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Around the Kato generation theorem for semigroupsbyJaek Banasiak (Durban) and Mirosªaw Lahowiz (Warszawa)
Abstrat. We show that the result of Kato on the existene of a semigroup solvingthe Kolmogorov system of equations in l1 an be generalized to a larger lass of the so-alled Kantorovih�Banah spaes. We also present a number of related generation resultsthat an be proved using positivity methods, as well as some examples.1. Introdution. In his seminal paper [18℄, Kato pioneered the use ofwhat later beame known as positivity tehniques to prove the existene of asemigroup solving the Kolmogorov system of equations in the spae l1, andprovided some haraterization of its generator. This result an also be foundin several monographs suh as, e.g., [11, 12, 16℄. It seemed that a partiularlattie struture of l1 was essential for the proof, and a few generalizationsof Kato's result whih appeared later, [26, 27, 4, 5, 7℄, were all on�ned tothe so-alled AL-spaes whih inlude l1 and L1 spaes. Preisely speak-ing, an AL-spae is a Banah lattie whose norm is additive on the positiveone (as are the norms of l1 and L1 spaes) and, in fat, it an be provedthat every AL-spae is lattie isometri to an L1 spae (see e.g. [2, Theorem12.26℄).However, as we will see in this artile, what Kato's proof really requiresis not the AL struture of the underlying spae but the property that anynon-negative inreasing and norm bounded sequene is norm onvergent. Thelatter is the de�ning property of the so-alled Kantorovih�Banah spaes(KB-spaes) that inlude, among others, the AL-spaes and re�exive spaes.Preisely, it an be proved that X is a KB-spae if and only if the spae c0is not lattie embeddable in X [2, Theorem 14.12℄.2000 Mathematis Subjet Classi�ation: 47D06, 47B60, 34G10, 92D25.Key words and phrases: KB-spaes, positive semigroups, birth-and-death problems,perturbations of semigroups.Work of J. Banasiak supported by the National Researh Foundation of South Afriaunder the grant GUN 2053716 and the University of KwaZulu-Natal Researh Fund.Researh of M. Lahowiz supported by Grant UE Contrat no. MRTN-CT-2004-503661. [217℄ © Instytut Matematyzny PAN, 2007



218 J. Banasiak and M. LahowizIn this paper we shall view Kato's result as a perturbation theorem pro-viding onditions under whih a positive perturbation of a generator of apositive semigroup is still a generator of a semigroup and, using the aboveobservation, we extend it to KB-spaes. Moreover, we provide several othergeneration results whih utilize similar tehniques and, in partiular, we gen-eralize a theorem of Desh [14, 27℄ whih allows us to deal with not neessarilypositive perturbations.We also relate our results to the existing perturbation theorems andprovide examples of appliations to birth-and-death type problems.Aknowledgements. The authors express sinere thanks to the anony-mous referee for numerous omments and suggestions whih substantiallyhelped to improve the paper.2. Mathematial preliminaries. In this setion we shall introdue thenotation used in the paper and ollet most of the de�nitions and results onwhih the paper is based for easy referene.In many natural sienes' appliations the quantities desribed by themodel should be real and nonnegative, e.g., probability, partile or massdensity, absolute temperature. To ater for this, the original setting for ab-strat models should be a real Banah spae with a notion of positivityompatible with the original linear struture, that is, a real Banah lattie.However, when we disuss spetral properties of the model, we shall moveto a omplex spae through the proedure alled omplexi�ation whih isdesribed in detail below.Let X be a real Banah lattie. We denote by X∗ its topologial dualwhih is also a Banah lattie; the duality pairing is denoted by 〈·, ·〉. Theorder in any Banah lattie will be denoted by ≥. For any subset Z of X or
X∗, we denote by Z+ the nonnegative part of Z, that is, the set of all z ∈ Zsatisfying z ≥ 0.For a given linear operator A on X, ̺(A) and σ(A) denote, respetively,the resolvent set and the spetrum of A. The spetrum σ(A) is subdividedinto the point spetrum (eigenvalues) σp(A), the ontinuous spetrum σc(A)and the residual spetrum σr(A). Let R(λ, A), λ ∈ ̺(A), denote the resolventof A. If A is bounded, then rσ(A) denotes its spetral radius.We will be working with positive operators. Let us reall that a linearoperator A on a Banah lattie X is said to be positive if Ax ≥ 0 for all
x ∈ D(A)+ := D(A)∩X+. A positive operator de�ned on the whole spae isbounded. Furthermore, an additive positive operator is fully determined byits restrition to the positive one, that is, if A is an additive positive operatoron X+, then it extends to a unique positive linear operator on X. Also thenorm of A is determined by the values of ‖Ax‖ on {x ∈ X+; ‖x‖ ≤ 1}. In



Kato generation theorem for semigroups 219partiular, if 0 ≤ A ≤ B, then ‖A‖ ≤ ‖B‖. The above results are well-knownand the proofs an be found in, e.g., [8, Setion 2.2℄.An operator A is alled resolvent positive if there exists ω ∈ R suh that
R(λ, A) is positive for all λ > ω. A semigroup (G(t))t≥0 is said to be positiveif the operators G(t) are positive for all t ≥ 0. It turns out that (G(t))t≥0 ispositive if and only if its generator is resolvent positive.An important lass of Banah latties, whih will play a signi�ant r�lelater, are AL-spaes [1, 2℄. We say that a Banah lattie is an AL-spae if
‖x + y‖ = ‖x‖ + ‖y‖ for all x, y ∈ X+. A standard (and, up to a lattieisometry, generi) example of an AL-spae is L1(Ω, dµ), where (Ω, µ) is ameasure spae [2, Theorem 12.26℄.Another important lass of Banah latties used in this paper are KB-spaes. We say that a Banah lattie X is a KB-spae (Kantorovih�Banahspae) whenever every inreasing norm bounded sequene of elements of X+is norm onvergent. The following statements are equivalent [2, Theorem14.12℄:1. X is a KB-spae;2. X is weakly sequentially omplete;3. c0 is not (lattie) embeddable in X.In partiular, AL-spaes and re�exive Banah latties are KB-spaes.Even if we are working in a real setting, to apply, for instane, spetraltheory we need to move to a omplex setting. Let X be a real spae. Itsomplexi�ation is de�ned as XC = X × X where, following the salaronvention, we shall write (x, y) = x + iy. Vetor operations are de�ned asin the salar ase, and the real vetor spae X is identi�ed with the realsubspae X + i0 ⊂ XC . The norm(1) ‖x + iy‖C := ‖ |x + iy|‖,with modulus de�ned as |x + iy| = supθ∈[0,2π](x cos θ + y sin θ) (see, e.g., [1,p. 104℄), is a lattie norm on XC whih oinides with the standard one on
lp, Lp(Ω), 1 ≤ p ≤ ∞, and C(Ω). Moreover, ‖ · ‖C is equivalent to any usualprodut norm in X × X. Note, however, that standard produt norms on
X × X may fail to preserve the homogeneity of the norm (see [8, Example2.88℄).An element x ∈ XC is said to be positive (x ≥ 0) if x = |x| (see e.g. [20,p. 244℄). In partiular, only real elements of XC an be positive.If A is a linear operator on X with domain D(A), then it an be extendedto XC aording to the formula(2) AC(x + iy) = Ax + iAy, D(AC) = D(A) + iD(A).



220 J. Banasiak and M. LahowizIt follows that if A is bounded and positive, then(3) ‖AC‖C = ‖A‖,but, in general, (3) fails for nonpositive operators. However, it is interestingto note that in lp, Lp(Ω) and C(Ω), (3) holds for arbitrary operators [13,pp. 175�176℄.Thus, when dealing with real positive operators, we an on�ne ourselvesto real Banah spaes. In fat, fundamental theorems of semigroup theorysuh as the Hille�Yosida or Lumer�Phillips theorems, various perturbationtheorems and Trotter�Kato type results are valid in both real and omplexsetting. Hene, for instane, if an operator A generates a positive semigroupof ontrations in a real Banah lattie X, then the omplexi�ation (2) ofthis semigroup is a semigroup of positive ontrations on XC . In partiular,the omplexi�ation AC of A is also a dissipative operator in XC .The following, frequently used lattie versions of the dominated andmonotone onvergene theorems for series are relatively straightforward toprove [8, Theorem 2.91℄.Theorem 2.1. Let (xn(t))n∈N be family of nonnegative sequenes in aBanah lattie X, parameterized by a parameter t ∈ T ⊂ R, and let t0 ∈ T .(i) If for eah n ∈ N the funtion t 7→ xn(t) is nondereasing and
limtրt0 xn(t) = xn in norm, then(4) lim

tրt0

∞∑

n=0

xn(t) =
∞∑

n=0

xn,

irrespetive of whether the right-hand side exists in X or ‖∑∞
n=0 xn‖

:= sup{‖
∑N

n=0 xn‖; N ∈ N} = ∞. In the latter ase the equalityshould be understood as the norms of both sides being in�nite.(ii) If limt→t0 xn(t) = xn in norm for eah n ∈ N and there exists (an)n∈Nwith ∑∞
n=0 ‖an‖ < ∞ suh that xn(t) ≤ an for any t ∈ T and n ∈ N,then (4) holds as well.Remark 2.2. Note that if X is a KB-spae, then limtրt0

∑∞
n=0 xn(t)

∈ X implies the onvergene of ∑∞
n=0 xn. In fat, sine xn ≥ 0 (by losednessof the positive one), N 7→

∑N
n=0 xn is nondereasing, and hene either∑∞

n=0 xn ∈ X, or ‖
∑∞

n=0 xn‖ = ∞, and in the latter ase we would have
‖ limtրt0

∑∞
n=0 xn(t)‖ = ∞.The following formula will be frequently used. If A is the generator of a

C0-semigroup (G(t))t≥0, then for any x ∈ X,(5) G(t)x = lim
n→∞

(
I −

t

n
A

)−n

x = lim
n→∞

(
n

t
R

(
n

t
, A

))n
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Kato generation theorem for semigroups 221and the limit is uniform in t on bounded intervals. In partiular, (5) showsthat if R(λ, A) ≥ 0 for su�iently large λ, then (G(t))t≥0 is a positivesemigroup.The notation A ∈ G(M, ω) means that the operator A is the in�nitesimalgenerator of the semigroup (G(t))t≥0 satisfying the estimate ‖G(t)‖ ≤ Meωtfor some onstants M ≥ 0 and ω ∈ R.For the reader's onveniene we also reall the Trotter�Kato theorem [21,Theorem 3.4.3℄ and some of its onsequenes whih play an important r�lein this paper.Theorem 2.3. Assume An ∈ G(M, ω). If there exists λ0 with ℜλ0 > ωsuh that(a) limn→∞ R(λ0, An)x = R(λ0)x exists for every x ∈ X,(b) the range of R(λ0) is dense in X,then there exists a unique operator A ∈ G(M, ω) suh that R(λ0) = R(λ0, A).Moreover , if (Gn(t))t≥0 is the semigroup generated by An and (G(t))t≥0 isgenerated by A, then for any x ∈ X,(6) lim
n→∞

Gn(t)x = G(t)xuniformly in t on bounded intervals.Assumption (b) an be veri�ed by applying the following result [17, The-orem IX.2.17℄:Corollary 2.4. If the limit(7) lim
λ→∞

λR(λ, An)x = xis uniform in n, then R(λ) is the resolvent of a densely de�ned losed operatorin X.3. Generalized Kato perturbation theorem. In this setion we shalldisuss a generalization of Kato's perturbation theorem ([18℄) and of somerelated results to KB-spaes. A more exhaustive disussion of this topi anbe found in [8℄.Lemma 3.1. Let 0 6= x ∈ X+. Then there is x∗ ∈ X∗
+ satisfying ‖x∗‖ = 1and 〈x∗, x〉 = ‖x‖.Proof. We have ‖x‖ = sup‖y∗‖≤1〈y

∗, x〉 = 〈x∗, x〉 for some x∗ ∈ X∗ with
‖x∗‖ = 1, by the Hahn�Banah theorem. If 0 6= x∗ /∈ X∗

+, then
0 < ‖x‖ = 〈x∗, x〉 = 〈x∗

+, x〉 − 〈x∗
−, x〉 ≤ 〈x∗

+, x〉and ‖x∗
+‖ ≤ ‖x∗‖ ≤ 1 as x∗

+ ≤ |x∗|. Thus, 〈x∗
+, x〉 = 〈x∗, x〉 = ‖x‖. If ‖x∗

+‖
< 1, then for x̃∗ = ‖x∗

+‖
−1x∗

+ we would have ‖x̃∗‖ = 1 and 〈x̃∗, x〉 > 〈x∗, x〉,whih is impossible. Thus, x∗
+ satis�es the onditions of the lemma.



222 J. Banasiak and M. LahowizTheorem 3.2. Let X be a real KB-spae. Assume that the operators
(A, D(A)) and (B, D(B)) with D(A) ⊂ D(B) satisfy :(A1) A generates a positive semigroup of ontrations (GA(t))t≥0,(A2) rσ(BR(λ, A)) ≤ 1 for some λ > 0,(A3) Bx ≥ 0 for x ∈ D(A)+,(A4) for any x ∈ D(A)+ there is x∗ ≥ 0 suh that 〈x∗, x〉 = ‖x‖ and

〈x∗, (A + B)x〉 ≤ 0.Then there is an extension (K, D(K)) of (A+B, D(A)) generating a stronglyontinuous semigroup of positive ontrations, denoted by (GK(t))t≥0. Thegenerator K satis�es, for all λ > 0,
R(λ, K)x = lim

n→∞
R(λ, A)

n∑

k=0

(BR(λ, A))kx(8)
=

∞∑

k=0

R(λ, A)(BR(λ, A))kx.

Remark 3.3. If −A is a positive operator (whih was the ase in thesituation dealt with by Kato), then assumption (A2) an be replaed by thesimpler one(A2′) ‖Bx‖ ≤ ‖Ax‖, x ∈ D(A)+.In fat, we then have
0 ≤ −AR(λ, A) = I − λR(λ, A) ≤ Iso that ‖AR(λ, A)y‖ ≤ ‖y‖ for all y ∈ X+, and by positivity, for any y ∈ X.Thus, ‖Ax‖ ≤ ‖(λI − A)x‖ for all x ∈ D(A). Hene, for any x ∈ D(A)+,

‖Bx‖ ≤ ‖Ax‖ ≤ ‖(λI − A)x‖,whih, upon substituting x = R(λ, A)y, yields ‖BR(λ, A)y‖ ≤ ‖y‖ for y in
X+. Thus ‖BR(λ, A)‖ ≤ 1 and (A2) is satis�ed.Remark 3.4. If assumption (A2) is satis�ed for some λ0 > 0, then it issatis�ed for all λ > λ0. In fat, writing the resolvent equation

BR(λ, A) − BR(λ0, A) = (λ0 − λ)BR(λ0, A)R(λ, A)we see from the positivity that BR(λ0, A) ≥ BR(λ, A), and the norm esti-mate follows.Proof of Theorem 3.2. We de�ne operators Kr, 0 ≤ r < 1, by Kr =
A + rB, D(Kr) = D(A). By writing

R(λ, A + rB) = (I − rBR(λ, A))(λI − A),



Kato generation theorem for semigroups 223we see that as rσ(rBR(λ, A)) ≤ r < 1, the resolvent R(λ, A + rB)−1 existsand is given by(9) R(λ, Kr) = R(λ, A)
∞∑

n=0

rn(BR(λ, A))n

with the series onverging absolutely and eah term being positive. Let
x∗ ≥ 0 be suh that 〈x∗, x〉 = ‖x‖ (see Lemma 3.1). For x ∈ D(A)+ and
r < 1 we have(10) 〈x∗, (A + rB)x〉 = 〈x∗, (A + B)x〉 + (r − 1)〈x∗, Bx〉 ≤ 0on aount of (A4) and Bx, x∗ ≥ 0. Thus, following the argument of [21,p. 14℄, we obtain, by the above,

‖(λI − Kr)x‖ ‖x‖ ≥ 〈x∗, (λI − Kr)x〉 = λ〈x∗, x〉 − 〈x∗, Krx〉 ≥ λ‖x‖for all x ∈ D(A)+. Taking y ∈ X+, we have R(λ, Kr)y = x ∈ D(A)+ so thatwe an rewrite this as(11) ‖R(λ, Kr)y‖ ≤ λ−1‖y‖for all y ∈ X+ and, sine R(λ, Kr) is positive, this an be extended to thewhole spae X. Therefore, by the Hille�Yosida theorem, for eah 0 ≤ r < 1the operator (Kr, D(A)) generates a ontration semigroup whih is positive.This semigroup will be denoted by (Gr(t))t≥0.From (9) we see that the net (R(λ, Kr)x)0≤r<1 is inreasing as r ր 1 foreah x ∈ X+ and (‖R(λ, Kr)x‖)0≤r<1 is bounded, by (11). As we assumedthat X is a KB-spae, there is an element yλ,x ∈ X+ suh that
lim
rր1

R(λ, Kr)x = yλ,xin X. This onvergene an then be extended onto the whole spae by lin-earity and, by (11), we obtain the existene of a bounded positive operatoron X whih we shall denote by R(λ). To be able to use the Trotter�Katotheorem, it is now enough to prove that for any x ∈ X the limit
lim

λ→∞
λR(λ, Kr)x = xis uniform in r so that the assumptions of Corollary 2.4 are satis�ed. Let

x ∈ D(A). Then, as
KrR(λ, Kr) = I − λR(λ, Kr),we have, by (11),

‖λR(λ, Kr)x − x‖ = ‖KrR(λ, Kr)x‖ = ‖R(λ, Kr)Krx‖ ≤ λ−1‖(A + rB)x‖

≤ λ−1(‖Ax‖ + ‖Bx‖),and the limit is indeed uniform in r. Sine D(A) is dense in X, for y ∈ X



224 J. Banasiak and M. Lahowizwe take x ∈ D(A) with ‖y − x‖ < ε to obtain, again by (11),
‖λR(λ, Kr)y − y‖ ≤ λ‖R(λ, Kr)(y − x)‖ + ‖y − x‖ + ‖λR(λ, Kr)x − x‖

≤ 2ε + λ−1(‖Ax‖ + ‖Bx‖),whih gives uniform onvergene. The Trotter�Kato theorem shows that
R(λ) is de�ned for all λ > 0 and it is the resolvent of a densely de�nedlosed operator K whih generates a semigroup of ontrations (GK(t))t≥0;moreover, for any x ∈ X,(12) lim

rր1
Gr(t)x = GK(t)x,and the limit is uniform in t on bounded intervals and monotone as r ր 1and x ≥ 0 (the monotoniity follows from the monotoniity of resolvents in

r and the representation formula (5) for semigroups).Furthermore, from Theorem 2.1(i) we have
R(λ, K)x = lim

rր1

∞∑

k=0

rkR(λ, A)(BR(λ, A))kx(13)
=

∞∑

k=0

R(λ, A)(BR(λ, A))kx, x ∈ X+,where, in partiular, the last series onverges by Remark 2.2. Extension to
X is done by linearity and learly

∞∑

k=0

R(λ, A)(BR(λ, A))kx = lim
n→∞

R(λ, A)
n∑

k=0

(BR(λ, A))kx, x ∈ X,whih ompletes the proof of (8).The proof that K is an extension of A + B is done exatly as in [18℄,by noting that the nth partial sum R(n)(λ) of the series in (13) satis�es, for
x ∈ D(A),

R(n)(λ)(λI − A)x = x + R(n−1)(λ)Bx.Hene, letting n → ∞ and rearranging we obtain R(λ, K)(λI − (A + B))x
= x, whih shows that K ⊇ A + B.We expliitly state the version of Theorem 3.2 for omplex spaes.Corollary 3.5. Let XC be the omplexi�ation of X with the norm (1).If the assumptions of Theorem 3.2 are satis�ed , then the omplexi�ation KCof K de�ned by (2) is the generator of a positive semigroup of ontrationson XC , whih is the omplexi�ation of (GK(t))t≥0. In partiular , this istrue in lp, Lp(Ω), p ∈ [1,∞), and in C(Ω) spaes, with the usual norms.Proof. The fat that the omplexi�ation of (GK(t))t≥0 is a positive semi-group of ontrations in XC follows from the properties of omplexi�ationdisussed in Setion 2. Sine the norm in XC is equivalent to any standard



Kato generation theorem for semigroups 225produt norm in X × X, this semigroup is di�erentiable at t = 0 only onelements of the form x + iy where x, y ∈ D(K). The �nal statement fol-lows from the fat that the usual norm on these spaes oinides with theomplexi�ation norm (1).One should ompare this theorem with Theorems 3.3.2, 3.3.4 and Corol-laries 3.3.3 and 3.3.5 of [21℄. Firstly, we observe that Theorem 3.3.2 impliesthat Corollary 3.3.3, Theorem 3.3.4 and Corollary 3.3.5 of [21℄ an be phrasedin the following, more general form (see also [9℄).Theorem 3.6. Let A and B be linear operators in a Banah spae Xwith D(A) ⊂ D(B) and(14) ‖Bx‖ ≤ α‖Ax‖ + β‖x‖, x ∈ D(A),where 0 ≤ α ≤ 1 and β ≥ 0. Assume further that A is the generator of asemigroup of ontrations and A + tB is dissipative for any t ∈ [0, 1]. Then:(i) if α < 1, then A + B is the generator of a ontrative semigroup;(ii) if α = 1 and additionally B∗, the adjoint of B, is densely de�ned ,then A + B is the generator of a ontrative semigroup.In partiular , if X is re�exive and B is losable, then the assumption of (ii)is satis�ed.The di�erene between [21℄ and this formulation is that in the former theauthor assumes that B is dissipative, whih is a stronger assumption usedonly to prove that A + tB is dissipative for all t ∈ [0, 1] (see the omment[21, p. 83℄). Having noted this, the proof of the above theorem follows asthe respetive proofs of [21℄. In many appliations, suh as disussed in thispaper, B is not dissipative while the A + tB are.It is possible to strengthen Theorem 3.6 to bring it loser to Theorem3.2 (see [9℄), as follows:Theorem 3.7. Let X be a Banah lattie and let (G(t))t≥0 be the semi-group generated by A+B or A + B under the onditions of Theorem 3.6. If Ais a resolvent positive operator and B is positive, then (G(t))t≥0 is positive.Thus, if X is re�exive and B is losable, then Theorem 3.6 is evidentlystronger than Theorem 3.2 as it requires positivity of neither (GA(t))t≥0nor B. Moreover, A-boundedness of B (requirement (14)) is weaker thanassumption (A2) and, �nally, in Theorem 3.6 we obtain the full harater-ization of the generator as A + B. However, heking the losability of theoperator B in partiular appliations may be di�ult while positivity is of-ten obvious. Also, there are a large lass of nonlosable operators whih anbe nevertheless positive, e.g. �nite-rank operators (in partiular, funtionals)are losable if and only if they are bounded [17, p. 166℄. An example of thiskind is presented below. Moreover, Theorem 3.2 gives a onstrutive formula



226 J. Banasiak and M. Lahowiz(8) for the resolvent of the generator and allows other representation results(see [8℄). Finally, what is probably most important, in nonre�exive spaesTheorem 3.2 overs a substantially di�erent lass of phenomena as in manyases the generator does not oinide with A + B.Example 3.8. We provide an example of the Cauhy problem for whihthe results of [21, Setion 3.3℄ are not immediately appliable but whih anbe easily solved using Theorem 3.2. Consider the problem
∂x

∂t
(t, s) = −ν(s)x(t, s) + µ(s)

1\
0

ν(r)x(t, r) dr, 0 ≤ s ≤ 1, t > 0,

x(0, s) = x0(s)(15)in X = L2([0, 1]) (over the real numbers). Assume that 0 ≤ ν ∈ L1([0, 1]) \

L2([0, 1]) satis�es T10 ν(s) ds = 1 and that 0 ≤ µ ≤ ν satis�es T10 µ2(s) ds = 1.These assumptions are satis�ed, e.g., by ν(s) = 2s−1/2 and µ = ν on [e−4, 1]and µ = 0 elsewhere. De�ning Ax = −νx on D(A) = {x ∈ X; νx ∈ X} wesee that A generates a positive semigroup of ontrations. By the Shwarzinequality we have
1\
0

ν(s)x(s)ds ≤

√√√√
1\
0

ν2(s)x2(s) ds,

hene Bx := µ
T1
0 ν(s)x(s) ds is well-de�ned and positive on D(A). It is arank-one operator and thus it is not losable (see [17, p. 166℄). Even more,simple alulation shows that, sine ν /∈ X, we have D(B∗) = {0}. On theother hand,

‖Bx‖2 =

1\
0

µ2(s)
( 1\

0

ν(r)x(r) dr
)2

ds =
( 1\

0

ν(r)x(r) dr
)2

≤

1\
0

ν2(r)x2(r) dr = ‖Ax‖2,

and so assumption (A2′) of Remark 3.3 is satis�ed. Furthermore, taking
x ≥ 0 and using µ ≤ ν, we obtain

(x, Ax + Bx) = −

1\
0

ν(s)x2(s) ds +
( 1\

0

µ(s)x(s) ds
)( 1\

0

ν(s)x(s) ds
)

≤ −

1\
0

ν(s)x2(s) ds +
( 1\

0

ν(s)x(s) ds
)2
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≤ −

1\
0

ν(s)x2(s) ds +
( 1\

0

ν(s) ds
)( 1\

0

ν(s)x2(s) ds
)

=

1\
0

ν(s)x2(s) ds
(
− 1 +

1\
0

ν(s) ds
)

= 0,

where in the last line we used the remaining assumption on ν. Here (·, ·)denotes the standard salar produt in L2([0, 1]) and, to simplify nota-tion, we wrote x instead of x/‖x‖ whih does not a�et assumption (A4).This shows that all assumptions of Theorem 3.2 are satis�ed and there isan extension of A + B whih generates a positive semigroup of ontra-tions.Remark 3.9. Yet another look at the relation between K and A + B in
Lp spaes is o�ered by the result of [24℄ that states that if T is a positiveoperator on Lp satisfying ‖T‖ ≤ 1 and p ∈ (1,∞), then there exists aprimitive nth root of unity in σp(T ) if and only if every nth root of unity isin σp(T ) if and only if the same holds true for T ∗. Setting T = BR(λ, A) andinvoking [15, Theorem 3.2 and the preeding onsiderations℄, we see that as
1 /∈ σp(BR(λ, A)), we have 1 /∈ σp(BR(λ, A))∗, so that 1 /∈ σrBR(λ, A) andonsequently K = A + B.A ruial property that allows for the proof of the above result of [24℄for p > 1 but not for p = 1 is that x ∈ X∗

+ and x ≤ T ∗x implies x = T ∗x.Clearly, it is satis�ed for any p ∈ (1,∞) but, in general, fails in X∗ = L∞.An important property of the semigroup onstruted in [18℄ (see also[16℄) is that it is a smallest substohasti semigroup whose generator is anextension of A + B. In the present setting we an even prove a slightlystronger result.Proposition 3.10. Let D be a ore of A. If (G(t))t≥0 is another positivesemigroup generated by an extension of (A + B, D), then G(t) ≥ GK(t).Proof. Let K ′ be the generator of (G(t))t≥0. First, we show that K ′ is anextension of A+B. If x ∈ D(A), then there is a sequene (xn)n∈N ⊂ D suhthat limn→∞ xn = x and limn→∞ Axn = Ax. Assumption (A2) ensures, inpartiular, that D(A) ⊂ D(B) and B is ontinuous on D(A) in the graphnorm of A, hene Bxn onverges to Bx and therefore (A + B)xn onvergesto (A + B)x. Sine K ′ is losed (as a generator) and sine for xn ∈ D wehave K ′xn = (A + B)xn, x belongs to D(K ′) and K ′x = (A + B)x.Sine K ′ generates a positive semigroup, the resolvent R(λ, K ′) exists andis positive for su�iently large λ. As D(K ′) ⊃ D(A) and K ′x = (A + B)xon D(A), we have
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R(λ, K ′) − R(λ, Kr) = (R(λ, K ′)(λI − Kr) − I)R(λ, Kr)

= R(λ, K ′)(λI − Kr − λI + K ′)R(λ, Kr) = R(λ, K ′)(K ′ − Kr)R(λ, Kr)

= R(λ, K ′)(A + B − A − rB)R(λ, Kr) = (1 − r)R(λ, K ′)BR(λ, Kr).Sine r < 1 and all the operators are positive, we obtain
R(λ, K ′) ≥ R(λ, Kr).Sine R(λ, Kr) ր R(λ, K), we have R(λ, K ′) ≥ R(λ, K) and by the repre-sentation formula (5) we onlude that this inequality holds for semigroups.Appliability of Theorem 3.2 depends on whether we an prove that theoperator A is the generator of a positive semigroup of ontrations. In manyases of pratial importane: birth-and-death problems, pure fragmenta-tion or spatially homogeneous linear Boltzmann equation [8℄, this is obviousas A is a diagonal (multipliation) operator. If, however, we allow spatialdependene and/or external �eld, then A is given by

A = A0 − N,where A0 an be a �rst order streaming operator, a di�usion operator orpossibly the sum of both, and N is the multipliation by a positive, butoften very singular, funtion. Then determining whether A is a generatorbeomes a nontrivial problem. The following theorem, the proof of whihuses ideas of Theorem 3.2, provides a partial solution to this problem.Theorem 3.11. Let (A0, D(A0)) be the generator of a positive semigroupof ontrations on a KB-spae X and (N, D(N)) be a positive operator.Assume that there exists an inreasing sequene ((Nn, D(Nn)))n∈N of positiveoperators satisfying :1. D(A0) ∩ D(N) is dense in X.2. D(Nn) ⊃ D(N).3. There is a dense set D ⊂ D(A0)∩D(N) suh that limn→∞ Nny = Nyfor y ∈ D.4. (A0 −Nn, D(A0)∩D(Nn)) generates a positive semigroup of ontra-tions for n = 1, 2, . . . .Then there is an extension (A, D(A)) of (A0 − N, D) whih generates asemigroup of ontrations.Proof. Fix n for the time being. A0 −Nn generates a positive semigroupof ontrations denoted by (Gn(t))t≥0. Denote by xi ∈ D(A0) ∩ D(Ni) thesolution to the equation
λxi − A0xi + Nixi = ywhere λ > 0 and y ∈ X+. The resolvent of A0 − Ni, say Ri(λ), is positive



Kato generation theorem for semigroups 229for λ > 0 and therefore xi ≥ 0. Fix λ and m > n. Then
y = λxm − A0xm + Nmxm = λxm − A0xm + Nnxm + (Nm − Nn)xmso that

xm = Rn(λ)(y − (Nm − Nn)xm) ≤ Rn(λ)y = xnas (Nm − Nn)xm ≥ 0 by monotoniity of (Nn)n∈N. Hene, the resolvents
Rn(λ)y form a dereasing sequene of nonnegative elements. Sine learly,for any �xed n0 and n ≥ n0, xn0

− xn is nonnegative and inreasing with
‖xn0

− xn‖ ≤ 2/λ and we are in a KB-spae, Rn(λ) strongly onverges toa (positive) operator R(λ). To show that this is the resolvent of a denselyde�ned operator we use Corollary 2.4. This requires showing that the limit
lim

λ→∞
λRn(λ)y = yis uniform in n for any y ∈ X. Let x ∈ D. Then for any δ there is n0 suhthat for any n > n0 we have ‖Nnx − Nx‖ < δ. Taking n > n0 we have

(16) ‖λRn(λ)x − x‖ = ‖Rn(λ)(A0 − Nn)x‖ ≤ λ−1(‖A0x‖ + ‖Nnx‖)

≤ λ−1(‖A0x‖ + ‖Nx‖ + ‖Nx − Nnx‖) ≤ λ−1(‖A0x‖ + ‖Nx‖ + δ)so that the onvergene is indeed uniform in n. Let y ∈ X and �x ε > 0.Then, by density of D, there exists x ∈ D satisfying ‖y − x‖ < ε and forthis x we an write the estimate above with n0 depending only on x and δ.Hene
‖λRn(λ)y − y‖ ≤ ‖λRn(λ)(y − x)‖ + ‖λRn(λ)x − x‖ + ‖y − x‖

≤ 2ε + λ−1(‖A0x‖ + ‖Nx‖ + δ)and the last term an be made smaller than ε by taking λ large enough, inde-pendently of n. Hene also here the onvergene is uniform in n and we anuse the Trotter�Kato theorem, Theorem 2.3, to dedue that R(λ) = R(λ,A)where A is a densely de�ned operator generating a positive semigroup ofontrations. To show that this is an extension of (A0 − N, D), let y ∈ D.Then
R(λ,A)(λI − (A0 − N))y = lim

n→∞
Rn(λ)(λI − (A0 − N))y,and, on the other hand,

Rn(λ)(λI − (A0 − N))y = Rn(λ)(λI − (A0 − Nn))y + Rn(λ)(N − Nn)y

= y + Rn(λ)(N − Nn)y → yby uniform boundedness of Rn(λ). Thus, A|D = (A0 − N)|D.Remark 3.12. A loser inspetion of the proof shows that assumption 3was used twie: �rst, to show the onvergene of the resolvents to the re-solvent of a densely de�ned operator, and then to show that the generator



230 J. Banasiak and M. Lahowizis an extension of A0 − N . However, the �rst part has not utilized the fullassumption and an be proved under either of the following assumptions:(a) There is a set D ⊂ D(A0) ∩ D(N) suh that D+ − D+ is dense in Xand Nny ≤ Ny for all y ∈ D+.(b) There is a dense set D ⊂ D(A0) ∩ D(N) and a number M suh that
‖Nny − Ny‖ ≤ M for all y ∈ D and n.The proof for (b) is idential to the above if one realizes that δ in (16) anbe any number, not neessarily small. The proof for (a) is as follows. Let

x = x+ − x− ∈ D+ − D+. Then
‖λRn(λ)x − x‖

= ‖(A0 − Nn)Rn(λ)x‖ = ‖Rn(λ)(A0 − Nn)x‖ ≤ λ−1(‖A0x‖ + ‖Nnx‖)

≤ λ−1(‖A0x‖ + ‖Nnx+‖ + ‖Nnx−‖) ≤ λ−1(‖A0x‖ + ‖Nx+‖ + ‖Nx−‖),with the rest as above. Note that we used D+ = D ∩ X+ ⊂ D ⊂ D(A0) ∩
D(Nn).In both ases, however, we need the onvergene Nny → Ny on some setto get an extension property. If this set is {0}, then this property beomestrivial.Assumptions (A1)�(A4) look onsiderably more involved than Kato's ori-ginal assumptions but they have to ater for a possibly more ompliatedstruture of the underlying spae and of the operators A and B. If X isan L1 spae (or, in general, an AL-spae), then these assumptions an besigni�antly simpli�ed, leading to results already obtained in [26, 4, 5, 7℄.Corollary 3.13. Suppose that the operators (A, D(A)) and (B, D(B))in X = L1(Ω, dµ) satisfy :1. (A, D(A)) generates a positive semigroup of ontrations (GA(t))t≥0,2. D(B) ⊃ D(A) and Bx ≥ 0 for x ∈ D(A)+,3. for all x ∈ D(A)+,(17) \

Ω

(Ax + Bx) dµ ≤ 0.Then the assumptions of Theorem 3.2 are satis�ed.Proof. First, assumption 3 immediately gives assumption (A4), that is,dissipativity on the positive one. Next, take x = R(λ, A)y for y ∈ X+ sothat x ∈ D(A)+. Sine R(λ, A) is a surjetion from X onto D(A), from
(A + B)x = (A + B)R(λ, A)y = −y + BR(λ, A)y + λR(λ, A)ywe obtain(18) −

\
Ω

y dµ +
\
Ω

BR(λ, A)y dµ + λ
\
Ω

R(λ, A)y dµ ≤ 0.



Kato generation theorem for semigroups 231Sine in AL-spaes the norm of a nonnegative element is given by the inte-gral, we obtain(19) λ‖R(λ, A)y‖ + ‖BR(λ, A)y‖ − ‖y‖ ≤ 0, y ∈ X+,whih immediately yields ‖BR(λ, A)‖ ≤ 1, hene (A2) is satis�ed.The following result is similar to Desh's perturbation theorem [14℄ butan be applied to possibly nonpositive perturbations.Corollary 3.14. Assume that A is the generator of a positive C0-semigroup of ontrations in X = L1(Ω, dµ) and let B = B+ − B− be suhthat B± ≥ 0, D(B±) ⊃ D(A) and there exists C ≥ 0 with D(A) ⊂ D(C)suh that B+ + B− ≤ C on D(A)+ and , for all x ∈ D(A)+,(20) \
Ω

(Ax + Cx) dµ ≤ 0.Then there is an extension KB of A + B that generates a semigroup ofontrations.Proof. De�ne |B| = B+ + B−. Clearly, for x ∈ D(A)+,\
Ω

(Ax + |B|x) dµ =
\
Ω

(Ax + Cx) dµ +
\
Ω

(|B|x − Cx) dµ ≤ 0so that, by Corollary 3.13, |B| satis�es all assumptions of Theorem 3.2, andwe have ‖BR(λ, A)‖ ≤ ‖ |B|R(λ, A)‖ ≤ 1. Hene, as in the proof of thattheorem, (A + r|B|, D(A)) generates a positive semigroup of ontrations,and an extension of A + |B|, denoted by K|B|, with resolvent given by (8)with B replaed by |B|, generates a positive semigroup of ontrations. Also,for y ∈ X+, r ≤ 1, and λ > 0,
n∑

j=0

|R(λ, A)rj(BR(λ, A))jy| ≤
∞∑

j=0

R(λ, A)(|B|R(λ, A))jy.Using additivity of the norm on the positive one, we obtain(21) n∑

j=0

rj‖R(λ, A)(BR(λ, A))jy‖ ≤ ‖R(λ, K|B|)y‖,so the series Rr(λ)y :=
∑∞

j=0 rjR(λ, A)(BR(λ, A))jy is absolutely onver-gent for any y ∈ X and 0 ≤ r ≤ 1. For 0 ≤ r < 1, Rr(λ)y is dominatedby a geometri series and, by standard alulations, equals the resolvent
R(λ, A + rB) of the operator A + rB.From (21),

‖R(λ, A + rB)‖ ≤ λ−1as K|B| is dissipative. Hene (A + rB, D(A)) generates a semigroup of on-trations for eah r < 1. From the dominated onvergene theorem, Theorem
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lim
r→1

R(λ, A + rB)y = R1(λ)y.We now use the Trotter�Kato theorem exatly as in the proof of Theorem3.2. Thus, we have to prove that for any f ∈ X the limit
lim

λ→∞
λR(λ, A + rB)y = yis uniform in r. Let y ∈ D(A). Then as

(A + rB)R(λ, A + rB) = I − λR(λ, A + rB)we have, by dissipativity,
‖λR(λ, A + rB)y − y‖ ≤ λ−1(‖Ay‖ + ‖By‖)so that the limit is uniform in r. Sine D(A) is dense in X, for z ∈ X wetake x ∈ D(A) with ‖z − x‖ < ε to obtain, again by dissipativity,

‖λR(λ, A + rB)z − z‖ ≤ 2ε + λ−1(‖Ax‖ + ‖Bx‖),whih gives uniform onvergene. The Trotter�Kato theorem shows that
R1(λ) is the resolvent of a densely de�ned losed operator KB whih gener-ates a semigroup of ontrations (GKB

(t))t≥0. To show that KB is an exten-sion of A + B, we simply repeat the argument from the proof of Theorem3.2.4. Appliations to birth-and-death problems. We shall onsider apartiular ase of the Kolmogorov system, alled the birth-and-death system:
(22)

x′
0 = −a0x0 + d1x1,...

x′
n = −anxn + dn+1xn+1 + bn−1xn−1,...The lassial appliations of this system are in population theory. In this ase

xn is the probability that the population onsidered onsists of n individualsand its state an hange by either death or birth of an individual, moving thepopulation to state n−1 or n+1, respetively, hene the name of birth-and-death system. The lassial birth-and-death system is formally onservative,whih requires an = dn + bn. However, reently a number of other importantappliations emerged. For example ([19, 25℄), we an onsider an ensemble ofaner ells strutured by the number of opies of a drug-resistant gene theyontain. Here, the number of ells with n opies of the gene an hange due tomutations but the ells also undergo division without hanging the numberof genes in their o�spring, whih is modelled by a nonzero sequene (cn)n∈N,de�ned by cn = bn +dn −an. Furthermore, system (22) an be thought of as



Kato generation theorem for semigroups 233a simpli�ed kineti system onsisting of partiles labelled by their internalenergy n and interating inelastially with the surrounding matter where, ineah interation, they an either gain or lose a unit of energy. Some partilesan deay without a trae or be removed from the system leading again toa nonzero (cn)n∈N.The solvability of (22) has been studied by various methods for severaldeades, with �rst de�nitive results obtained in [18, 23, 22℄; see also a modernaount in [3℄. However, motivated by the probabilisti interpretation, theseworks were on�ned to the onservative ase cn = 0 and to the spaes l1and c0. The methods employed to prove the existene of solutions utilizedthis probabilisti struture quite extensively and did not seem to admit aneasy extension to other spaes and nononservative systems.Let boldfae letters denote sequenes, e.g. x = (x0, x1, . . . , xn, . . .). Wealso assume that the sequenes d, b and a are nonnegative with b−1 = d0

= 0.We denote by K the matrix of oe�ients of the right-hand side of (22)and at the same time, without ausing any misunderstanding, the formaloperator in the spae l of all sequenes, ating as (Kx)n = bn−1xn−1 −
anxn + dn+1xn+1. In the same way, we de�ne A and B as (Ax)n = −anxnand (Bx)n = bn−1xn−1 +dn+1xn+1, respetively. Let Kp denote the maximalrealization of K in lp, p ∈ [1,∞), that is,

Kpx = Kxon(23) D(Kp) = {x ∈ lp; Kx ∈ lp}.Lemma 4.1. The maximal operator Kp is losed for any p ∈ [1,∞).Proof. Let x(n) → x and Kpx
(n) → y in lp as n → ∞. From this itfollows that for any k, x

(n)
k → xk and, from the de�nition of Kp, yk =

bk−1xk−1 + akxk + dk+1xk+1, that is, Kpx = y.Next, de�ne the operator Ap by restriting A to
D(Ap) = {x ∈ lp; Apx ∈ lp} =

{
x ∈ lp;

∞∑

n=0

ap
n|xn|

p < ∞
}
.

Lemma 4.2. (Ap, D(Ap)) is the generator of a semigroup of ontrationsin lp.Proof. Ap is learly densely de�ned with resolvent R(λ, Ap) for λ > 0given by
(R(λ, Ap)y)n =

yn

λ + an
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‖R(λ, Ap)y‖

p
p =

∞∑

n=0

1

(λ + an)p
|yn|

p ≤
1

λp
‖y‖p

p,so the lemma follows by the Hille�Yosida theorem.Theorem 4.3. Assume that sequenes b and d are nondereasing andthere is α ∈ [0, 1] suh that for all n,(24) 0 ≤ bn ≤ αan, 0 ≤ dn+1 ≤ (1 − α)an.Then there is an extension Kp of the operator (Ap +Bp, D(Ap)), where Bp =
B|D(Ap), that generates a positive semigroup of ontrations in lp, p ∈ (1,∞).Proof. The operator Bp is learly positive; we must show that it maps
D(Ap) into lp. For x ∈ D(Ap) we have, with b−1 = d0 = 0,

‖Bpx‖p =
( ∞∑

n=0

|bn−1xn−1 + dn+1xn+1|
p
)1/p

≤
( ∞∑

n=0

bp
n−1|xn−1|

p
)1/p

+
( ∞∑

n=0

dp
n+1|xn+1|

p
)1/p

≤
( ∞∑

n=0

bp
n|xn|

p
)1/p

+
( ∞∑

n=0

dp
n|xn|

p
)1/p

.By monotoniity of d we have dn ≤ dn+1 so that by (24) we obtain
‖Bpx‖p ≤

( ∞∑

n=0

ap
n|xn|

p
)1/p

= ‖Apx‖p.Thus, BpD(Ap) ⊂ lp. Moreover, sine −Ap is a positive operator, we see, byRemark 3.3, that the assumptions (A2)�(A3) of Theorem 3.2 are satis�ed.To prove (A4) we take x ∈ D(Ap)+ and the orresponding element x̃ =
(x̃n)n∈N,

x̃n =

{
0 if xn = 0,

xp−1
n if xn 6= 0.Hene x̃ ∈ lq, where 1/p+1/q = 1. Note that sine, learly, assumption (A4)is not a�eted by multiplying x∗ by a positive fator, in the de�nition of x̃we dropped the fator ‖x‖1−p

p to simplify notation. For simpliity we assume
xn 6= 0 for any n ∈ N. From (24) we have an ≥ bn + dn+1, so that

〈Kpx, x̃〉 =
∞∑

n=0

(Kpx)nxp−1
n

= −
∞∑

n=0

anxp
n +

∞∑

n=0

bn−1xn−1x
p−1
n +

∞∑

n=0

dn+1xn+1x
p−1
n
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≤ −

∞∑

n=0

bnxp
n −

∞∑

n=0

dn+1x
p
n +

∞∑

n=0

bn−1xn−1x
p−1
n

+

∞∑

n=0

dn+1xn+1x
p−1
n ,where the alulations above are justi�ed by the onvergene of all series(see e.g. [9℄). Thus, by the Hölder inequality, we obtain

〈Kpx, x̃〉 ≤
( ∞∑

n=0

bnxp
n

)1/p( ∞∑

n=0

bnxp
n+1

)1/q
−

∞∑

n=0

bnxp
n

+
( ∞∑

n=0

dnxp
n

)1/p( ∞∑

n=0

dn+1x
p
n

)1/q
−

∞∑

n=0

dn+1x
p
n,and, using bn ≤ bn+1 and dn ≤ dn+1, we obtain 〈Kpx, x̃〉 ≤ 0.Corollary 4.4. Let p ∈ (1,∞). Then Kp = Ap + Bp.Proof. As in Lemma 4.1, we an prove that B is losed and thus Bp islosable. Hene the statement follows from Theorem 3.6. Alternatively, thestatement follows diretly from Remark 3.9.Corollary 4.5. Let p = 1. Assume that sequenes b and d are non-negative and(25) an ≥ bn + dn.Then there is an extension K1 of the operator (A1 +B1, D(A1)), where B1 =

B|D(A1), that generates a positive semigroup of ontrations on l1.Proof. We have
D(A1) =

{
x ∈ l1;

∞∑

n=0

an|xn| < ∞
}

and, from (25), 0 ≤ bn ≤ an and 0 ≤ dn ≤ an for n ∈ N. Hene, B1 iswell-de�ned and ondition (17) takes the form
∞∑

n=0

((A1 + B1)x)n = −

∞∑

n=0

anxn +

∞∑

n=0

bn−1xn−1 +

∞∑

n=0

dn+1xn+1

= −

∞∑

n=0

anxn +

∞∑

n=0

bnxn +

∞∑

n=0

dnxn ≤ 0,where we used the onvention b−1 = d0 = 0. The statement now follows byCorollary 3.13.Remark 4.6. The above theorem was also proved in [9℄ but using The-orem 3.7.



236 J. Banasiak and M. LahowizCorollary 4.7. Let p = 1. Assume that sequenes b and d satisfy(26) an ≥ |bn| + |dn|.Then there is an extension K1 of the operator (A1 +B1, D(A1)), where B1 =
B|D(A1), that generates a semigroup of ontrations on l1.Proof. This follows immediately from Corollaries 3.14 and 4.5.Remark 4.8. In ontradistintion to the ase p > 1, for p = 1 in general
K1 6= A1 + B1, see [6℄.Remark 4.9. There is a di�erene in onditions ensuring dissipativityin lp for p > 1 and in l1. In the �rst ase we require an ≥ bn + dn+1, andin the seond an ≥ bn + dn. Sine (dn)n∈N is assumed to be inreasing,the ondition for p > 1 is stronger. However, if for p > 1 the oe�ient
an satis�es the ondition for l1, we an rede�ne ãn = an + dn − dn+1 sothat ãn satis�es the proper lp-ondition. Now, if dn+1 − dn is bounded (e.g.for a�ne oe�ients), then the existene of the semigroup with the originaloe�ients an be established by the bounded perturbation theorem. Theresulting semigroup, however, may not be ontrative.Theorem 4.10. For any p ∈ [1,∞) we have Kp ⊂ Kp.Proof. First we note that if xr → x as r → 1 in lp, then for any n,

lim
r→1

((I −Kp)x
r)n = lim

r→1
xr

n + anxr
n − bn−1x

r
n−1 − dn+1x

r
n+1(27)

= xn + anxn − bn−1xn−1 − dn+1xn+1

= ((I −Kp)x)n.Set xr = R(1, A+ rB)y for y ∈ lp. We know that xr → R(1, Kp)y as r → 1.Sine R(1, A + rB) is the resolvent of (A + rB, D(A)) whih is a restritionof the maximal realization of −A + rB, we have
((I −Kp)x

r)n = xr
n + anxr

n − rbn−1x
r
n−1 − rdn+1x

r
n+1

− (1 − r)(bn−1x
r
n−1 + dn+1x

r
n+1)

= yn − (1 − r)(bn−1x
r
n−1 + dn+1x

r
n+1).Sine n is �xed, we see that the last term tends to zero and by (27) we obtain

((I −Kp)x)n = yn, that is,
(I −Kp)R(1, Kp)y = y.
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