in a subspa
e of Xn/2, n ≥ 3. In thisse
tion we prove the existen
e of solutions in a subspa
e of Xn/2 with a
ontrol of the de
ay of the Lr,∞(Rn) norm (r > n/2) of the solution. Su
ha restri
tion allows us not only to prove the existen
e of global solutionsin that subspa
e for n > 3 but also obtain global solutions in the three-dimensional 
ase.De�ne

Yα = {v ∈ L∞
loc((0,∞); Lα,∞(Rn)) : ‖v‖Yα ≡ sup

t>0
t1−n/2α‖v(t)‖α,∞ < ∞},where α > n/2.



208 A. Ra
zy«skiLet us begin with u0.The regularizing e�e
t of the heat semigroup in the s
ale of Mar
inkie-wi
z spa
es is expressed inLemma 4.1. For any u0 ∈ Ln/2,∞(Rn) the solution of the heat equation
et∆u0 belongs to Yα for all α ≥ n/2.Proof. This is a simple 
onsequen
e of (8). Indeed,

‖et∆u0‖Yα = sup
t>0

t1−n/2α‖et∆u0‖α,∞ ≤ C(n, α)‖u0‖n/2,∞for α > n/2 and u0 ∈ Ln/2,∞.Remark. Note that u0 ∈ Ln/2,∞(Rn) implies et∆u0 ∈ Xn/2 ∩ Yα for all
α > n/2, n ≥ 3.The following lemma establishes the required estimates for the bilinearform B in the spa
e Yα.Lemma 4.2. Let n ≥ 3. For any n/2 < α < n there exists a 
onstant
K = K(n, α) su
h that for all u, v ∈ Yα,

‖B(u, v)‖Yα ≤ K‖u‖Yα‖v‖Yα .Proof. Sin
e the semigroup et∆ a
ts by 
onvolution with the heat kernel,we have
‖B(u, v)(t)‖α,∞ ≤ C(n, α)

t\
0

(t − s)−n/2−1/2

∥∥∥∥P
( ·√

t − s

)
∗ (u∇φ)

∥∥∥∥
α,∞

ds,

where P(x) = e−|x|2x, with ‖P(·/
√

t − s)‖p,∞ = C(n, α)(t − s)n/2p‖P‖p,∞(by (5)). Applying the weak Young and Hölder inequalities for 1/p = 1 +
1/n − 1/α and 1/q = 2/α − 1/n we get
‖B(u, v)(t)‖α,∞

≤ C(n, α)

t\
0

(t − s)−n/2α‖P‖p,∞‖(u · ∇φ)(s)‖q,∞ ds

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖α,∞‖∇φ(s)‖nα/(n−α) ds
)
‖P‖p,∞

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖α,∞‖v(s)‖α,∞ ds
)
‖∇En‖n/(n−1),∞‖P‖p,∞

≤ C(n, α)
( t\

0

(t − s)−n/2αs−2+n/α ds
)
‖P‖p,∞‖u‖Yα‖v‖Yα‖∇En‖n/(n−1),∞.
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onverges if and only if α ∈ (n/2, n), and is equal to
t−1+n/2α

1\
0

(1 − x)−n/2αx−2+n/α dx = t−1+n/2α
B

(
− n

2α
+ 1,−1 +

n

α

)
,where B is the Euler Beta fun
tion. The 
ondition α ∈ (n/2, n) implies thatthe required 
onditions p, q > 1 are also ful�lled.Multiplying both sides of the inequality by t1−n/2α and taking supremumover t > 0 we arrive at the required estimate of the bilinear form B(u, v).Now, we prove a similar estimate for the operator L.Lemma 4.3. Let n ≥ 3. For any n/2 < α < n, u ∈ Yα and any externalpotential Φ su
h that ∇Φ ∈ Ln,∞(Rn) we have

‖Lu‖Yα ≤ ℓ‖u‖Yα ,where ℓ = ℓ(n, α, Φ).Proof. We split the integral into two terms:
Lu =

t\
0

e(t−s)∆∇ · (u(s)∇Φ(s)) ds

=

t/2\
0

e(t−s)∆∇ · (u(s)∇Φ(s)) ds +

t\
t/2

e(t−s)∆∇ · (u(s)∇Φ(s)) ds

≡ L1u + L2u.For L1 we have
‖L1u(t)‖α,∞ ≤ C(n, α)

t/2\
0

(t − s)−n/2−1/2

∥∥∥∥P
( ·√

t − s

)
∗ (u∇Φ)

∥∥∥∥
α,∞

ds.Analogously as in Lemma 4.2 we estimate
‖L1u(t)‖α,∞

≤ C(n, α)

t/2\
0

(t − s)−1‖P‖n/(n−1),∞‖(u · ∇Φ)(s)‖nα/(n+α),∞ ds

≤ C(n, α)
( t/2\

0

(t − s)−1‖u(s)‖α,∞ ds
)
‖∇Φ‖n,∞‖P‖n/(n−1),∞

≤ C(n, α)
( t/2\

0

(t − s)−1s−1+n/2α ds
)
‖P‖n/(n−1),∞‖u‖Yα‖∇Φ‖n,∞.

The last integral 
onverges, and equals t−1+n/2α
T1/2
0 (1 − ξ)−1ξ−1+n/2α dξ.
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zy«skiThus we have(10) ‖L1u(t)‖α,∞ ≤ C(n, α, Φ)t−1+n/2α‖u‖Yα .Here, the singularity of the fun
tion (t − s)−1 
auses that the aboveestimate 
annot be true in the whole interval (0, t). This is the reason wesplit the operator L into L1 and L2. We 
ir
umvent this di�
ulty in theintegral L2 by using Theorem 2.2. Applying the inequality (7) with r =
α, p = nα/(n + α), a = t/2, and then using the weak Hölder inequality wehave
‖L2u(t)‖α,∞ ≤

∥∥∥
t\

t/2

e(t−s)∆∇(u · ∇Φ)(s) ds
∥∥∥

α,∞

≤ C(n, α) sup
t/2<s<t

‖(u · ∇Φ)(s)‖nα/(n+α),∞

≤ C(n, α) sup
t/2<s<t

‖u(s)‖α,∞‖∇Φ‖n,∞

≤ C(n, α)

(
t

2

)−(1−n/2α)

sup
t/2<s<t

s1−n/2α‖u(s)‖α,∞‖∇Φ‖n,∞

≤ C(n, α)t−(1−n/2α)‖u‖Yα‖∇Φ‖n,∞.Thus, we arrive at(11) ‖L2u(t)‖α,∞ ≤ C(n, α, Φ)t−1+n/2α‖u‖Yα .Summing up (10) and (11), multiplying the result by t1−n/2α, and �nallytaking supremum over t > 0, we arrive at the required estimate for theoperator L.Until now we used only the spa
e Yα, α ∈ (n/2, n), but we may havedi�
ulty in de�ning the 
onvergen
e to initial data u0 (the norms ‖u(t)‖α,∞may tend to ∞ as t → 0). Therefore we restri
t our 
onsiderations to asubspa
e of Xn/2, namely Xn/2 ∩ Yα, i.e. we 
onsider two Bana
h spa
enorms for the 
onstru
tion of solutions.The norm in this spa
e is given by
‖v‖Xn/2∩Yα = ‖v‖Xn/2

+ ‖v‖Yα .To prove the existen
e of a global solution for n > 3 we 
an apply Lemmas3.2 and 4.2 to get the estimate
‖B(u, v)‖Xn/2∩Yα ≤ K‖u‖Xn/2∩Yα‖v‖Xn/2∩Yα .Then, applying Lemmas 3.3 and 4.3, we get

‖Lu‖Xn/2∩Yα ≤ ℓ‖u‖Xn/2∩Yα .These inequalities together with the weak 
ontinuity allow us to applyTheorem 2.1 to obtain the existen
e and uniqueness of global solutions for
n > 3.
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ing Xn/2 by its subspa
e gives us also the opportunity to proveglobal existen
e in the three-dimensional 
ase.To do this we have to repla
e Lemmas 3.2 and 3.3 by their more sophis-ti
ated version.Lemma 4.4. For n ≥ 3 and α ∈ (n/2, n), there exists a 
onstant K =
K(n, α) su
h that for all u ∈ Xn/2 and v ∈ Yα,

‖B(u, v)‖Xn/2
≤ K‖u‖Xn/2

‖v‖Yα .Proof. Similarly to the proof of Lemma 4.2 we begin with the estimate
‖B(u, v)(t)‖n/2,∞ ≤ C(n)

t\
0

(t − s)−n/2−1/2

∥∥∥∥P
( ·√

t − s

)
∗ (u∇φ)

∥∥∥∥
n/2,∞

ds,where P(x) is as in the above mentioned proof. Applying on
e again the weakYoung and Hölder inequalities for 1/p = 1+1/n−1/α and 1/q = 1/n+1/α,we get
‖B(u, v)(t)‖n/2,∞ ≤ C(n, α)

t\
0

(t − s)−n/2α‖P‖p,∞‖(u · ∇φ)(s)‖q,∞ ds

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖n/2,∞‖∇φ(s)‖nα/(n−α) ds
)
‖P‖p,∞

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖n/2,∞‖v(s)‖α,∞ ds
)
‖∇En‖n/(n−1),∞‖P‖p,∞

≤ C(n, α)
( t\

0

(t−s)−n/2αs−1+n/2α ds
)
‖P‖p,∞‖u‖Xn/2

‖v‖Yα‖∇En‖n/(n−1),∞.The last integral 
onverges if and only if α > n/2 and equals
1\
0

(1 − x)−n/2αx−1+n/2α dx = B

(
− n

2α
+ 1,

n

α

)
,where B is the Euler Beta fun
tion. The 
onditions α ∈ (n/2, n) and n ≥ 3imply that the required 
onditions p, q > 1 are also full�lled. Taking thesupremum over t > 0 we arrive at the required estimate of the bilinear form

B(u, v).To prove the estimate for L for n = 3 (the proofs remain valid also for
n > 3) we modify the proof of Lemma 4.3 to get the followingLemma 4.5. Let n ≥ 3. For n/2 < α < n, u ∈ Yα and any externalpotential Φ su
h that ∇Φ ∈ Ln,∞(Rn) we have

‖Lu‖Xn/2
≤ ℓ‖u‖Yα ,where ℓ = ℓ(n, α, Φ).
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zy«skiProof. To prove the lemma we do not need to split the integral into twoterms as in Lemma 4.3.In fa
t, for 1/p = 1 + 1/n − 1/α and any α ∈ (n/2, n) we have
‖Lu(t)‖n/2,∞

≤ C(n, α)

t\
0

(t − s)−n/2−1/2

∥∥∥∥P
( ·√

t − s

)
∗ (u∇Φ)

∥∥∥∥
n/2,∞

ds

≤ C(n, α)

t\
0

(t − s)−n/2−1/2+n/2p‖P‖p,∞‖(u · ∇Φ)(s)‖nα/(n+α),∞ ds

≤ C(n, α)
( t\

0

(t − s)−n/2α‖u(s)‖α,∞ ds
)
‖∇Φ‖n,∞‖P‖p,∞

≤ C(n, α)
( t\

0

(t − s)−n/2αs−1+n/2α ds
)
‖P‖p,∞‖u‖Yα‖∇Φ‖n,∞.

The last integral is equal to T10(1 − ξ)−n/2αξ−1+n/2α dξ < ∞. Thus we have
‖Lu(t)‖n/2,∞ ≤ C(n, α, Φ)‖u‖Yα .Taking the supremum over t > 0 leads to the required estimate for L.Thus taking into a

ount Lemmas 4.2�4.5 we get(12) ‖B(u, v)‖Xn/2∩Yα ≤ K‖u‖Xn/2∩Yα‖v‖Xn/2∩Yαand(13) ‖Lu‖Xn/2∩Yα ≤ ℓ‖u‖Xn/2∩Yα .These inequalities and the weak 
ontinuity property (whi
h 
an beproved in a similar way) applied to Theorem 2.1 give the existen
e of globalsolutions in the subspa
e Xn/2 ∩ Yα for n = 3 as well as for n > 3.We haveTheorem 4.6. Let n ≥ 3 and n/2 < α < n. For Φ with ∇Φ ∈ Ln,∞(Rn)and u0 ∈ Ln/2,∞ su
h that

ℓ = ℓ(n, α, ‖∇Φ‖n,∞) < 1, ‖et∆u0‖Xn/2∩Yα <
(1 − ℓ)2

4K
,where the 
onstants K = K(n, α) and ℓ 
ome from (12) and (13), there existsa solution u ∈ Xn/2 ∩ Yα to the problem (9). The solution is unique amongthose in the open ball 
entered at the origin with radius equal to (1 − ℓ)/2K.5. Con
lusions and remarks. Sin
e for n > 3 we proved the existen
eof solutions in both the whole spa
e Xn/2 and its subspa
e we obtain a simple
onsequen
e of the theorems above:
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les with external potential 213Proposition 5.1. Let n > 3 and n/2 < α < n. For Φ su
h that ∇Φ ∈
Ln,∞(Rn) with ‖∇Φ‖n,∞ small enough that ℓ = ℓ(n, α, ‖∇Φ‖n,∞) < 1, thereis no stationary solution U = U(x) with small norm ‖U‖n/2,∞.Proof. Assume that su
h a stationary solution U exists. Sin
e its norm
‖U‖n/2,∞ is small enough, we 
an obtain the unique global solution belongingto Xn/2 (due to Theorem 3.4) and to its subspa
e Xn/2 ∩ Yα, n/2 < α <
n (due to Theorem 4.6). From Theorem 3.4 we 
on
lude that U must bethat global solution (but independent of time). Due to the uniqueness andTheorem 4.6, U must also belong to Yα. This implies that t1−n/2α‖U‖n/2,∞has to be bounded, whi
h is impossible. Thus, a stationary solution withsmall Ln/2,∞ norm 
annot exist.The spa
e of pseudomeasures. Another possible fun
tional setting is thespa
e of pseudomeasures

PMα = {v ∈ S ′(Rn) : v̂ ∈ L1
loc(R

n), ‖v‖PMα ≡ ess sup
ξ∈Rn

|ξ|α|v̂(ξ)| < ∞}.The existen
e and uniqueness of the global (α = n − 2) and lo
al (α ∈
(n − 1, n − 2]) solutions in these spa
es have been 
onsidered in [17℄.We are mainly interested in the spa
e to whi
h the Chandrasekhar solu-tion belongs, i.e. PMn−2. The interse
tion of Ln/2,∞(Rn) and PMn−2(Rn) isnot empty (e.g., the Chandrasekhar and homogeneous fun
tions are there).However, it is not obvious how to 
hara
terize the sets Ln/2,∞ \ PMn−2 (or
PMn−2 \ Ln/2,∞).

6. Asymptoti
 stability of solutions. In this se
tion we des
ribe theasymptoti
s of solutions to the evolution problem. The �rst observation isthat if we let u(t) be the solution with u0 ∈ Ln/2,∞, and v(t) be the solution ofthe heat equation with the same initial 
ondition, then, due to the estimatesfor ‖B(u, v)‖n/2,∞ and ‖Lu‖n/2,∞,
‖u(t) − v(t)‖n/2,∞

≤ ‖B(u, u)‖n/2,∞ + ‖Lu‖n/2,∞ ≤ K‖u‖2
Xn/2

+ ℓ‖u‖Xn/2
≤ const.This means that the solutions u(t) stay in a neighbourhood of v(t), i.e. u isa perturbation of v.Theorem 6.1. Let u(t) and v(t) be the solutions of the problem withthe same external potential Φ and initial data u(0) and v(0) respe
tively.Choose u(0) and v(0) su
h that ‖et∆u(0)‖Xn/2

≤ ε < (1 − ℓ)2/4K and
‖et∆v(0)‖Xn/2

≤ ε < (1 − ℓ)2/4K. If , additionally , the solutions of the heatequation with the same initial 
onditions u(0), v(0) approa
h ea
h other , i.e.
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zy«ski(14) lim
t→∞

‖et∆(u(0) − v(0))‖n/2,∞ = 0,then for ε small enough we also have
lim
t→∞

‖u(t) − v(t)‖n/2,∞ = 0.Proof. Before we prove the main 
on
lusion, let us estimate the norm
‖
Tt
0 e(t−s)∆∇(fg)(s) ds‖n/2,∞. Using similar 
al
ulations to those in Se
tion 4we have
∥∥∥

t\
0

e(t−s)∆∇(fg)(s) ds
∥∥∥

n/2,∞

≤
∥∥∥

t/p\
0

e(t−s)∆∇(fg)(s) ds
∥∥∥

n/2,∞
+

∥∥∥
t\

t/p

e(t−s)∆∇(fg)(s) ds
∥∥∥

n/2,∞

≤ C1(n)‖P‖n/(n−1),∞‖g‖Xn

t/p\
0

(t − s)−1‖f(s)‖n/2,∞ ds

+ C2(n)‖g‖Xn sup
t/p≤s≤t

‖f(s)‖n/2,∞

≤ C1(n)
p

p − 1
‖P‖n/(n−1),∞‖g‖Xn

1/p\
0

‖f(ts)‖n/2,∞ ds

+ C2(n)‖g‖Xn sup
t/p≤s≤t

‖f(s)‖n/2,∞.Applying the above estimate for quadrati
 and linear terms we get
‖u(t) − v(t)‖n/2,∞ ≤ ‖et∆(u(0) − v(0))‖n/2,∞ + ‖B(u − v, u)‖n/2,∞

+ ‖B(v, u − v)‖n/2,∞ + ‖L(u − v)‖n/2,∞

≤ ‖et∆(u(0) − v(0))‖n/2,∞

+ (2K max{‖u‖Xn/2
, ‖v‖Xn/2

} + ℓ)

×
(
C1(n)

p

p−1
‖P‖n/(n−1),∞

1/p\
0

‖(u−v)(ts)‖n/2,∞ ds

+ C2(n) sup
t/p≤s≤t

‖(u − v)(s)‖n/2,∞

)

where K and ℓ are the 
onstants obtained in Se
tion 3 (we also use theestimate for ‖∇φ‖n,∞). Thus we arrive at
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‖u(t) − v(t)‖n/2,∞ ≤ ‖et∆(u(0) − v(0))‖n/2,∞ + (1 −

√
(ℓ − 1)2 − 4Kε)

×
(

C1(n)‖P‖n/(n−1),∞
p

p − 1

1/p\
0

‖(u − v)(ts)‖n/2,∞ ds

+ C2(n) sup
t/p≤s≤t

‖(u − v)(s)‖n/2,∞

)
.Sin
e we want to �nd limt→∞ ‖u(t) − v(t)‖n/2,∞, let us de�ne

A = lim sup
t→∞

‖u(t) − v(t)‖n/2,∞ = lim
k→∞

sup
t≥k∈N

‖u(t) − v(t)‖n/2,∞.Observe that, due to assumption (14) and the Lebesgue dominated 
on-vergen
e theorem, the inequality above 
an be rewritten as
A ≤

(
C1(n)‖P‖n/(n−1),∞

1

p − 1
+ C2(n)

)
(1 −

√
(ℓ − 1)2 − 4Kε)A.Sin
e the se
ond term of the right-hand side is less than 1, and

C1(n)‖P‖n/(n−1),∞
1

p−1 → 0 as p → ∞, the asymptoti
 stability dependson the value of C2(n) only. If C2(n) < 1 then A = 0. Even for C2(n) ≥ 1 we
an also get A = 0 but only for ε small enough. This implies that A = 0, so
lim
t→∞

‖u(t) − v(t)‖n/2,∞ = 0.
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