On norm closed ideals in $L\left(\ell_{p}, \ell_{q}\right)$

by
B. Sari (Denton, TX), Th. Schlumprecht (College Station, TX), N. Tomczak-Jaegermann (Edmonton), and V. G. Troitsky (Edmonton)

Abstract

It is well known that the only proper non-trivial norm closed ideal in the algebra $L(X)$ for $X=\ell_{p}(1 \leq p<\infty)$ or $X=c_{0}$ is the ideal of compact operators. The next natural question is to describe all closed ideals of $L\left(\ell_{p} \oplus \ell_{q}\right)$ for $1 \leq p, q<\infty$, $p \neq q$, or equivalently, the closed ideals in $L\left(\ell_{p}, \ell_{q}\right)$ for $p<q$. This paper shows that for $1<p<2<q<\infty$ there are at least four distinct proper closed ideals in $L\left(\ell_{p}, \ell_{q}\right)$, including one that has not been studied before. The proofs use various methods from Banach space theory.

1. Introduction. This paper is concerned with the structure of norm closed ideals of the algebra $L(X)$ of all bounded linear operators on an infinite-dimensional Banach space X. The classical result of [Calk41] asserts that the only proper non-trivial closed ideal of $L\left(\ell_{2}\right)$ is the ideal of compact operators. The same was shown to be true for $\ell_{p}(1 \leq p<\infty)$ and c_{0} in [GMF60]. It remains open if there are other Banach spaces with only one proper non-trivial closed ideal. The complete structure of closed ideals in $L(X)$ was recently described in [LLR04] for $X=\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{c_{0}}$ and in [LSZ06] for $X=\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{\ell_{1}}$. In both cases, there are exactly two nested proper non-zero closed ideals. Apart from those mentioned above, there are no other separable Banach spaces X for which the structure of the closed ideals in $L(X)$ is completely known. The structure of the closed ideals of operators on non-separable Hilbert spaces was independently obtained by Gramsch [Gram67] and Luft [Luft68]. Recently Daws [Daws06] extended

[^0]their results to non-separable ℓ_{p}-spaces, $1 \leq p<\infty$, and non-separable c_{0}-spaces.

This motivates the study of the next natural special case $X=\ell_{p} \oplus \ell_{q}$ $(1 \leq p, q<\infty, p \neq q)$, which is our main interest here. There were several results in this direction proved in the 1970's concerning various special ideals or special cases of p and q. We refer the reader to the book by Pietsch [Piet78, Chapter 5] for details. In particular, [Piet78, Theorem 5.3.2] asserts that $L\left(\ell_{p} \oplus \ell_{q}\right)$ (with, say, $p<q$) has exactly two proper maximal ideals (namely, the ideal of operators which factor through ℓ_{p} and the ideals of operators which factor through ℓ_{q}), and establishes a one-to-one correspondence between the non-maximal ideals in the algebra $L\left(\ell_{p} \oplus \ell_{q}\right)$ and the closed "ideals" in $L\left(\ell_{p}, \ell_{q}\right)$. Here an ideal in $L\left(\ell_{p}, \ell_{q}\right)$ means a linear subspace \mathcal{J} of $L\left(\ell_{p}, \ell_{q}\right)$ such that $A T B \in \mathcal{J}$ whenever $A \in L\left(\ell_{q}\right), T \in \mathcal{J}$, and $B \in L\left(\ell_{p}\right)$, and "closed" is always understood with respect to the operator norm topology. Consequently, the subject of the present paper is the structure of closed ideals in $L\left(\ell_{p}, \ell_{q}\right)$ with $1 \leq p \leq q<\infty$.

In this paper we study a number of natural closed ideals in $L\left(\ell_{p}, \ell_{q}\right)$ and relations among them. In particular we show that if $1<p<2<q<\infty$ then the following four closed ideals are proper and distinct: the ideal of all compact operators \mathcal{K}, the closed ideal $\mathcal{J}^{I_{p, q}}$ generated by the formal identity operator $I_{p, q}: \ell_{p} \rightarrow \ell_{q}$, the ideal $\mathcal{J}^{\mathrm{FSS}}$ of all finitely strictly singular (FSS) operators, and the closure of the ideal $\mathcal{J}^{\ell_{2}}$ of all ℓ_{2}-factorable operators (see Section 2 for appropriate definitions). Although these ideals were identified earlier, they were not known to be distinct and proper except for special cases. The following diagram illustrates the relationship between these ideals:

Here arrows stand for inclusions. A solid arrow $(\Rightarrow$ or \rightarrow) between two ideals means that there are no other ideals sitting properly between the two, while a double arrow coming out of an ideal indicates the only immediate successor. A hyphenated arrow ($->$) indicates a proper inclusion, while a dotted one indicates that we do not know whether or not the inclusion is proper. In particular, the closed ideals in $L\left(\ell_{p}, \ell_{q}\right)$ are not totally ordered.

The paper is organized as follows. In Section 3 we study the ideal $\mathcal{J}^{I_{p, q}}$ for $1 \leq p<q<\infty$. In [Milm70], Milman proved that $\mathcal{J}^{I_{p, q}}$ is FSS, and therefore, $\mathcal{J}^{I_{p, q}} \subseteq \mathcal{J}^{\text {FSS }}$. Since $\mathcal{J}^{I_{p, q}}$ is not compact, \mathcal{K} is properly contained in $\mathcal{J}^{I_{p, q}}$. We will show that every closed ideal that contains a non-compact operator necessarily contains $\mathcal{J}^{I_{p, q}}$, so that $\mathcal{J}^{I_{p, q}}$ is the least non-compact
ideal. In Section 4 we consider the ideal $\mathcal{J}^{\ell_{2}}$ when $1<p \leq 2 \leq q<\infty$. We find a specific non-FSS operator T in $\mathcal{J}^{\ell_{2}}$ such that the closed ideal \mathcal{J}^{T} generated by T coincides with $\mathcal{J}^{\ell_{2}}$. This implies, in particular, that $\mathcal{J}^{\text {FSS }}$ is a proper ideal (a result proved in [Milm70] for $p=2 \leq q$). Among results on other related ideals we also show that $\mathcal{J}^{\ell_{2}} \subseteq \mathcal{J}^{\ell_{r}}$ for all r between p and q, and we prove that every closed ideal of $L\left(\ell_{p}, \ell_{q}\right)$ which contains a non-FSS operator must also contain $\mathcal{J}^{\ell_{2}}$. In Section 5 we consider the "block Hadamard" operator U from ℓ_{p} to ℓ_{q} for $1<p<2<q<\infty$. We show that $U \notin \mathcal{J}^{\ell_{2}}$, hence $\mathcal{J}^{\ell_{2}}$ is a proper ideal. Since, obviously, $I_{p, q} \in \mathcal{J}^{\ell_{2}}$, it follows that $\mathcal{J}^{I_{p, q}} \subsetneq \mathcal{J}^{U}$. We show in Section 6 that U is FSS, hence $\mathcal{J}^{I_{p, q}} \subsetneq \mathcal{J}^{\text {FSS }}$.

We thank Gilles Pisier for suggesting to us the proof of Theorem 6.5.
2. Notation and preliminaries. We use the standard notation from the Banach space theory as in [LT77, LT79, Tom89, DJT95] and we refer the reader to these books for unexplained notions. Given two Banach spaces X and Y, we write $L(X, Y)$ for the space of all continuous linear operators from X to Y, and $L(X)$ for $L(X, X)$. A linear subspace \mathcal{J} of $L(X, Y)$ is said to be an ideal if $A T B \in \mathcal{J}$ whenever $A \in L(Y), T \in \mathcal{J}$, and $B \in L(X)$. By a closed ideal we mean an ideal closed in the operator norm topology. We denote by \mathcal{K} the closed ideal of all compact operators.

Throughout this paper, p and q always satisfy $1 \leq p<q<\infty$. We denote by p^{\prime} the conjugate of p, that is, $1 / p+1 / p^{\prime}=1$. It is well known (see, e.g., [CPY74]) that \mathcal{K} is contained in every closed ideal of $L\left(\ell_{p}, \ell_{q}\right)$. If Z is a Banach space, we say that an operator $T \in L(X, Y)$ factors through Z if $T=A B$ where $A \in L(Z, Y)$ and $B \in L(X, Z)$; we denote by \mathcal{J}^{Z} the closure of the set of all operators in $L\left(\ell_{p}, \ell_{q}\right)$ that factor through Z. It can be easily verified that if Z is isomorphic to $Z \oplus Z$ then \mathcal{J}^{Z} is a subspace, hence an ideal. For $S \in L\left(\ell_{p}, \ell_{q}\right)$ we denote by \mathcal{J}^{S} the closed ideal in $L\left(\ell_{p}, \ell_{q}\right)$ generated by S, that is, the smallest closed ideal containing S. It is easy to see that \mathcal{J}^{S} consists of operators that can be approximated in norm by operators of the form $\sum_{i=1}^{n} A_{i} S B_{i}$, where $A_{i} \in L\left(\ell_{q}\right)$ and $B_{i} \in L\left(\ell_{p}\right)$ for $i=1, \ldots, n$. If A is an $n \times n$ scalar matrix, we write $\|A\|_{p, q}$ for the norm of A as an operator from ℓ_{p}^{n} to ℓ_{q}^{n}.

It is known that every operator in $L\left(\ell_{p}, \ell_{q}\right)$ is strictly singular (see, e.g., [LT77]). We call an operator $S: X \rightarrow Y$ finitely strictly singular, or $F S S$, if for every $\varepsilon>0$ there exists $n \in \mathbb{N}$ such that $\inf _{x \in E,\|x\|=1}\|S x\|<\varepsilon$ for every n-dimensional subspace E of X. This class of operators already appeared in [Milm70] where its introduction has been credited to Mityagin and Pełczyński. It can be easily verified (see [Masc94]) that S is FSS if and only if every ultrapower of S is strictly singular. It follows immediately that the set of all FSS operators from X to Y is a closed ideal. Denote by $\mathcal{J}^{\text {FSS }}$ the ideal of all FSS operators in $L\left(\ell_{p}, \ell_{q}\right)$.

We denote by $\left(e_{i}\right)$ and $\left(f_{i}\right)$ the standard bases of ℓ_{p} and ℓ_{q} respectively, and we denote their coordinate functionals by $\left(e_{i}^{*}\right)$ and $\left(f_{i}^{*}\right)$. If $\left(x_{n}\right)$ is a sequence in a Banach space, we write $\left[x_{n}\right]$ for its closed linear span. A sequence $\left(x_{n}\right)$ in a Banach space is seminormalized if $\inf _{n}\left\|x_{n}\right\|>0$ and $\sup _{n}\left\|x_{n}\right\|<\infty$.

The following standard lemma is immediately deduced from Propositions 1.a. 12 and 2.a. 1 of [LT77].

Lemma 2.1. If $X=\ell_{p}(1 \leq p<\infty)$ or c_{0} and $\left(x_{n}\right)$ is a seminormalized sequence in X which converges to zero coordinate-wise (that is, for every i, $e_{i}^{*}\left(x_{n}\right) \rightarrow 0$ as $\left.n \rightarrow \infty\right)$, then there is a subsequence $\left(x_{n_{i}}\right)$ equivalent to $\left(e_{i}\right)$ such that $\left[x_{n_{i}}\right]$ is complemented in X.

REMARK 2.2. Suppose that $1 \leq p \leq q<\infty$ and $T \in L\left(\ell_{p}, \ell_{q}\right)$. We say that T is block-diagonal if $T=\bigoplus_{n=1}^{\infty} T_{n}$, where $T_{n}: \ell_{p}^{m_{n}} \rightarrow \ell_{q}^{m_{n}}$. Equivalently, there exists a strictly increasing sequence of integers $\left(k_{n}\right)$ such that $T=\sum_{n=1}^{\infty} P_{n} T Q_{n}$, where Q_{n} and P_{n} are the canonical projections from ℓ_{p} and ℓ_{q} onto the finite-dimensional subspaces spanned by $e_{k_{n}+1}, \ldots, e_{k_{n+1}}$ and $f_{k_{n}+1}, \ldots, f_{k_{n+1}}$ respectively. Note that $m_{n}=k_{n+1}-k_{n}$ and T_{n} can be identified with $P_{n} T Q_{n}$. It can be easily verified that if $p \leq q$ then $\|T\|=\sup _{n}\left\|T_{n}\right\|$. Indeed, $\left\|T_{n}\right\|=\left\|P_{n} T Q_{n}\right\| \leq\|T\|$ as P_{n} and Q_{n} are contractions. On the other hand,

$$
\begin{aligned}
\|T x\| & =\left(\sum_{n=1}^{\infty}\left\|P_{n} T Q_{n} x\right\|^{q}\right)^{1 / q} \leq\left(\sup _{n}\left\|P_{n} T Q_{n}\right\|\right)\left(\sum_{n=1}^{\infty}\left\|Q_{n} x\right\|^{q}\right)^{1 / q} \\
& \leq\left(\sup _{n}\left\|T_{n}\right\|\right)\left(\sum_{n=1}^{\infty}\left\|Q_{n} x\right\|^{p}\right)^{1 / p}=\left(\sup _{n}\left\|T_{n}\right\|\right)\|x\|
\end{aligned}
$$

REMARK 2.3. Suppose that $R \in L\left(\ell_{p}, \ell_{q}\right)$ for $1 \leq p \leq q<\infty$, and T is a block-diagonal submatrix of R, that is, $T=\sum_{n=1}^{\infty} P_{n} R Q_{n}$, where $\left(P_{n}\right)$ and $\left(Q_{n}\right)$ are as in Remark 2.2. Then T can be written as a convex combination of operators of the form $U R V$, where U and V are isometries. See Proposition 1.c. 8 of [LT77] and Remark 1 following it for the construction.
3. The formal identity operator $I_{p, q}$. In this section we consider the formal identity operator $I_{p, q}: \ell_{p} \rightarrow \ell_{q}$ for $1 \leq p<q<\infty$. Clearly, $I_{p, q}$ is not compact, so that $\mathcal{K} \subsetneq \mathcal{J}^{I_{p, q}}$. First, we show that $\mathcal{J}^{I_{p, q}}$ is contained in every closed ideal of $L\left(\ell_{p}, \ell_{q}\right)$ except \mathcal{K}. This result is probably known to specialists, but we provide a short proof for completeness.

Proposition 3.1. Let $1 \leq p<q<\infty$. If \mathcal{J} is any ideal in $L\left(\ell_{p}, \ell_{q}\right)$ containing a non-compact operator, then $I_{p, q} \in \mathcal{J}$.

Proof. Assume that \mathcal{J} contains a non-compact operator T. There exists a normalized sequence $\left(x_{n}\right)$ in ℓ_{p} such that $\left(T x_{n}\right)$ has no convergent subse-
quences. By passing to subsequences and using a standard diagonalization argument, we can assume that $\left(x_{n}\right)$ and $\left(T x_{n}\right)$ converge coordinate-wise. Let $y_{n}=x_{n}-x_{n-1}$; then $\left(y_{n}\right)$ and $\left(T y_{n}\right)$ converge coordinate-wise to zero. Since ($T x_{n}$) has no convergent subsequences, we can assume (by passing to a further subsequence if necessary) that $\left(T y_{n}\right)$ is seminormalized. It follows that $\left(y_{n}\right)$ is also seminormalized. Using Lemma 2.1 twice, we can assume (by passing to a subsequence) that $\left(y_{n}\right)$ is equivalent to $\left(e_{i}\right),\left(T y_{n}\right)$ is equivalent to $\left(f_{i}\right)$, and $\left[T y_{n}\right]$ is complemented in ℓ_{q}.

Let $B: \ell_{p} \rightarrow\left[y_{n}\right]$ be an isomorphism given by $B e_{n}=y_{n}$, and $A:\left[T y_{n}\right] \rightarrow$ ℓ_{q} be an isomorphism given by $A\left(T y_{n}\right)=f_{n}$. Since $\left[T y_{n}\right]$ is complemented, A can be extended to an operator on all of ℓ_{q}. Thus we can view B and A as elements of $L\left(\ell_{p}\right)$ and $L\left(\ell_{q}\right)$ respectively. Observe that $A T B e_{n}=f_{n}$ for each n, hence $A T B=I_{p, q}$. It follows that $I_{p, q} \in \mathcal{J}$. ■

Corollary 3.2. If a closed ideal of $L\left(\ell_{p}, \ell_{q}\right)$ contains a non-compact operator, then it contains $\mathcal{J}^{I_{p, q}}$.

The following result was proved in [Milm70]. For the reader's convenience we provide a short proof.

Proposition 3.3. Suppose that $1 \leq p<q<\infty$. The formal identity operator $I_{p, q}$ is FSS.

We will deduce this proposition from the following lemma, which also appeared in [Milm70].

Lemma 3.4. If E is an n-dimensional subspace of c_{0} then there exists $x \in E$ such that x attains its sup-norm at at least n coordinates.

Proof. The proof is by induction. The statement is trivial for $n=1$. Suppose that it is true for n, take any subspace E of c_{0} of dimension $n+1$. By induction hypothesis, there exists $x \in E$ such that

$$
\begin{equation*}
\delta:=\|x\|_{\infty}=\left|x_{i_{1}}\right|=\cdots=\left|x_{i_{n}}\right| \tag{1}
\end{equation*}
$$

for a set of distinct indices $I=\left\{i_{1}, \ldots, i_{n}\right\}$. Suppose that $\left|x_{i}\right|<\delta$ for all $i \notin I$ (otherwise we are done). Let Y be the subspace of c_{0} consisting of all the sequences that vanish at i_{1}, \ldots, i_{n}. Since Y has co-dimension n, it follows that $Y \cap E \neq\{0\}$. Pick a non-zero $y \in Y \cap E$. We claim that for some $s>0$ the sequence $x+s y$ attains its sup-norm at at least $n+1$ coordinates. Indeed, $\left|x_{i}+t y_{i}\right|=\delta$ for all $i \in I$ and $t \geq 0$. Consider the function

$$
f(t)=\max _{j \notin I}\left|x_{j}+t y_{j}\right|
$$

Clearly, f is continuous, $f(0)<\delta$, and $\lim _{t \rightarrow \infty} f(t)=\infty$. It follows that $f(s)=\delta$ for some $s>0$. Then $\left|x_{i}+s y_{i}\right|=\|x+s y\|_{\infty}=\delta$ for some $i \notin I$.■

Proof of Proposition 3.3. Given $\varepsilon>0$, pick $n \in \mathbb{N}$ such that $n^{1 / q-1 / p}<\varepsilon$. Suppose that E is a subspace of ℓ_{p} with $\operatorname{dim} E=n$. By Lemma 3.4 there
exists $x \in E$ and indices i_{1}, \ldots, i_{n} satisfying (1). Without loss of generality, $\|x\|_{p}=1$. It follows that $1=\|x\|_{p}^{p} \geq n \delta^{p}$, so that $\delta \leq n^{-1 / p}$. Then

$$
\|x\|_{q}^{q} \leq\|x\|_{\infty}^{q-p}\|x\|_{p}^{p}=\delta^{q-p} \leq n^{-(q-p) / p}
$$

so that $\|x\|_{q} \leq n^{1 / q-1 / p}<\varepsilon$. It follows that $I_{p, q}$ is FSS.
Corollary 3.5. Let $1 \leq p<q<\infty$. The ideal \mathcal{K} is a proper subset of $\mathcal{J}^{\text {FSS }}$.
4. Operators factorable through ℓ_{2}. In this section we consider the ideal $\mathcal{J}^{\ell_{2}}$ for $1<p<2<q$. Using Pełczyński's decomposition, we will construct an operator $T: \ell_{p} \rightarrow \ell_{q}$ such that $\mathcal{J}^{\ell_{2}}=\mathcal{J}^{T}$. That is, the closure of the ideal of all ℓ_{2}-factorable operators is exactly the closed ideal generated by T. Furthermore, we show that T fails to be FSS, hence the ideal $\mathcal{J}^{\text {FSS }}$ is proper. It will be obvious from the definition of T that T factors through ℓ_{r} whenever $p \leq r \leq q$, so it follows that $\mathcal{J}^{\ell_{2}} \subseteq \mathcal{J}^{\ell_{r}}$. We also show that T factors through every non-FSS operator. It follows that any closed ideal containing a non-FSS operator necessarily contains $\mathcal{J}^{\ell_{2}}$.

To construct T, recall that it follows from Pełczyński's decomposition theorem that for every $1<r<\infty, \ell_{r}$ is isomorphic to $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{r}$, the ℓ_{r}-direct sum of ℓ_{2}^{n} 's (see [LT77, p. 73]). Let $1<p \leq q<\infty$, put U : $\ell_{p} \rightarrow\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{p}$ and $V:\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{q} \rightarrow \ell_{q}$ be two such isomorphisms. By $I_{2, p, q}:\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{p} \rightarrow$ $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{q}$ we denote the formal identity operator, that is, just the change of the norm on the direct sum. Then let $T=V I_{2, p, q} U$, that is,

$$
\begin{equation*}
T: \ell_{p} \xrightarrow{U}\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{p} \xrightarrow{I_{2, p, q}}\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{q} \xrightarrow{V} \ell_{q} \tag{2}
\end{equation*}
$$

We will call T a Petczyński decomposition operator.
REmark 4.1. Note that T is not unique, it is defined up to the isomorphisms U and V, so that we have actually constructed a class of operators. It is clear, however, that any two Pełczyński decomposition operators factor through each other. Moreover, one can easily verify that if in the preceding construction we "skip" some of the blocks, that is, if we consider $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{k_{n}}\right)$ for some strictly increasing sequence of indices k_{n}, then the resulting operator T^{\prime} obviously factors through T. Conversely, T factors through T^{\prime} because ℓ_{2}^{n} is a complemented subspace of $\ell_{2}^{k_{n}}$.

Furthermore, let $E_{n}=U^{-1}\left(\ell_{2}^{n}\right) \subset \ell_{p}$ be the pre-image of the nth block of $\left(\bigoplus \ell_{2}^{n}\right)_{p}$. Similarly, put $F_{n}=V\left(\ell_{2}^{n}\right) \subset \ell_{q}$. Then $d\left(E_{n}, \ell_{2}^{n}\right) \leq\|U\| \cdot\left\|U^{-1}\right\|$ and $d\left(F_{n}, \ell_{2}^{n}\right) \leq\|V\| \cdot\left\|V^{-1}\right\|$, where $d(X, Y)$ stands for the Banach-Mazur distance between X and Y. Hence, $\left(E_{n}\right)$ and $\left(F_{n}\right)$ are sequences of uniformly Euclidean subspaces of ℓ_{p} and ℓ_{q} respectively. Note that $T\left(E_{n}\right)=F_{n}$, so that
T fixes copies of ℓ_{2}^{n} for all $n \in \mathbb{N}$. This immediately implies the following result.

Proposition 4.2. For $1<p \leq q<\infty$, every Pełczyński decomposition operator fails to be FSS.

Corollary 4.3. For $1<p \leq q<\infty$, the ideal $\mathcal{J}^{\mathrm{FSS}}$ is proper.
Our next goal is to show that if $1<p \leq 2 \leq q<\infty$ then $\mathcal{J}^{T}=\mathcal{J}^{\ell_{2}}$. We will make use of the concept of ℓ_{2}-factorable norm γ_{2}. Recall that if $S \in L(X, Y)$ (X and Y Banach spaces) then $\gamma_{2}(S)=\inf \left\|S_{1}\right\|\left\|S_{2}\right\|$, where the infimum is taken over all factorizations $S=S_{1} S_{2}$ where $S_{2}: X \rightarrow \ell_{2}$ and $S_{1}: \ell_{2} \rightarrow Y$. It is known that γ_{2} is a norm on the ideal of all ℓ_{2}-factorable operators, and $\gamma_{2}(A S B) \leq\|A\| \gamma_{2}(S)\|B\|$ whenever $X \xrightarrow{B} X \xrightarrow{S} Y \xrightarrow{A} Y$. See [Tom89, DJT95] for more information on γ_{2}.

LEMmA 4.4. Suppose that $R \in L\left(\ell_{p}, \ell_{q}\right), 1<p \leq q<\infty$, and $\varepsilon>0$.
(i) There exist two block-diagonal operators $V, W \in L\left(\ell_{p}, \ell_{q}\right)$ such that $\|W\| \leq\|R\|+\varepsilon,\|V\| \leq 2\|R\|+2 \varepsilon$, and $\|R-(W+V)\|<\varepsilon$.
(ii) Suppose that, in addition, R is ℓ_{2}-factorable. Then V and W can be chosen to be ℓ_{2}-factorable, and $\gamma_{2}(W) \leq \gamma_{2}(R)+\varepsilon, \gamma_{2}(V) \leq$ $2 \gamma_{2}(R)+2 \varepsilon$, and $\gamma_{2}(R-(W+V))<\varepsilon$.

Proof. Let $r_{i, j}$ stand for the (i, j) th entry of the matrix of R, that is, $r_{i, j}=f_{i}^{*}\left(R e_{j}\right)$. For the purpose of this proof we introduce the following notation: for $\Omega \subset \mathbb{N} \times \mathbb{N}$, we define the matrix $R_{\Omega}=\left(\varrho_{i, j}\right)$ by

$$
\varrho_{i, j}= \begin{cases}r_{i, j} & \text { if }(i, j) \in \Omega \\ 0 & \text { otherwise }\end{cases}
$$

We start by approximating R by a matrix S with finitely many entries in every row and every column. Namely, by truncating each row and each column of R sufficiently far we can find two strictly increasing sequences $\left(M_{j}\right)$ and $\left(N_{i}\right)$ of positive integers such that $\left\|R-R_{\Gamma}\right\|<\varepsilon$ where $\Gamma \subseteq \mathbb{N} \times \mathbb{N}$ is defined by

$$
(i, j) \in \Gamma \quad \text { iff } \quad i \leq M_{j} \text { and } j \leq N_{i}
$$

Put $S=R_{\Gamma}$.
We will define two strictly increasing sequences $\left(k_{n}\right)$ and $\left(l_{n}\right)$ of positive integers such that Γ is contained in the union of two block-diagonal sets $\Delta=\bigcup_{n=1}^{\infty} \Delta_{n}$ and $\Lambda=\bigcup_{n=1}^{\infty} \Lambda_{n}$ where

$$
\begin{aligned}
\Delta_{n} & =\left\{(i, j) \in \Gamma \mid k_{n-1}<i, j \leq k_{n}\right\} \\
\Lambda_{n} & =\left\{(i, j) \in \Gamma \mid l_{n-1}<i, j \leq l_{n}\right\}
\end{aligned}
$$

We define the sequences $\left(k_{n}\right)$ and $\left(l_{n}\right)$ by an interlaced induction. Put $k_{0}=0$,
$l_{0}=1$. For $n \geq 0$ we let

$$
k_{n+1}=\max \left\{M_{l_{n}}, N_{l_{n}}\right\}, \quad l_{n+1}=\max \left\{M_{k_{n+1}}, N_{k_{n+1}}\right\}
$$

Clearly, $\left(k_{n}\right)$ and $\left(l_{n}\right)$ are strictly increasing. Next, we show that $\Gamma \subseteq \Delta \cup \Lambda$. Let $(i, j) \in \Gamma$. There exists n such that $l_{n}<\max \{i, j\} \leq l_{n+1}$. If $l_{n}<$ $\min \{i, j\}$, then $l_{n}<i, j \leq l_{n+1}$, so that $(i, j) \in \Lambda$. Suppose now that $\min \{i, j\} \leq l_{n}$. Then either i or j is less than or equal to l_{n}, while the other is greater than l_{n}. Say, $i \leq l_{n}$ and $j>l_{n}$. It follows that

$$
i \leq l_{n} \leq N_{l_{n}} \leq k_{n+1} \quad \text { and } \quad j>l_{n} \geq N_{k_{n}} \geq k_{n}
$$

Therefore $j \leq N_{i} \leq N_{l_{n}} \leq k_{n+1}$. Also, $N_{i} \geq j>l_{n} \geq N_{k_{n}}$ yields $i>k_{n}$. Hence, $k_{n}<i, j \leq k_{n+1}$, so that $(i, j) \in \Delta$.

Set $W=S_{\Delta}$ and $V=S-W$. Then the non-zero entries of W and V are located in Δ and Λ respectively, so that W and V are block-diagonal. By the definition of S we have $\|R-(W+V)\|<\varepsilon$. Since W is a block-diagonal part of S, Remark 2.3 yields $\|W\| \leq\|S\| \leq\|R\|+\varepsilon$. Finally, it follows from $V=S-W$ that $\|V\| \leq 2\|R\|+2 \varepsilon$.

If R is ℓ_{2}-factorable, then we can choose S with finitely many entries in each row and column such that S is also ℓ_{2}-factorable and $\gamma_{2}(R-S)<\varepsilon$. Indeed, let $R=R_{1} R_{2}$ be a factorization of R through ℓ_{2}. Approximate R_{1} and R_{2} in norm by S_{1} and S_{2}, respectively, such that S_{1} and S_{2} have finitely many entries in every row and column. Put $S=S_{1} S_{2}$; then S is as claimed. We use the triangle inequality to show that $\gamma_{2}(R-S)<\varepsilon$ when $\left\|R_{1}-S_{1}\right\|$ and $\left\|R_{2}-S_{2}\right\|$ are sufficiently small.

Set $W=S_{\Delta}$ and $V=S-W$. It follows from Remark 2.3 that $\gamma_{2}(W) \leq$ $\gamma_{2}(S) \leq \gamma_{2}(R)+\varepsilon$. Then $\gamma_{2}(V)=\gamma_{2}(S-W) \leq 2 \gamma_{2}(R)+2 \varepsilon$. In particular, W and V are ℓ_{2}-factorable.

REMARK 4.5. In a similar fashion one can show that every operator between two Banach spaces with shrinking unconditional bases can be approximated by a sum of two block-diagonal operators.

REMARK 4.6. A slight modification of the proof Lemma 4.4(i) yields $\|W\| \leq\|R\|$. Indeed, choose M_{j} and N_{i} sufficiently large so that not only $\left\|R-R_{\Gamma}\right\|<\varepsilon$ but also $\left\|R-R_{\Omega}\right\|<\varepsilon$ for every $\Omega \subseteq \mathbb{N} \times \mathbb{N}$ such that $\Gamma \subseteq \Omega$. Then, after constructing Δ and Λ, put $W=R_{\Delta}$ and $V=R_{\Delta \cup \Lambda}-W$. Then the non-zero entries of W and V are located in Δ and Λ, respectively, so that W and V are block-diagonal. Since $\Delta \cup \Lambda \supseteq \Gamma$ we have $\|R-(W+V)\|<\varepsilon$. Since W is a block-diagonal part of R, Remark 2.3 yields $\|W\| \leq\|R\|$. Finally, $\|V\| \leq\left\|R_{\Delta \cup \Lambda}\right\|+\|W\| \leq 2\|R\|+\varepsilon$.

Theorem 4.7. If $1<p \leq 2 \leq q$ and T is a Pełczyński decomposition operator, then $\mathcal{J}^{T}=\mathcal{J}^{\ell_{2}}$.

Proof. Observe that $I_{2, p, q}$, being the formal identity from $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{p}$ to $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{q}$, factors through $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{2}=\ell_{2}$. It follows that T factors through ℓ_{2} and, therefore, $\mathcal{J}^{T} \subseteq \mathcal{J}^{\ell_{2}}$.

We show that $\mathcal{J}^{\ell_{2}} \subseteq \mathcal{J}^{T}$. Clearly, it suffices to show that every $\ell_{2^{-}}$ factorable operator belongs to \mathcal{J}^{T}. In view of Lemma 4.4(ii), it suffices to show this for block-diagonal operators. Let W be an ℓ_{2}-factorable blockdiagonal operator. Then we can write $W=\bigoplus_{n=1}^{\infty} A_{n} B_{n}$, where B_{n} : $\ell_{p}^{k_{n}} \rightarrow \ell_{2}^{k_{n}}$ and $A_{n}: \ell_{2}^{k_{n}} \rightarrow \ell_{q}^{k_{n}}$ such that $\sup _{n}\left\|A_{n}\right\|$ and $\sup _{n}\left\|B_{n}\right\|$ are finite. By merging consecutive blocks if necessary, we can assume without loss of generality that $\left(k_{n}\right)$ is strictly increasing. Observe that the operators

$$
B=\bigoplus_{n=1}^{\infty} B_{n}:\left(\bigoplus_{n=1}^{\infty} \ell_{p}^{k_{n}}\right)_{p} \rightarrow\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{k_{n}}\right)_{p}
$$

and

$$
A=\bigoplus_{n=1}^{\infty} A_{n}:\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{k_{n}}\right)_{q} \rightarrow\left(\bigoplus_{n=1}^{\infty} \ell_{q}^{k_{n}}\right)_{q}
$$

are bounded, and $W=A I_{0} B$, with I_{0} the formal identity from $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{k_{n}}\right)_{p}$ to $\left(\bigoplus_{n=1}^{\infty} \ell_{q}^{k_{n}}\right)_{q}$. Thus, W factors through I_{0}. It follows from Remark 4.1 that I_{0} factors through T. Hence, W factors through T.

REMARK 4.8. Actually, we proved that every operator in $\mathcal{J}^{\ell_{2}}$ can be approximated by sums of two T-factorable operators.

Remark 4.9. Suppose that $1<p<r<q$. Then $I_{2, p, q}$ in (2) factors through $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{r}$, which is isomorphic to ℓ_{r}. It follows that T factors through ℓ_{r}. Then Theorem 4.7 implies that $\mathcal{J}^{\ell_{2}} \subseteq \mathcal{J}^{\ell_{r}}$ when $p \leq 2 \leq q$.

Next, we show that if $p<2<q$ then $\mathcal{J}^{\ell_{2}}$ is the least closed ideal beyond $\mathcal{J}^{\text {FSS }}$, that is, every closed ideal that contains a non-FSS operator also contains $\mathcal{J}^{\ell_{2}}$. For the proof we need the following well-known fact.

Theorem 4.10. For every $1<r<\infty$ there exists $K>0$ such that for all $n \in \mathbb{N}$ there exists $N \in \mathbb{N}$ such that every N-dimensional subspace $F \subset \ell_{r}$ contains an n-dimensional subspace E which is K-complemented in ℓ_{r} and 2 -isomorphic to ℓ_{2}^{n}.

REMARK 4.11. The theorem follows by simultaneous use of Dvoretzky's theorem both in a subspace $F \subset \ell_{r}$ and in its dual F^{*} (see, e.g., [MS86]). This gives the result with $N=C n^{r / 2}$ and $K=C^{\prime} \sqrt{\max \left\{r, r^{\prime}\right\}}$, where $C, C^{\prime}>0$ are absolute constants. This theorem can also be viewed, for example, as a special case of results in [FT79].

We will also routinely use the following observation.

REmARK 4.12. Suppose that $\left(E_{n}\right)$ is a sequence of subspaces of a Banach space X which are uniformly Euclidean and uniformly complemented in X. That is, there exist a constant $C>0$ and sequences $\left(P_{n}\right)$ and $\left(V_{n}\right)$ such that P_{n} is a projection from X onto E_{n} with $\left\|P_{n}\right\|<C$, and $V_{n}: E_{n} \rightarrow \ell_{2}^{n}$ is an isomorphism with $\left\|V_{n}\right\| \cdot\left\|V_{n}^{-1}\right\| \leq C$ for every n. Let G_{n} be a subspace of $E_{n}(n \in \mathbb{N})$. Then it is easy to see that the G_{n} 's are uniformly Euclidean and uniformly complemented in X as well.

For $x \in \ell_{r}$ we write $\operatorname{supp} x=\left\{i \in \mathbb{N} \mid x_{i} \neq 0\right\}$. For $A \subseteq \ell_{r}$ put $\operatorname{supp} A=\bigcup_{x \in A} \operatorname{supp} x$.

THEOREM 4.13. Let $1<p \leq 2 \leq q<\infty$. If $R \in L\left(\ell_{p}, \ell_{q}\right)$ is not $F S S$, then every Pełczyński decomposition operator factors through R.

Proof. Since R is not FSS, there exist a constant $C>0$ and a sequence $\left(E_{n}\right)$ of subspaces of ℓ_{p} such that $\operatorname{dim} E_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and $R_{\mid E_{n}}$ is invertible with $\left\|\left(R_{\mid E_{n}}\right)^{-1}\right\| \leq C$. We can assume, in addition, that $\operatorname{supp} E_{n}$ is finite by truncating all the vectors in a basis of E_{n} sufficiently far (and adjusting C if necessary). Let $F_{n}=R\left(E_{n}\right)$. Using Theorem 4.10 and Remark 4.12 we can easily obtain subspaces $E_{n}^{\prime} \subset E_{n}$ and $F_{n}^{\prime} \subset F_{n}$ which are C-Euclidean, C-complemented in ℓ_{p} and ℓ_{q} respectively, and such that $F_{n}^{\prime}=R\left(E_{n}^{\prime}\right)$. By passing to a subsequence we may assume that $\operatorname{dim} E_{n}^{\prime}=n$, and we relabel the sequences so obtained as $\left(E_{n}\right)$ and $\left(F_{n}\right)$. Let $Q_{n}: \ell_{q} \rightarrow F_{n}$ be a projection with $\left\|Q_{n}\right\| \leq C$.

We are going to define sequences $\left(\widehat{E}_{n}\right),\left(\widehat{F}_{n}\right)$ and $\left(\widehat{Q}_{n}\right)$ which satisfy all the properties described in the previous paragraph and, in addition, there exists a strictly increasing sequence $\left(m_{n}\right)$ in \mathbb{N} such that the following four conditions are satisfied:
(i) $m_{n-1}<\min \operatorname{supp} \widehat{E}_{n}$ and $m_{n-1}<\min \operatorname{supp} \widehat{F}_{n}$;
(ii) $\widehat{Q}_{n} y=0$ whenever max $\operatorname{supp} y \leq m_{n-1}$;
(iii) $m_{n} \geq \max \operatorname{supp} \widehat{E}_{n}$;
(iv) $\left\|\widehat{Q}_{n} y\right\| \leq 2^{-n}\|y\|$ whenever min supp $y>m_{n}$.

We construct the sequences inductively. Let $m_{0}=0$, and suppose that we already constructed $\widehat{E}_{i}, \widehat{F}_{i}, \widehat{Q}_{i}$, and m_{i} for all $i<n$. Let G and G^{\prime} be the subspaces of ℓ_{p} and ℓ_{q}, respectively, consisting of all vectors whose first m_{n-1} coordinates are zero. Put $k=2 m_{n-1}+n$. It follows from $\operatorname{dim} F_{k}=k$ and $\operatorname{codim} G^{\prime}=m_{n-1}$ that $m_{n-1}+n \leq \operatorname{dim} F_{k} \cap G^{\prime}=\operatorname{dim} R^{-1}\left(F_{k} \cap G^{\prime}\right)$, because $R_{\mid E_{k}}$ is an isomorphism. Since codim $G=m_{n-1}$ we have $G \cap R^{-1}\left(F_{k} \cap G^{\prime}\right)$ $\geq n$. Let \widehat{E}_{n} be an n-dimensional subspace of $G \cap R^{-1}\left(F_{k} \cap G^{\prime}\right)$, and $\widehat{F}_{n}=$ $R\left(\widehat{E}_{n}\right)$. Then $\widehat{E}_{n} \subseteq G$ and $\widehat{F}_{n} \subseteq G^{\prime}$, hence (i) is satisfied. Clearly, \widehat{F}_{n} is \widehat{C} complemented in ℓ_{q}, where $\widehat{C}=C^{2}$. Then there exists a projection $Q^{\prime}: \ell_{q} \rightarrow$ \widehat{F}_{n} such that $\left\|Q^{\prime}\right\| \leq \widehat{C}$. Let $\widehat{Q}_{n}=Q^{\prime} P$, where P is the basis projection of ℓ_{q}
onto $\left[f_{i}\right]_{i \geq m_{n-1}}$. Then \widehat{Q}_{n} is again a projection from ℓ_{q} onto $\widehat{F}_{n},\left\|\widehat{Q}_{n}\right\| \leq \widehat{C}$, and so (ii) is satisfied. Since $\operatorname{rank} \widehat{Q}_{n}=n$, we can write $\widehat{Q}_{n}=\sum_{j=1}^{n} z_{j} \otimes z_{j}^{*}$, where $z_{1}, \ldots, z_{j} \in \ell_{p}$ and $z_{1}^{*}, \ldots, z_{j}^{*} \in \ell_{q}^{*}$. Then we can find $r \in \mathbb{N}$ sufficiently large such that if $\|y\| \leq 1$ and minsupp $y>r$ then $\left|z_{j}^{*}(y)\right|$ is sufficiently small for all $j=1, \ldots, n$, so that $\|\widehat{Q} y\| \leq 2^{-n}$. Let $m_{n}=\max \{r, s\}$, where $s=\max \operatorname{supp} \widehat{E}_{n}$; then (iii) and (iv) are satisfied.

For convenience, we relabel $\widehat{E}_{n}, \widehat{F}_{n}, \widehat{Q}_{n}$, and \widehat{C} as E_{n}, F_{n}, Q_{n}, and C again. For every n suppose that V_{n} is a C-isomorphism of ℓ_{2}^{n} onto E_{n} with $\left\|V_{n}\right\|=1$ and $\left\|V_{n}^{-1}\right\| \leq C$. Put

$$
V=\bigoplus_{n=1}^{\infty} V_{n}:\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{p} \rightarrow\left(\bigoplus_{n=1}^{\infty} E_{n}\right)_{p}
$$

Since the E_{n} 's are disjointly supported, we can consider $\left(\bigoplus_{n=1}^{\infty} E_{n}\right)_{p}$ as a subspace of ℓ_{p}. It follows that V is a C-isomorphism between $\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{p}$ and a subspace of ℓ_{p}. Define

$$
W: \ell_{q} \rightarrow\left(\bigoplus_{n=1}^{\infty} \ell_{2}^{n}\right)_{q} \quad \text { via } \quad x \mapsto\left(V_{n}^{-1}\left(R_{\mid E_{n}}\right)^{-1} Q_{n} x\right)_{n=1}^{\infty}
$$

We claim that W is bounded. Indeed, pick $x \in \ell_{q}$. Then

$$
\begin{equation*}
\|W x\|=\left(\sum_{n=1}^{\infty}\left\|V_{n}^{-1}\left(R_{\mid E_{n}}\right)^{-1} Q_{n} x\right\|_{2}^{q}\right)^{1 / q} \leq C^{2}\left(\sum_{n=1}^{\infty}\left\|Q_{n} x\right\|^{q}\right)^{1 / q} \tag{3}
\end{equation*}
$$

Let P_{k} be the basis projection from ℓ_{q} onto $\left[f_{i}\right]_{i=m_{k-1}+1}^{m_{k}}$. Then $x=\sum_{k=1}^{\infty} P_{k} x$. It follows from (ii) that $Q_{n} P_{k} x=0$ whenever $k<n$. Furthermore, (iv) yields $\left\|Q_{n}\left(\sum_{k>n} P_{k} x\right)\right\| \leq 2^{-n}\|x\|$. Also, $\left\|Q_{n} P_{n} x\right\| \leq C\left\|P_{n} x\right\|$. Therefore, $\left\|Q_{n} x\right\| \leq C\left\|P_{n} x\right\|+2^{-n}\|x\|$. Using the Cauchy-Schwarz inequality, we get

$$
\left(\sum_{n=1}^{\infty}\left\|Q_{n} x\right\|^{q}\right)^{1 / q} \leq\left(\sum_{n=1}^{\infty}\left(C\left\|P_{n} x\right\|\right)^{q}\right)^{1 / q}+\left(\sum_{n=1}^{\infty}\left(2^{-n}\|x\|\right)^{q}\right)^{1 / q} \leq(C+1)\|x\|
$$

Together with (3) this shows that W is bounded.
Finally, it is easy to see that $W R V=I_{2, p, q}$; it follows easily that every Pełczyński decomposition operator factors through R.

Corollary 4.14. Let $1<p \leq 2 \leq q<\infty$. If $R \in L\left(\ell_{p}, \ell_{q}\right)$ is not $F S S$, then $\mathcal{J}^{\ell_{2}} \subseteq \mathcal{J}^{R}$.
5. Operators not factorable through ℓ_{2}. We employ the following known theorem (see [DJT95, Theorem 9.13] or [Tom89, Theorem 27.1]) to deduce conditions for an operator in $L\left(\ell_{p}, \ell_{q}\right)$ to factor through ℓ_{r}.

Theorem 5.1. Let $1 \leq r<\infty$, let $U: X \rightarrow Y$ be a bounded linear operator between Banach spaces X and Y, and let $C \geq 0$. The following are equivalent:
(i) There exists a subspace L of $L_{r}(\mu), \mu$ a measure, and a factorization $U=V W$, where $V: L \rightarrow Y$ and $W: X \rightarrow L$ are bounded linear operators with $\|V\| \cdot\|W\| \leq C$.
(ii) Whenever finite sequences $\left(x_{i}\right)_{i=1}^{n}$ and $\left(z_{i}\right)_{i=1}^{m}$ in X satisfy

$$
\sum_{i=1}^{m}\left|\left\langle x^{*}, z_{i}\right\rangle\right|^{r} \leq \sum_{i=1}^{n}\left|\left\langle x^{*}, x_{i}\right\rangle\right|^{r} \quad \text { for all } x^{*} \in X^{*}
$$

then

$$
\sum_{i=1}^{m}\left\|U z_{i}\right\|^{r} \leq C^{r} \sum_{i=1}^{n}\left\|x_{i}\right\|^{r}
$$

Let us use Theorem 5.1 to state a criterion for an operator $U: \ell_{p}^{m} \rightarrow \ell_{q}^{m}$ not to factor as $U=A B$ with $\|B\|_{p, r} \cdot\|A\|_{r, q} \leq C$.

Corollary 5.2. Let $m \in \mathbb{N}, C>1$, and $r>1$, and assume that U is an invertible $m \times m$ matrix. Let $\delta=\left\|U^{-1}\right\|_{r^{\prime}, r^{\prime}}$. Then $\|B\|_{p, r}\|A\|_{r, q} \geq \delta^{-1}$ for any factorization $U=A B$. Moreover, if \widetilde{U} is another $m \times m$ matrix with

$$
\begin{equation*}
\|\widetilde{U}-U\|_{p, q} \leq\left(2 \max _{1 \leq i \leq m}\left\|U^{-1} e_{i}\right\|_{p}\right)^{-1} \tag{4}
\end{equation*}
$$

then $\|B\|_{p, r}\|A\|_{r, q} \geq(2 \delta)^{-1}$ for any factorization $\widetilde{U}=A B$.
Proof. For $i=1, \ldots, m$ let $x_{i}=e_{i}$ and $z_{i}=\delta^{-1} U^{-1} e_{i}$ and observe that for any $x^{*} \in \mathbb{R}^{m}$,

$$
\begin{aligned}
\left(\sum_{i=1}^{m}\left|\left\langle x^{*}, z_{i}\right\rangle\right|^{r}\right)^{1 / r} & =\delta^{-1}\left(\sum_{i=1}^{m}\left|\left\langle\left(U^{-1}\right)^{*} x^{*}, e_{i}\right\rangle\right|^{r}\right)^{1 / r}=\delta^{-1}\left\|\left(U^{-1}\right)^{*} x^{*}\right\|_{r} \\
& \leq \delta^{-1}\left\|U^{-1}\right\|_{r^{\prime}, r^{\prime}}\left\|x^{*}\right\|_{r}=\left(\sum_{i=1}^{m}\left|\left\langle x^{*}, x_{i}\right\rangle\right|^{r}\right)^{1 / r}
\end{aligned}
$$

which implies that the hypothesis of (ii) in Theorem 5.1 is satisfied. Secondly it follows that

$$
\begin{equation*}
\sum_{i=1}^{m}\left\|U z_{i}\right\|_{q}^{r}=\delta^{-r} m=\delta^{-r} \sum_{i=1}^{m}\left\|x_{i}\right\|_{p}^{r} \tag{5}
\end{equation*}
$$

which means that the conclusion of (ii) in Theorem 5.1 is not satisfied for any $C<\delta^{-1}$. It follows that condition (i) in Theorem 5.1 fails whenever $C<\delta^{-1}$.

Now assume that \widetilde{U} is another $m \times m$ matrix satisfying (4), then it follows for $i=1, \ldots, m$ that

$$
\begin{aligned}
\left\|\widetilde{U}\left(z_{i}\right)\right\|_{q} & \geq\left\|U\left(z_{i}\right)\right\|_{q}-\left\|(U-\widetilde{U})\left(z_{i}\right)\right\|_{q} \\
& \geq \frac{1}{2}\left\|U\left(z_{i}\right)\right\|_{q}+\left(\frac{1}{2}\left\|U\left(z_{i}\right)\right\|_{q}-\|U-\widetilde{U}\|_{p, q}\left\|z_{i}\right\|_{p}\right) \\
& =\frac{1}{2}\left\|U\left(z_{i}\right)\right\|_{q}+\left(\frac{1}{2 \delta}-\|U-\widetilde{U}\|_{p, q} \delta^{-1}\left\|U^{-1} e_{i}\right\|_{p}\right) \geq \frac{1}{2}\left\|U\left(z_{i}\right)\right\|_{q},
\end{aligned}
$$

which implies, together with (5), that for \widetilde{U} the conclusion of (ii) in Theorem 5.1 is not satisfied for any $C<\delta^{-1} / 2$, hence (i) fails in this case.

We will now define an operator which will be crucial for the rest of the paper, and we start with the following notations. Let H_{n} be the nth Hadamard matrix. That is,

$$
H_{1}=(1), \quad H_{n+1}=\left(\begin{array}{cc}
H_{n} & H_{n} \\
H_{n} & -H_{n}
\end{array}\right) \quad \text { for every } n \geq 1
$$

Then H_{n} is an $N \times N$ matrix where $N=2^{n}$. We use the identifications $\ell_{p}=\left(\bigoplus_{n=1}^{\infty} X_{n}\right)_{p}$ and $\ell_{q}=\left(\bigoplus_{n=1}^{\infty} Y_{n}\right)_{q}$, where $X_{n}=\ell_{p}^{2^{n}}$ and $Y_{n}=\ell_{q}^{2^{n}}$ are block subspaces of ℓ_{p} and ℓ_{q} respectively. We consider H_{n} as an operator from X_{n} to Y_{n}. Put

$$
\begin{equation*}
U_{n}=N^{-1 / \min \left\{p^{\prime}, q\right\}} H_{n} \quad \text { where } N=2^{n}, \quad \text { and } \quad U=\bigoplus_{n=1}^{\infty} U_{n}: \ell_{p} \rightarrow \ell_{q} \tag{6}
\end{equation*}
$$

REMARK 5.3. Observe that $N^{-1 / 2} H_{n}$ is a unitary matrix on ℓ_{2}^{N}. In particular, it is an isometry on ℓ_{2}^{N}, hence $\left\|H_{n}\right\|_{2,2}=N^{1 / 2}$, and $H_{n}^{2}=N I$. One can easily verify that $\left\|H_{n}\right\|_{1, \infty}=1$ and $\left\|H_{n}\right\|_{1,1}=\|H\|_{\infty, \infty}=N$.

ThEOREM 5.4. If $1<p \leq 2 \leq q<\infty$, then the operator U defined by (6) has the following properties:
(i) $\|U\|_{p, q}=1$.
(ii) U is not compact.
(iii) If $p^{\prime} \neq q$ then U is FSS.
(iv) Let $p \leq r \leq q$. Then U factors through ℓ_{r} when $p \leq r \leq q^{\prime}$ or $p^{\prime} \leq r \leq q$; otherwise $U \notin \mathcal{J}^{\ell_{r}}$.
(v) In particular, if $p \neq q$ then $U \notin \mathcal{J}^{\ell_{2}}$.

Remark 5.5. In Section 6 we treat (iii) in the much harder case when $p^{\prime}=q$ and show that in this case U is still FSS.

Proof of Theorem 5.4. Using the Riesz-Thorin interpolation theorem (e.g., [BL76, LT79]) for H_{n} acting as an operator in $L\left(\ell_{1}, \ell_{\infty}\right)$ and as an operator in $L\left(\ell_{2}, \ell_{2}\right)$, and using Remark 5.3, we obtain $\left\|H_{n}\right\|_{r, r^{\prime}} \leq N^{1 / r^{\prime}}$ whenever $1 \leq r \leq 2$. Similarly, interpolating between $\|H\|_{1,1}$ and $\left\|H_{n}\right\|_{2,2}$, and between $\left\|H_{n}\right\|_{2,2}$ and $\|H\|_{\infty, \infty}$, we obtain $\|H\|_{r, r} \leq N^{1 / \min \left\{r, r^{\prime}\right\}}$ whenever $1 \leq r \leq \infty$.

Define $U_{n}^{(r)}=N^{-1 / r^{\prime}} H_{n}$ and $U^{(r)}=\bigoplus_{n=1}^{\infty} U_{n}^{(r)}$; then $\left\|U_{n}^{(r)}\right\|_{r, r^{\prime}} \leq 1$ for every n, hence $\left\|U^{(r)}\right\|_{r, r^{\prime}} \leq 1$. Considering U as an operator in $L\left(\ell_{p}, \ell_{q}\right)$, we
can write

$$
U= \begin{cases}\ell_{p} \xrightarrow{U^{(p)}} \ell_{q} & \text { when } p^{\prime}=q \tag{7}\\ \ell_{p} \xrightarrow{U^{(p)}} \ell_{p^{\prime}} \xrightarrow{I_{p^{\prime}, q}} \ell_{q} & \text { when } p^{\prime}<q \\ \ell_{p} \xrightarrow{I_{p, q^{\prime}}} \ell_{q^{\prime}} \xrightarrow{U^{\left(q^{\prime}\right)}} \ell_{q} & \text { when } p<q^{\prime}\end{cases}
$$

It follows immediately that $\|U\|_{p, q} \leq 1$. Since $\mathcal{J}^{\mathrm{FSS}}$ is an ideal, (iii) follows from Proposition 3.3. It also follows from (7) that U factors through ℓ_{r} if $p \leq r \leq q^{\prime}$ or $p^{\prime} \leq r \leq q$,

Consider first the case $p^{\prime} \leq q$. Then $U_{n}=N^{-1 / p^{\prime}} H_{n}$. Let $h_{n, i}=H_{n} e_{i}$, the i th column of the nth Hadamard matrix. It follows from $H_{n}^{2}=N I$ that $U_{n} h_{n, i}=N^{-1 / p^{\prime}} H_{n}^{2} e_{i}=N^{1 / p} e_{i}$. Thus, $\left\|U_{n} h_{n, i}\right\|_{q}=N^{1 / p}=\left\|h_{n, i}\right\|_{p}$, so that $\left\|U_{n}\right\|_{p, q}=1$. Hence, U is not compact, and $\|U\|_{p, q}=1$ by Remark 2.2.

Next, suppose that $p<r<p^{\prime} \leq q$. We use Corollary 5.2 to show that $U \notin \mathcal{J}^{\ell_{r}}$ in this case. Indeed, assume to the contrary that $U \in \mathcal{J}^{\ell_{r}}$. Then there exists \widetilde{U} such that $\|U-\widetilde{U}\|<1 / 2$ and \widetilde{U} factors through ℓ_{r}. Let C be the ℓ_{r}-factorization constant of \widetilde{U}. Since $p<\min \left\{r, r^{\prime}\right\}$ one can choose n so that $C<\frac{1}{2} N^{1 / p-1 / \min \left\{r, r^{\prime}\right\}}$, where $N=2^{n}$. Let \widetilde{U}_{n} be the $N \times N$ submatrix of \widetilde{U} corresponding to the nth block of U, that is, $\widetilde{U}_{n}=Q_{n} \widetilde{U} P_{n}$, where P_{n} (respectively, Q_{n}) is the canonical projection from ℓ_{p} (respectively, ℓ_{q}) onto the span of $e_{N+1}, \ldots, e_{2 N}$. Then the ℓ_{r}-factorization constant of \widetilde{U}_{n} is at most C. It follows from $\left\|U_{n}^{-1} e_{i}\right\|_{p}=\left\|N^{-1 / p} h_{n, i}\right\|_{p}=1$ that

$$
\left\|U_{n}-\widetilde{U}_{n}\right\| \leq\|U-\widetilde{U}\|<1 / 2=\left(2 \max _{1 \leq i \leq N}\left\|U_{n}^{-1} e_{i}\right\|_{p}\right)^{-1}
$$

Let $\delta=\left\|U_{n}^{-1}\right\|_{r^{\prime}, r^{\prime}}$. It follows from $H_{n}^{2}=N I$ and $U_{n}=N^{-1 / p^{\prime}} H_{n}$ that $U_{n}^{-1}=N^{-1 / p} H$, so that

$$
\delta=N^{-1 / p^{\prime}}\left\|H_{n}\right\|_{r^{\prime}, r^{\prime}} \leq N^{-1 / p+1 / \min \left\{r, r^{\prime}\right\}}
$$

Corollary 5.2 implies that the ℓ_{r}-factorization constant of \widetilde{U}_{n} is at least $(2 \delta)^{-1} \geq \frac{1}{2} N^{1 / p-1 / \min \left\{r, r^{\prime}\right\}}>C$, which is a contradiction.

The case $p<q^{\prime}$ can be reduced to the previous case by duality. Indeed, it follows from (7) that $U^{*}=I_{q, p^{\prime}} U^{\left(q^{\prime}\right)}: \ell_{q^{\prime}} \rightarrow \ell_{p^{\prime}}$. Consequently, if $p \leq r \leq q^{\prime}$ then $I_{q, p^{\prime}}$ and, therefore, U^{*} factors through $\ell_{r^{\prime}}$. Hence, U factors through ℓ_{r}. Furthermore, since H_{n} is symmetric for every n, it follows that U_{n}^{*} coincides with U_{n} as a matrix and $\left\|U_{n}^{*}\right\|_{q^{\prime}, p^{\prime}}=1$. Applying the previous argument, we observe that U^{*} is non-compact and $\left\|U^{*}\right\|_{q^{\prime}, p^{\prime}}=1$, hence the same is true for U. Furthermore, if $q^{\prime}<r<q$, then $U^{*} \notin \mathcal{J}^{\ell_{r^{\prime}}}$ so that $U \notin \mathcal{J}^{\ell_{r}}$.

Finally, (v) follows immediately from (iv).
REMARK 5.6. If $p<r<r^{\prime}<q$ then the operator \widetilde{U} defined as

$$
\ell_{p} \xrightarrow{I_{p, r}} \ell_{r} \xrightarrow{U^{(r)}} \ell_{r^{\prime}} \xrightarrow{I_{r^{\prime}, q}} \ell_{q}
$$

is compact. Indeed, as a matrix

$$
\widetilde{U}_{n}=U_{n}^{(r)}=N^{-1 / r^{\prime}} H_{n}=N^{1 / \min \left\{p^{\prime}, q\right\}-1 / r^{\prime}} U_{n} .
$$

It follows from $\left\|U_{n}\right\|_{p, q}=1$ and $r^{\prime}<\min \left\{p^{\prime}, q\right\}$ that

$$
\left\|\widetilde{U}_{n}\right\|_{p, q}=N^{1 / \min \left\{p^{\prime}, q\right\}-1 / r^{\prime}} \rightarrow 0 \quad \text { as } n \rightarrow 0
$$

Remark 5.7. It follows from Theorem 5.4(iv) that $\mathcal{J}^{\ell_{r}}$ is proper when $\max \left\{p, q^{\prime}\right\}<r<\min \left\{p^{\prime}, q\right\}$. In particular, $\mathcal{J}^{\ell_{2}}$ is proper. It follows from Remark 4.9 and Theorem 5.4(iv) that $\mathcal{J}^{\ell_{2}} \subsetneq \mathcal{J}^{\ell_{r}}$ whenever $p<r<q^{\prime}$ or $p^{\prime}<r<q$. We do not know, however, whether $\mathcal{J}^{\ell_{r}}$ is proper in this case.

Next, we show that if U^{\prime} is another " U-like" operator then U and U^{\prime} factor through each other.

Again, we view $\ell_{p}=\left(\bigoplus_{n=1}^{\infty} X_{n}\right)_{p}$ and $\ell_{q}=\left(\bigoplus_{n=1}^{\infty} Y_{n}\right)_{q}$, where $X_{n}=\ell_{p}^{2^{n}}$ and $Y_{n}=\ell_{q}^{2^{n}}$. Denote the basis vectors in X_{n} and Y_{n} by $e_{1}^{(n)}, \ldots, e_{2^{n}}^{(n)}$ and $f_{1}^{(n)}, \ldots, f_{2^{n}}^{(n)}$, respectively. We can view H_{n} and U_{n} as operators from X_{n} to Y_{n}.

Theorem 5.8. Suppose that $\left(n_{i}\right)$ is an increasing sequence, and let $\widetilde{U}=$ $\bigoplus_{i=1}^{\infty} U_{n_{i}}$, viewed as an operator from $\ell_{p}=\left(\bigoplus_{i=1}^{\infty} X_{n_{i}}\right)_{p}$ to $\ell_{q}=\left(\bigoplus_{i=1}^{\infty} Y_{n_{i}}\right)_{q}$. Then U and \widetilde{U} factor through each other.

Proof. Consider the following diagram:

$$
\ell_{p}=\left(\bigoplus_{i=1}^{\infty} X_{n_{i}}\right)_{p} \stackrel{\imath}{\hookrightarrow}\left(\bigoplus_{n=1}^{\infty} X_{n}\right)_{p} \xrightarrow{U}\left(\bigoplus_{n=1}^{\infty} Y_{n}\right)_{q} \xrightarrow{R}\left(\bigoplus_{i=1}^{\infty} Y_{n_{i}}\right)_{q}=\ell_{q},
$$

where \imath is the canonical embedding, and R is the canonical projection. We can view \imath and R as operators on ℓ_{p} and ℓ_{q}, respectively. Thus, we get $\widetilde{U}=R U \imath$.

Next, we prove that U factors through \widetilde{U}. First, we show that whenever $n<m$ then there exist operators $C: X_{n} \rightarrow X_{m}$ and $D: Y_{m} \rightarrow Y_{n}$ such that $U_{n}=D U_{m} C$ and $\|C\|_{p, p} \leq 1$ and $\|D\|_{q, q} \leq 1$.

First, we consider the case $q \leq p^{\prime}$. Define $C_{n}: X_{n} \rightarrow X_{n+1}$ via $C_{n} e_{i}^{(n)}=$ $e_{i}^{(n+1)}$ for $i=1, \ldots, 2^{n}$. Clearly, C_{n} is an isometry.

Let Z_{n} be the subspace of Y_{n+1} consisting of all the vectors whose first half coordinates are equal to the last half coordinates, respectively, that is, $Z_{n}=\operatorname{span}\left\{f_{i}^{(n+1)}+f_{i+2^{n}}^{(n+1)} \mid i=1, \ldots, 2^{n}\right\}$. Let P_{n} be the "averaging" projection from Y_{n+1} onto Z_{n} given by

$$
P_{n}\left(\sum_{i=1}^{2^{n+1}} \alpha_{i} f_{i}^{(n+1)}\right)=\sum_{i=1}^{2^{n}} \frac{\alpha_{i}+\alpha_{i+2^{n}}}{2}\left(f_{i}^{(n+1)}+f_{i+2^{n}}^{(n+1)}\right) .
$$

Then $\left\|P_{n}\right\|=1$.

Define $B_{n}: Z_{n} \rightarrow Y_{n}$ via $B_{n}\left(f_{i}^{(n+1)}+f_{i+2^{n}}^{(n+1)}\right)=2^{1 / q} f_{i}^{(n)}$; then B_{n} is an isometry. Hence, $D_{n}=B_{n} P_{n}: Y_{n+1} \rightarrow Y_{n}$ is of norm one.

Fix $1 \leq i \leq 2^{n}$. Since $C_{n} e_{i}^{(n)}=e_{i}^{(n+1)}, H_{n+1} C_{n} e_{i}^{(n)}$ is the i th column of H_{n+1}. Since $i \leq 2^{n}$ it follows from the construction of H_{n} 's that the i th column of H_{n+1} is exactly the i th column of H_{n} repeated twice. In particular, $H_{n+1} C_{n} e_{i}^{(n)} \in Z_{n}$ and, therefore, $H_{n+1} C_{n} e_{i}^{(n)}=P_{n} H_{n+1} C_{n} e_{i}^{(n)}$. Finally,

$$
B_{n} P_{n} H_{n+1} C_{n} e_{i}^{(n)}=2^{1 / q}\left(\text { the } i \text { th column of } H_{n}\right)=2^{1 / q} H_{n} e_{i}^{(n)}
$$

Consequently, we have $D_{n} H_{n+1} C_{n}=2^{1 / q} H_{n}$. It follows from $H_{n}=2^{n / q} U_{n}$ that $D_{n} U_{n+1} C_{n}=U_{n}$. Iterating this $m-n$ times, we get $D U_{m} C=U_{n}$ where $C: X_{n} \rightarrow X_{m}$ is an isometry, and $D: Y_{m} \rightarrow Y_{n}$ is of norm one.

If $q \geq p^{\prime}$, then we consider the adjoint operators. Note that $U_{n}^{*}=U_{n}$ as matrices. Applying the previous argument we find matrices C and D such that $U_{n}^{*}=D U_{m}^{*} C$ with $\|C\|_{q^{\prime}, q^{\prime}} \leq 1$ and $\|D\|_{p^{\prime}, p^{\prime}} \leq 1$. Then $U_{n}=C^{*} U_{m} D^{*}$ is a required factorization in the case $q \geq p^{\prime}$.

It follows that for every i we have

$$
\begin{equation*}
\widetilde{D}_{i} U_{n_{i}} \widetilde{C}_{i}=U_{i} \tag{8}
\end{equation*}
$$

for some contractions $\widetilde{C}_{i}: X_{i} \rightarrow X_{n_{i}}$ and $\widetilde{D}_{i}: X_{n_{i}} \rightarrow X_{i}$. Let

$$
\begin{aligned}
& \widetilde{C}=\bigoplus_{i=1}^{\infty} \widetilde{C}_{i}:\left(\bigoplus_{i=1}^{\infty} X_{i}\right)_{p} \rightarrow\left(\bigoplus_{i=1}^{\infty} X_{n_{i}}\right)_{p} \\
& \widetilde{D}=\bigoplus_{i=1}^{\infty} \widetilde{D}_{i}:\left(\bigoplus_{i=1}^{\infty} X_{n_{i}}\right)_{q} \rightarrow\left(\bigoplus_{i=1}^{\infty} X_{i}\right)_{q}
\end{aligned}
$$

Then $\widetilde{C}: \ell_{p} \rightarrow \ell_{p}$ and $\widetilde{D}: \ell_{q} \rightarrow \ell_{q}$ are bounded, and by (8) we deduce that $\widetilde{D} \widetilde{U} \widetilde{C}=U$.

It follows that any two operators of type \widetilde{U} generated by different sequences factor through each other.
6. The operator U is FSS. Again, let U be the operator defined by (6). Theorem $5.4(\mathrm{iii})$ states that U is FSS when $p \neq q^{\prime}$. We will show in this section that U is still FSS when $1<p=q^{\prime}$. The argument requires some preparation.

Recall that the nth s-number of an operator $T \in L(H)$ on a Hilbert space H is defined via $s_{n}(T)=\inf \{\|T-R\| \mid \operatorname{rank} R<n\}$. For $1 \leq r<\infty$, the Schatten norm $\|T\|_{S_{r}}$ of T equals the ℓ_{r} norm of the sequence of the s-numbers. We say that T belongs to the Schatten class S_{r} if $\|T\|_{S_{r}}<\infty$. We denote by S_{∞} the set of all compact operators equipped with the operator norm.

Lemma 6.1. If $T \in L(H)$ is such that $\|T\|_{S_{q}}=1$ and $\inf _{x \in F,\|x\|=1}\|T x\|$ $\geq \varepsilon$ for a subspace F of H, then $\operatorname{dim} F \leq \varepsilon^{-q}$.

Proof. Suppose that $\operatorname{dim} F=k$. For every operator S of rank $k-1$ there exists $x \in F$ such that $\|x\|=1$ and $S x=0$. It follows that $\|T-S\| \geq$ $\|T x\| \geq \varepsilon$, so that $s_{1} \geq \cdots \geq s_{k} \geq \varepsilon$. Therefore, $1=\|T\|_{S_{q}}^{q} \geq k \varepsilon^{q}$. Hence $k \leq \varepsilon^{-q}$.

We will also utilize the following result of Maurey [Maur74, Corollary 11, p. 21].

THEOREM 6.2. Let (Ω, μ) be a measure space, Y a Banach space, $0<$ $u \leq v<\infty, 1 / u=1 / v+1 / r, T$ a bounded operator from a closed subspace E of $L_{v}(\mu)$ to Y, and $C>0$. Then the following are equivalent:
(i) There exists a closed subspace F of $L_{u}(\mu)$ such that T factors as $T=$ $V M_{g}$, where $V: F \rightarrow Y$ with $\|V\| \leq C$, and $M_{g}: L_{v}(\mu) \rightarrow L_{u}(\mu)$ is a multiplication operator defined by $M_{g} f=g f$ for every $f \in L_{v}(\mu)$, with $g \in L_{r}(\mu)$ and $\|g\|_{r} \leq 1$.
(ii) For any x_{1}, \ldots, x_{n} in E,

$$
\left(\sum_{i=1}^{n}\left\|T x_{i}\right\|^{u}\right)^{1 / u} \leq C\left[\int\left(\sum_{i=1}^{n}\left|x_{i}\right|^{u}\right)^{v / u} d \mu\right]^{1 / v}
$$

In what follows, K_{G} will denote the so-called Grothendieck constant, a fundamental constant in Banach space theory (see [DJT95, Tom89, LT77] for details).

Corollary 6.3. Let (Ω, μ) be a measure space. Suppose that $q=p^{\prime}$ and $1 / p=1 / 2+1 / r$.
(i) If $T: L_{q}(\mu) \rightarrow \ell_{2}^{k}$ then T can be factored through a multiplication operator from $L_{q}(\mu)$ to $L_{2}(\mu)$, i.e., $T=S M_{g}$, where $S: L_{2}(\mu) \rightarrow \ell_{2}^{k}$ with $\|S\| \leq K_{G}\|T\|$ and $\|g\|_{r}=1$.
(ii) If $T: \ell_{2}^{k} \rightarrow L_{p}(\mu)$ then T can be factored through a multiplication operator from $L_{2}(\mu)$ to $L_{p}(\mu)$, i.e., $T=M_{h} S$, where $S: \ell_{2}^{k} \rightarrow L_{2}(\mu)$ with $\|S\| \leq K_{G}\|T\|$ and $\|h\|_{r} \leq 1$.
Proof. Suppose that $T: L_{q}(\mu) \rightarrow \ell_{2}^{k}$. We verify that condition (ii) of Theorem 6.2 holds for $u=2, v=q=p^{\prime}$, and $r>1$ such that $1 / p=1 / 2+1 / r$ (which is equivalent to $1 / 2=1 / v+1 / r$). Let $f_{1}, \ldots, f_{n} \in L_{q}$. Then

$$
\sum_{i=1}^{n}\left\|T f_{i}\right\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{k}\left|\left(T f_{i}\right)_{j}\right|^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n}\left|\left(T f_{i}\right)_{j}\right|^{2}=\left\|\left(\sum_{i=1}^{n}\left|T f_{i}\right|^{2}\right)^{1 / 2}\right\|_{\ell_{2}}^{2}
$$

where the last expression is the norm of the sequence $\left(\left(\sum_{i=1}^{n}\left|\left(T f_{i}\right)_{j}\right|^{2}\right)^{\frac{1}{2}}\right)_{j=1}^{n}$. It follows from [LT79, Theorem 1.f.14] that

$$
\begin{aligned}
\left\|\left(\sum_{i=1}^{n}\left|T f_{i}\right|^{2}\right)^{1 / 2}\right\|_{\ell_{2}} & \leq K_{G}\|T\|\left\|\left(\sum_{i=1}^{n}\left|f_{i}\right|^{2}\right)^{1 / 2}\right\|_{L_{q}} \\
& =K_{G}\|T\|\left[\int\left(\sum_{i=1}^{n}\left|f_{i}\right|^{2}\right)^{q / 2} d \mu\right]^{1 / q}
\end{aligned}
$$

Now (i) follows from Theorem 6.2. To prove (ii), apply (i) to T^{*}.
For $N \in \mathbb{N}$ and $1 \leq p \leq \infty$, by L_{p}^{N} we denote the space $L_{p}(\mu)$ where μ is the uniform probability measure on $\Omega=\{1, \ldots, N\}$. Thus, $L_{p}^{N}=$ $\left(\mathbb{R}^{N},\|\cdot\|_{L_{p}^{N}}\right)$ where, for $\bar{x}=\left(x_{i}\right) \in \mathbb{R}^{N},\|\bar{x}\|_{L_{p}^{N}}=\left(N^{-1} \sum_{i=1}^{N}\left|x_{i}\right|^{p}\right)^{1 / p}$ for $p<\infty$ and $\|\bar{x}\|_{L_{\infty}^{N}}=\max _{1 \leq i \leq N}\left|x_{i}\right|$. Clearly, $\|\cdot\|_{L_{p}^{N}}$ is a scalar multiple of $\|\cdot\|_{\ell_{p}^{N}}$.

The following easy lemma is well-known to specialists. We state it exactly in the form required later and we provide a short proof.

Lemma 6.4. Consider a product of three operators

$$
S: L_{2}^{N} \xrightarrow{M_{\psi}} L_{1}^{N} \xrightarrow{T} \ell_{\infty}^{N} \xrightarrow{D} \ell_{2}^{N}
$$

where $D=\operatorname{diag}\left(d_{j}\right)_{j=1}^{N}$, i.e., the diagonal operator with diagonal $\left(d_{j}\right)$. Then the Hilbert-Schmidt norm of S satisfies $\|S\|_{\mathrm{HS}} \leq\|\psi\|_{L_{2}^{N}}\|T\|\left\|\left(d_{j}\right)\right\|_{\ell_{2}^{N}}$.

Proof. Observe that, in the notation of function spaces on (Ω, μ),

$$
S: f \mapsto \psi f \mapsto\left(\left\langle g_{n}, \psi f\right\rangle\right)_{n=1}^{N} \mapsto\left(d_{n}\left\langle g_{n}, \psi f\right\rangle\right)_{n=1}^{N}
$$

for $f \in L_{2}^{N}$ and for some sequence $\left(g_{n}\right)_{n=1}^{N}$ in L_{∞}^{N}, so that $\|T\|=\sup _{n}\left\|g_{n}\right\|_{L_{\infty}^{N}}$. (Here $\langle\cdot, \cdot\rangle$ denotes the inner product with respect to μ.) Let $\left(f_{i}\right)_{i=1}^{N}$ be an orthonormal basis of L_{2}^{N}; then

$$
\begin{aligned}
\|S\|_{\mathrm{HS}}^{2} & =\sum_{i=1}^{N}\left\|S f_{i}\right\|_{\ell_{2}^{N}}^{2}=\sum_{i=1}^{N} \sum_{n=1}^{N} d_{n}^{2}\left\langle g_{n}, \psi f_{i}\right\rangle^{2}=\sum_{n=1}^{N} d_{n}^{2} \sum_{i=1}^{N}\left\langle\psi g_{n}, f_{i}\right\rangle^{2} \\
& =\sum_{n=1}^{N} d_{n}^{2}\left\|\psi g_{n}\right\|_{L_{2}^{N}}^{2} \leq\|\psi\|_{L_{2}^{N}}^{2}\left(\sup _{n}\left\|g_{n}\right\|_{L_{\infty}^{N}}^{2}\right)\left\|\left(d_{j}\right)\right\|_{\ell_{2}^{N}}^{2}
\end{aligned}
$$

THEOREM 6.5 ([Pis04]). Suppose that $T: L_{p}^{N} \rightarrow \ell_{q}^{N}$ for some $1 \leq p<2$ and $q=p^{\prime}$. Let E be a k-dimensional subspace of L_{p}^{N}, and C_{1}, C_{2}, and C_{3} be positive constants such that
(i) $\|T\|_{L_{2}^{N}, \ell_{2}^{N}} \leq 1$ and $\|T\|_{L_{1}^{N}, \ell_{\infty}^{N}} \leq 1$;
(ii) E is C_{1}-isomorphic to ℓ_{2}^{k};
(iii) $F=T(E)$ is C_{2}-complemented in ℓ_{q}^{N};
(iv) $T_{\mid E}$ is invertible and $\left\|\left(T_{\mid E}\right)^{-1}\right\| \leq C_{3}$.

Then $k \leq\left(C_{1}^{3} C_{2} C_{3}^{2} K_{G}^{2}\right)^{q}$.

Proof. Suppose that T, E, and F satisfy the hypotheses for some C_{1}, C_{2}, and C_{3}. Let r be such that $1 / p=1 / 2+1 / r$. There exists an isomorphism $V: \ell_{2}^{k} \rightarrow E$ such that $\|V\| \leq 1$ and $\left\|V^{-1}\right\| \leq C_{1}$. By Corollary 6.3(ii), V factors through L_{2}^{N}. Namely, $V=M_{g} S$ with $S: \ell_{2}^{k} \rightarrow L_{2}^{N}$ such that $\|S\| \leq C_{1} K_{G}$ and $\|g\|_{r} \leq 1$. Let $J: E \rightarrow L_{p}^{N}$ be the canonical inclusion map. We have the diagram

$$
\begin{array}{cccc}
L_{2}^{N} & M_{g} & L_{p}^{N} \xrightarrow{T} \ell_{q}^{N} \xrightarrow[\text { diagonal }]{D} & \ell_{2}^{N} \\
S \uparrow & & & \\
& & \uparrow \text { incl. } \quad \text { proj. } \mid Q & \\
\ell_{2}^{k} & \xrightarrow[C_{1} \text {-isom. }]{V} & E \xrightarrow{V} F \xrightarrow[C_{1} C_{3} \text {-isom. }]{ } & \ell_{2}^{k}
\end{array}
$$

Let Q be a projection from ℓ_{q}^{N} onto F with $\|Q\| \leq C_{2}$. It follows from (i) that $\|T\|_{L_{p}^{N}, \ell_{q}^{N}} \leq 1$. Then F is $C_{1} C_{3}$-isomorphic to ℓ_{2}^{k}. Let $W: F \rightarrow \ell_{2}^{k}$ be an isomorphism such that $\|W\| \leq 1$ and $\left\|W^{-1}\right\| \leq C_{1} C_{3}$. Corollary 6.3(i) implies that $W Q$ factors through ℓ_{2}^{N}, that is, $W Q=R D$ where $R: \ell_{2}^{N} \rightarrow \ell_{2}^{k}$ with $\|R\| \leq K_{G}\|W Q\| \leq C_{2} K_{G}$, and D is a multiplication (or diagonal) operator $D=\operatorname{diag}\left(d_{j}\right)_{j=1}^{N}$ with $\left\|\left(d_{j}\right)\right\|_{\ell_{r}^{N}} \leq 1$.

We are going to show that $\left\|D T M_{g}\right\|_{S_{q}^{N}} \leq 1$, using the classical complex interpolation argument (see, e.g., [BL76]). For the convenience of the reader not familiar with the subject, we provide the details. Let $Z=\{z \in \mathbb{C} \mid 0 \leq$ $\operatorname{Re} z \leq 1\}$, and define a function F from Z to the unit ball $B\left(L_{2}^{N}, \ell_{2}^{N}\right)$ of $L\left(L_{2}^{N}, \ell_{2}^{N}\right)$ as follows:

$$
\begin{equation*}
F(z)=|D|^{(1-z) r / 2} \operatorname{sign} D T M_{|g|^{(1-z) r / 2} \operatorname{sign} g} \tag{9}
\end{equation*}
$$

Here, as usual, $|D|=\operatorname{diag}\left(\left|d_{j}\right|\right)$ and $\operatorname{sign} D=\operatorname{diag}\left(\operatorname{sign} d_{j}\right)$. Observe that F is analytic in the interior of Z as a function from Z to $\mathbb{C}^{N} \times \mathbb{C}^{N}$. Furthermore, F is continuous and bounded on Z. A direct calculation shows that if $1 / r=$ $(1-\theta) / 2$ then $F(\theta)=D T M_{g}$.

If $\operatorname{Re} z=1$, it follows from (9) that $F(1+i t)=A_{t} T B_{t}$, where $A_{t}=$ $|D|^{-i t r / 2} \operatorname{sign} D$ and $B_{t}=M_{|g|^{-i t r / 2} \operatorname{sign} g}$. Notice that A_{t} and B_{t} viewed as operators from ℓ_{2}^{N} to ℓ_{2}^{N} and from L_{2}^{N} to L_{2}^{N} respectively are contractions. It follows that

$$
\begin{equation*}
\|F(z)\|_{L_{2}^{N}, \ell_{2}^{N}} \leq\|T\|_{L_{2}^{N}, \ell_{2}^{N}} \leq 1 \quad \text { whenever } \operatorname{Re} z=1 \tag{10}
\end{equation*}
$$

If $\operatorname{Re} z=0$ then we can write

$$
F(i t)=A_{t}|D|^{r / 2} T M_{|g|^{r / 2}} B_{t}
$$

It can be easily verified that $\left\||g|^{r / 2}\right\|_{L_{2}^{N}} \leq 1$ and $\left\|\left(\left|d_{i}\right|^{r / 2}\right)\right\|_{\ell_{2}^{N}} \leq 1$. Since $\|T\|_{L_{1}^{N}, \ell_{\infty}^{N}} \leq 1$, it follows by Lemma 6.4 that

$$
\begin{equation*}
\|F(z)\|_{\text {HS }} \leq 1 \quad \text { whenever } \operatorname{Re} z=0 \tag{11}
\end{equation*}
$$

Put $S_{q}^{N}=S_{q}\left(L_{2}^{N}, \ell_{2}^{N}\right)$. It is known (see, e.g., [GK65, Theorem 13.1]) that the Schatten classes interpolate like L_{p}-spaces. Since

$$
\frac{1}{\infty}(1-\theta)+\frac{1}{2} \theta=\frac{1}{2}-\frac{1}{r}=\frac{1}{q}
$$

it follows that $\left(S_{\infty}^{N}, S_{2}^{N}\right)_{\theta}=S_{q}^{N}$.
On the other hand, by definition of a complex interpolation space,

$$
\begin{aligned}
& B_{\left(S_{\infty}^{N}, S_{2}^{N}\right)_{\theta}}=\left\{f(\theta) \mid f: Z \rightarrow B\left(L_{2}^{N}, \ell_{2}^{N}\right)\right. \text { analytic } \\
&\left.\left\|f_{\mid\{\operatorname{Re} z=0\}}\right\|_{S_{2}} \leq 1 \text { and }\left\|f_{\mid\{\operatorname{Re} z=1\}}\right\|_{S_{\infty}} \leq 1\right\}
\end{aligned}
$$

Since $\|\cdot\|_{S_{2}}=\|\cdot\|_{\text {HS }}$ and $\|\cdot\|_{S_{\infty}}=\|\cdot\|_{L_{2}^{N}, \ell_{2}^{N}}$, it follows from (10) and (11) that $D T M_{g}=F(\theta) \in B_{\left(S_{\infty}^{N}, S_{2}^{N}\right)_{\theta}}$ and, thus, $\left\|D T M_{g}\right\|_{S_{q}^{N}} \leq 1$. It follows that

$$
\|W T V\|_{S_{q}}=\left\|R D T M_{g} S\right\|_{S_{q}} \leq\|R\|\left\|D T M_{g}\right\|_{S_{q}}\|S\| \leq C_{1} C_{2} K_{G}^{2}
$$

Note that $\left\|(W T V)^{-1}\right\| \leq C_{1}^{2} C_{3}^{2}$. It follows from Lemma 6.1 that

$$
k \leq\left(\frac{1}{C_{1}^{2} C_{3}^{2}} \frac{1}{C_{1} C_{2} K_{G}^{2}}\right)^{-q}=\left(C_{1}^{3} C_{2} C_{3}^{2} K_{G}^{2}\right)^{q}
$$

This concludes the proof.
We also need the following lemma, which generalizes Lemma 3.4. Assume that X is a Banach space with an FDD $\left(X_{n}\right)_{n=1}^{\infty}$ (see [LT77] for the definition of FDD). Let P_{n} be the canonical projection from X onto X_{n}, and assume that X satisfies the following condition, which means that X is far from a c_{0}-sum of the X_{n} 's:
for any $\delta>0$ there is a $k=k(\delta)$ in \mathbb{N} so that whenever $x \in S_{X}$, then $\operatorname{card}\left\{n \in \mathbb{N} \mid\left\|P_{n} x\right\| \geq \delta\right\}<k$.
Suppose that for every $n \in \mathbb{N}$ we are given a seminorm q_{n} on X_{n} such that $q_{n}(x) \leq\|x\|$, where $q_{n}(x)$ stands for $q_{n}\left(P_{n} x\right)$ whenever $x \in X$.

Lemma 6.6. Suppose that $X,\left(X_{n}\right)$, and $\left(q_{n}\right)$ are as in the preceding paragraph and $0<r \leq 1$. Then there exists $\varepsilon>0$ such that for every $l \in \mathbb{N}$ there exists $L \in \mathbb{N}$ such that for every L-dimensional subspace G of X such that $\max _{n \in \mathbb{N}} q_{n}(x) \geq r\|x\|$ for all $x \in G$ there exists an l-dimensional subspace $F \subseteq G$ and an index n_{0} such that $q_{n_{0}}(x) \geq \varepsilon\|x\|$ for all $x \in F$.

To prove Lemma 6.6 we need the following stabilization result (see, e.g., [MS86, p. 6]).

THEOREM 6.7. For every $n \in \mathbb{N}, \varepsilon>0$ and $c>0$ there is an $N=$ $N(n, \varepsilon, c) \in \mathbb{N}$ so that for any N-dimensional space E, and any Lipschitz map $f: S_{E} \rightarrow \mathbb{R}$ whose Lipschitz constant does not exceed c, there is an ndimensional subspace F of E so that

$$
\max \left\{f(x): x \in S_{F}\right\}-\min \left\{f(x): x \in S_{F}\right\} \leq \varepsilon
$$

Proof of Lemma 6.6. Let $k(\cdot)$ be the function defined in (12). Put

$$
m=k\left(r^{2} / 4\right), \quad \delta=r / 4 m, \quad s=k(\delta)
$$

It suffices to show that for $l^{\prime} \in \mathbb{N}$ there exists L so that, if G is a subspace of X of dimension L and $\max _{n \in \mathbb{N}} q_{n}(x) \geq r\|x\|$ for all $x \in G$, then G has an l^{\prime}-dimensional subspace F^{\prime} and a set $I \subset \mathbb{N}$ with card $I=s$ such that $\max _{n \in I} q_{n}(x) \geq \delta\|x\|$ for all $x \in F^{\prime}$.

Indeed, once we prove this formally weaker claim, we can take a number l^{\prime} large enough so that Theorem 6.7 can be applied s times to deduce that F^{\prime} has an l-dimensional subspace F which has the property that, for all $n \in I$,

$$
\max _{x \in S_{F}} q_{n}(x)-\min _{x \in S_{F}} q_{n}(x) \leq \delta / 2 .
$$

Now pick any $y \in S_{F}$; then $q_{n_{0}}(y)=\max _{n \in I} q_{n}(y) \geq \delta$ for some $n_{0} \in I$. Then for every $x \in S_{F}$ we have

$$
q_{n_{0}}(x) \geq \min _{z \in S_{F}} q_{n_{0}}(z) \geq \max _{z \in S_{F}} q_{n_{0}}(z)-\delta / 2 \geq q_{n_{0}}(y)-\delta / 2 \geq \delta / 2
$$

so that the statement of our lemma is satisfied for $\varepsilon=\delta / 2$.
Let $l^{\prime} \in \mathbb{N}$ and define numbers $L_{0}, L_{1}, \ldots, L_{m}$ as follows. Put $L_{0}=l^{\prime}$, and, assuming that $L_{0}, L_{1}, \ldots, L_{n}, n<m$, have already been defined, use Theorem 6.7 to choose L_{n+1} large enough so that for every L_{n+1}-dimensional subspace G of X and every Lipschitz-1 map $f: S_{G} \rightarrow \mathbb{R}$ there is an $L_{n^{-}}$ dimensional subspace $G^{\prime} \subseteq G$ such that

$$
\max _{x \in G^{\prime}} f(x)-\min _{x \in G^{\prime}} f(x) \leq \delta
$$

Let $L=L_{m}$. Assume that our claim is false. This would mean that there exists a subspace G of X with $\operatorname{dim} G=L$ such that

$$
\begin{equation*}
\max _{n \in \mathbb{N}} q_{n}(x) \geq r\|x\| \text { for all } x \in G, \text { and } \tag{13}
\end{equation*}
$$

for each $I \subset \mathbb{N}$ of card $I=s$ and each subspace $F^{\prime} \subseteq G$ of $\operatorname{dim} F^{\prime}=l^{\prime}$ there exists $x \in S_{F^{\prime}}$ such that $\max _{n \in I} q_{n}(x) \leq \delta$.
Choose an arbitrary vector $x_{1} \in S_{G}$ and a subset $I_{1} \subset \mathbb{N}$ with card $I_{1}=s$ so that $\min _{n \in I_{1}} q_{n}\left(x_{1}\right) \geq \max _{n \in \mathbb{N} \backslash I_{1}} q_{n}\left(x_{1}\right)$. It follows from (13) that there exists an index n_{1} such that $q_{n_{1}}\left(x_{1}\right) \geq r$; we can assume that $n_{1} \in I_{1}$. On the other hand, the definition of s implies that $q_{n}\left(x_{1}\right) \leq \delta$ whenever $n \notin I_{1}$. It follows from the definition of L_{m} that there exists a subspace G_{m-1} of G of dimension L_{m-1} so that

$$
\begin{equation*}
\max _{x \in S_{G_{m-1}}} \max _{n \in I_{1}} q_{n}(x) \leq \min _{x \in S_{G_{m-1}}} \max _{n \in I_{1}} q_{n}(x)+\delta \leq 2 \delta, \tag{15}
\end{equation*}
$$

where the last inequality follows from (14).
Next, pick an $x_{2} \in S_{G_{m-1}}$ and $I_{2} \subset \mathbb{N} \backslash I_{1}$ so that card $I_{2}=s$ and $\min _{n \in I_{2}} q_{n}\left(x_{2}\right) \geq \max _{n \notin I_{1} \cup I_{2}} q_{n}\left(x_{2}\right)$. Again, it follows from (13) that there
exists an index n_{2} such that $q_{n_{2}}\left(x_{2}\right) \geq r$; we can assume that $n_{2} \in I_{1} \cup I_{2}$. By (15), $q_{n}\left(x_{2}\right) \leq 2 \delta<r$ for each $n \in I_{1}$, so that $n_{2} \in I_{2}$. Again, $q_{n}\left(x_{2}\right) \leq \delta$ whenever $n \notin I_{1} \cup I_{2}$. We can choose a subspace G_{m-2} of G_{m-1} of dimension L_{m-2} so that

$$
\max _{x \in S_{G_{m-2}}} \max _{n \in I_{2}} q_{n}(x) \leq 2 \delta
$$

Proceeding this way, we obtain a sequence of vectors x_{1}, \ldots, x_{m} and disjoint sets I_{1}, \ldots, I_{m} of cardinality s, and indices n_{1}, \ldots, n_{m}, such that for each $i=1, \ldots, m$ we have $n_{i} \in I_{i}$ and $q_{n_{i}}\left(x_{i}\right) \geq r$. Also,

$$
q_{n}\left(x_{i}\right) \leq \begin{cases}2 \delta & \text { if } n \in I_{1} \cup \cdots \cup I_{i-1} \\ \delta & \text { if } n \notin I_{1} \cup \cdots \cup I_{i}\end{cases}
$$

hence $q_{n}\left(x_{i}\right) \leq 2 \delta$ whenever $n \notin I_{i}$. If $n \in I_{i}$ then $q_{n}\left(x_{i}\right) \leq\left\|x_{i}\right\|=1$.
Put $x=\sum_{i=1}^{m} x_{i}$; then for every $n \in \mathbb{N}$ we have $q_{n}(x) \leq 1+m \cdot 2 \delta \leq 2$. On the other hand,

$$
r \leq q_{n_{i}}\left(x_{i}\right) \leq q_{n_{i}}(x)+q_{n_{i}}\left(x-x_{i}\right) \leq q_{n_{i}}(x)+2 m \delta
$$

so that $q_{n_{i}}(x) \geq r-2 m \delta=r / 2$ for each $i=1, \ldots, m$. It follows from the definition of m that there can be at most $m-1$ indices n such that $q_{n}(x) \geq r^{2}\|x\| / 4$, hence $r^{2}\|x\| / 4>r / 2$. It follows that $\|x\|>2 / r$, so that $q_{n}(x) \leq 2<r\|x\|$ for every $n \in \mathbb{N}$, which is a contradiction.

Now we are ready to prove that U is FSS.
THEOREM 6.8. The operator U constructed in (6) is FSS for all $1<p \leq$ $2 \leq q<\infty$, unless $p=q=2$.

Proof. In view of Theorem 5.4(iii) we may assume that $q=p^{\prime}$. Recall that $U=\bigoplus_{n=1}^{\infty} U_{n}$ is composed of blocks $U_{n}: X_{n} \rightarrow Y_{n}$, where $X_{n}=\ell_{p}^{2^{n}}$ and $Y_{n}=\ell_{q}^{2^{n}}$. For each n, let $P_{n}: \ell_{p} \rightarrow X_{n}$ be the canonical projection. For $x \in \ell_{p}$ put $q_{n}(x)=\left\|U_{n} P_{n} x\right\|$. By Theorem 5.4(i) we have $q_{n}(x) \leq\|x\|$.

Assume that U is not FSS. Then there exists a constant C such that there are subspaces G of ℓ_{p} of arbitrarily large dimension such that the restriction of U to G is a C-isomorphism. Let $x \in S_{G}$, and write $x=\sum_{n=1}^{\infty} x_{n}$ where $x_{n} \in X_{n}$; then $\|U x\| \geq 1 / C$. On the other hand,

$$
\|U x\|^{q}=\sum_{n=1}^{\infty}\left\|U_{n} x_{n}\right\|^{q} \leq \max _{n \in \mathbb{N}}\left\|U_{n} x_{n}\right\|^{q-p} \sum_{n=1}^{\infty}\left\|U_{n} x_{n}\right\|^{p} \leq \max _{n \in \mathbb{N}} q_{n}(x)^{q-p}
$$

Hence, $\max _{n \in \mathbb{N}} q_{n}(x) \geq C^{q /(p-q)}$.
It follows from Lemma 6.6 that there exists $\varepsilon>0$ such that for every k and for every $G \subseteq \ell_{p}$ of sufficiently large dimension there exists a subspace F of G and an index n such that $\operatorname{dim} F=k$ and $q_{n}(x) \geq \varepsilon$ for all $x \in S_{F}$. This implies that the restriction of $U_{n} P_{n}$ to F is a $1 / \varepsilon$-isomorphism. Put $E=P_{n}(F)$; then E is a k-dimensional subspace of X_{n}, and U_{n} is a $1 / \varepsilon$ -
isomorphism on E. In view of Theorem 4.10 we may assume that E is 2isomorphic to ℓ_{2}^{k} and $U_{n}(E)$ is K-complemented in $\ell_{q}^{2^{n}}$.

Let V_{n} be the canonical isometry between L_{p}^{N} and $X_{n}=\ell_{p}^{N}$, where $N=2^{n}$. It follows that $\left\|V_{n} x\right\|_{\ell_{r}^{N}}=N^{1 / r-1 / p}\|x\|_{L_{r}^{N}}$ for every $x \in L_{p}^{N}$ and every $r \in[p, q]$. It follows from the definition of U_{n} and Remark 5.3 that

$$
\begin{aligned}
& \left\|U_{n} V_{n}\right\|_{L_{2}^{N}, \ell_{2}^{N}}=N^{1 / 2-1 / p}\left\|U_{n}\right\|_{\ell_{2}^{N}, \ell_{2}^{N}}=N^{1 / 2-1 / p-1 / q}\left\|H_{n}\right\|_{\ell_{2}^{N}, \ell_{2}^{N}}=1, \\
& \left\|U_{n} V_{n}\right\|_{L_{1}^{N}, \ell_{\infty}^{N}}=N^{1-1 / p}\left\|U_{n}\right\|_{\ell_{1}^{N}, \ell_{\infty}^{N}}=N^{1-1 / p-1 / q}\left\|H_{n}\right\|_{\ell_{1}^{N}, \ell_{\infty}^{N}}=1
\end{aligned}
$$

Now applying Theorem 6.5 to $U_{n} V_{n}$ and $V_{n}^{-1}(E)$ we obtain a contradiction with the fact that $k=\operatorname{dim} E$ was chosen arbitrarily.

REMARK 6.9. If $p=q=2$ then U is an isometry, hence not FSS. Consider the case when $p=1$ and $q=\infty$. The preceding proof does not work, since now we cannot use Theorem 4.10. Actually, U is not FSS in this case. Indeed, we now have $U_{n}=H_{n}$. It is easy to see that among the columns of H_{n} one finds all the Rademacher vectors (of length $N=2^{n}$). Since the span of these vectors in ℓ_{∞}^{N} is isometrically isomorphic to ℓ_{1}^{n}, it follows that the restriction of H_{n} to the appropriate subspace of ℓ_{1}^{N} preserves a copy of ℓ_{1}^{n}.

Question. Are there any other closed ideals in $L\left(\ell_{p}, \ell_{q}\right)$? In view of the diagram at the beginning of our paper this question can be subdivided into the following subquestions:
(i) Is $\mathcal{J}^{I_{p, q}}$ equal to $\mathcal{J}^{\mathrm{FSS}} \cap \mathcal{J}^{\ell_{2}}$? If not, is $\mathcal{J}^{\mathrm{FSS}} \cap \mathcal{J}^{\ell_{2}}$ an immediate successor of $\mathcal{J}^{I_{p, q}}$?
(ii) Is $\mathcal{J}^{\mathrm{FSS}}$ an immediate successor of $\mathcal{J}^{\mathrm{FSS}} \cap \mathcal{J}^{\ell_{2}}$? More generally, are there any immediate successors of $\mathcal{J}^{\mathrm{FSS}} \cap \mathcal{J}^{\ell_{2}}$ other than $\mathcal{J}^{\ell_{2}}$?
(iii) Is $\mathcal{J}^{\mathrm{FSS}} \vee \mathcal{J}^{\ell_{2}}$ an immediate successor of $\mathcal{J}^{\ell_{2}}$?
(iv) Is $\mathcal{J}^{\mathrm{FSS}} \vee \mathcal{J}^{\ell_{2}}$ equal to $L\left(\ell_{p}, \ell_{q}\right)$?

Question. Suppose again that U is the operator defined in (6). Since U is FSS, we have $\mathcal{J}^{U} \subseteq \mathcal{J}^{\mathrm{FSS}}$. Does \mathcal{J}^{U} equal $\mathcal{J}^{\mathrm{FSS}}$?

References

[BL76] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976.
[Calk41] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. of Math. (2) 42 (1941), 839-873.
[CPY74] S. R. Caradus, W. E. Pfaffenberger, and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Lecture Notes in Pure and Appl. Math. 9, Dekker, New York, 1974.
[Daws06] M. Daws, Closed ideals in the Banach algebra of operators on classical nonseparable spaces, Math. Proc. Cambridge Philos. Soc. 140 (2006), 317-332.
[DJT95] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995.
[FT79] T. Figiel and N. Tomczak-Jaegermann, Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math. 33 (1979), 155-171.
[GK65] I. C. Gohberg [I. Ts. Gokhberg] and M. G. Kreĭn, Introduction to the Theory of Linear Non-Selfadjoint Operators in Hilbert Space, Nauka, Moscow, 1965 (in Russian); English transl.: Amer. Math. Soc., Providence, RI, 1969.
[GMF60] I. C. Gohberg [I. Ts. Gokhberg], A. S. Markus, and I. A. Fel'dman, Normally solvable operators and ideals associated with them, Bul. Akad. Stiince RSS Moldoven. 1960, no. 10 (76), 51-70 (in Russian); English transl.: Amer. Math. Soc. Transl. 61 (1967), 63-84.
[Gram67] B. Gramsch, Eine Idealstruktur Banachscher Operatoralgebren, J. Reine Angew. Math. 225 (1967), 97-115.
[LLR04] N. J. Laustsen, R. J. Loy, and C. J. Read, The lattice of closed ideals in the Banach algebra of operators on certain Banach spaces, J. Funct. Anal. 214 (2004), 106-131.
[LSZ06] N. J. Laustsen, Th. Schlumprecht, and A. Zsák, The lattice of closed ideals in the Banach algebra of operators on a certain dual Banach space, J. Operator Theory 56 (2006), 391-402.
[LT77] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin, 1977.
[LT79] -, —, Classical Banach Spaces. II, Springer, Berlin, 1979.
[Luft68] E. Luft, The two-sided closed ideals of the algebra of bounded linear operators of a Hilbert space, Czechoslovak Math. J. 18 (1968), 595-605.
[Masc94] V. Mascioni, A restriction-extension property for operators on Banach spaces, Rocky Mountain J. Math. 24 (1994), 1497-1507.
[Maur74] B. Maurey, Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces L^{p}, Astérisque 11 (1974).
[Milm70] V. D. Milman, Operators of class C_{0} and C_{0}^{*}, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 10 (1970), 15-26 (in Russian).
[MS86] V. D. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces, Lecture Notes in Math. 1200, Springer, Berlin, 1986.
[Piet78] A. Pietsch, Operator Ideals, Math. Monogr. 16, Deutscher Verlag Wiss., Berlin, 1978.
[Pis04] G. Pisier, private communications.
[Tom89] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monogr. Surveys Pure Appl. Math. 38, Longman, Harlow, 1989.

Department of Mathematics
University of North Texas
Denton, TX 76203-1430, U.S.A.
E-mail: bunyamin@unt.edu

Department of Mathematics
Texas A\&M University
College Station, TX 77843-3368, U.S.A.
E-mail: schlump@math.tamu.edu

Department of Mathematical and Statistical Sciences
University of Alberta
Edmonton, AB, T6G 2G1, Canada
E-mail: nicole@ellpspace.math.ualberta.ca
vtroitsky@math.ualberta.ca

Received September 11, 2005
Revised version December 22, 2006

[^0]: 2000 Mathematics Subject Classification: Primary 47L20; Secondary 47B10, 47B37.
 Key words and phrases: operator ideal, ℓ_{p}-space.
 The first author was supported by the University of Alberta postdoctoral fellowship. The second author was supported by NSF. The third author holds the Canada Research Chair in Geometric Analysis. The fourth author was supported by the University of Alberta start-up grant. Most of the work on the paper was done during the second author's visit to the University of Alberta in 2003 and during the Workshop on linear analysis and probability at Texas A\&M University in 2004.

