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On norm losed ideals in L(ℓp, ℓq)byB. Sari (Denton, TX), Th. Shlumpreht (College Station, TX),N. Tomzak-Jaegermann (Edmonton),and V. G. Troitsky (Edmonton)Abstrat. It is well known that the only proper non-trivial norm losed ideal in thealgebra L(X) for X = ℓp (1 ≤ p < ∞) or X = c0 is the ideal of ompat operators.The next natural question is to desribe all losed ideals of L(ℓp ⊕ ℓq) for 1 ≤ p, q < ∞,
p 6= q, or equivalently, the losed ideals in L(ℓp, ℓq) for p < q. This paper shows thatfor 1 < p < 2 < q < ∞ there are at least four distint proper losed ideals in L(ℓp, ℓq),inluding one that has not been studied before. The proofs use various methods fromBanah spae theory.1. Introdution. This paper is onerned with the struture of normlosed ideals of the algebra L(X) of all bounded linear operators on anin�nite-dimensional Banah spae X. The lassial result of [Calk41℄ assertsthat the only proper non-trivial losed ideal of L(ℓ2) is the ideal of om-pat operators. The same was shown to be true for ℓp (1 ≤ p < ∞) and
c0 in [GMF60℄. It remains open if there are other Banah spaes with onlyone proper non-trivial losed ideal. The omplete struture of losed idealsin L(X) was reently desribed in [LLR04℄ for X = (

⊕∞
n=1 ℓ

n
2 )c0 and in[LSZ06℄ for X = (

⊕∞
n=1 ℓ

n
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240 B. Sari et al.their results to non-separable ℓp-spaes, 1 ≤ p < ∞, and non-separable
c0-spaes.This motivates the study of the next natural speial ase X = ℓp ⊕ ℓq(1 ≤ p, q < ∞, p 6= q), whih is our main interest here. There were sev-eral results in this diretion proved in the 1970's onerning various speialideals or speial ases of p and q. We refer the reader to the book by Pietsh[Piet78, Chapter 5℄ for details. In partiular, [Piet78, Theorem 5.3.2℄ assertsthat L(ℓp ⊕ ℓq) (with, say, p < q) has exatly two proper maximal ideals(namely, the ideal of operators whih fator through ℓp and the ideals ofoperators whih fator through ℓq), and establishes a one-to-one orrespon-dene between the non-maximal ideals in the algebra L(ℓp⊕ℓq) and the losed�ideals� in L(ℓp, ℓq). Here an ideal in L(ℓp, ℓq) means a linear subspae J of
L(ℓp, ℓq) suh that ATB ∈ J whenever A ∈ L(ℓq), T ∈ J , and B ∈ L(ℓp),and �losed� is always understood with respet to the operator norm topol-ogy. Consequently, the subjet of the present paper is the struture of losedideals in L(ℓp, ℓq) with 1 ≤ p ≤ q <∞.In this paper we study a number of natural losed ideals in L(ℓp, ℓq) andrelations among them. In partiular we show that if 1 < p < 2 < q < ∞then the following four losed ideals are proper and distint: the ideal of allompat operators K, the losed ideal J Ip,q generated by the formal identityoperator Ip,q : ℓp → ℓq, the ideal J FSS of all �nitely stritly singular (FSS)operators, and the losure of the ideal J ℓ2 of all ℓ2-fatorable operators (seeSetion 2 for appropriate de�nitions). Although these ideals were identi�edearlier, they were not known to be distint and proper exept for speialases. The following diagram illustrates the relationship between these ideals:
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Here arrows stand for inlusions. A solid arrow (⇒ or →) between two idealsmeans that there are no other ideals sitting properly between the two, while adouble arrow oming out of an ideal indiates the only immediate suessor.A hyphenated arrow ( //__ ) indiates a proper inlusion, while a dotted oneindiates that we do not know whether or not the inlusion is proper. Inpartiular, the losed ideals in L(ℓp, ℓq) are not totally ordered.The paper is organized as follows. In Setion 3 we study the ideal J Ip,qfor 1 ≤ p < q < ∞. In [Milm70℄, Milman proved that J Ip,q is FSS, andtherefore, J Ip,q ⊆ J FSS. Sine J Ip,q is not ompat, K is properly ontainedin J Ip,q . We will show that every losed ideal that ontains a non-ompatoperator neessarily ontains J Ip,q , so that J Ip,q is the least non-ompat



Norm losed ideals in L(ℓp, ℓq) 241ideal. In Setion 4 we onsider the ideal J ℓ2 when 1 < p ≤ 2 ≤ q < ∞.We �nd a spei� non-FSS operator T in J ℓ2 suh that the losed ideal J Tgenerated by T oinides with J ℓ2 . This implies, in partiular, that J FSS isa proper ideal (a result proved in [Milm70℄ for p = 2 ≤ q). Among resultson other related ideals we also show that J ℓ2 ⊆ J ℓr for all r between pand q, and we prove that every losed ideal of L(ℓp, ℓq) whih ontains anon-FSS operator must also ontain J ℓ2 . In Setion 5 we onsider the �blokHadamard� operator U from ℓp to ℓq for 1 < p < 2 < q <∞. We show that
U /∈ J ℓ2 , hene J ℓ2 is a proper ideal. Sine, obviously, Ip,q ∈ J ℓ2 , it followsthat J Ip,q ( J U . We show in Setion 6 that U is FSS, hene J Ip,q ( J FSS.We thank Gilles Pisier for suggesting to us the proof of Theorem 6.5.2. Notation and preliminaries. We use the standard notation fromthe Banah spae theory as in [LT77, LT79, Tom89, DJT95℄ and we referthe reader to these books for unexplained notions. Given two Banah spaes
X and Y , we write L(X,Y ) for the spae of all ontinuous linear operatorsfrom X to Y , and L(X) for L(X,X). A linear subspae J of L(X,Y ) is saidto be an ideal if ATB ∈ J whenever A ∈ L(Y ), T ∈ J , and B ∈ L(X). Bya losed ideal we mean an ideal losed in the operator norm topology. Wedenote by K the losed ideal of all ompat operators.Throughout this paper, p and q always satisfy 1 ≤ p < q < ∞. Wedenote by p′ the onjugate of p, that is, 1/p + 1/p′ = 1. It is well known(see, e.g., [CPY74℄) that K is ontained in every losed ideal of L(ℓp, ℓq). If
Z is a Banah spae, we say that an operator T ∈ L(X,Y ) fators through
Z if T = AB where A ∈ L(Z, Y ) and B ∈ L(X,Z); we denote by J Z thelosure of the set of all operators in L(ℓp, ℓq) that fator through Z. It an beeasily veri�ed that if Z is isomorphi to Z⊕Z then J Z is a subspae, henean ideal. For S ∈ L(ℓp, ℓq) we denote by J S the losed ideal in L(ℓp, ℓq)generated by S, that is, the smallest losed ideal ontaining S. It is easyto see that J S onsists of operators that an be approximated in norm byoperators of the form ∑n

i=1AiSBi, where Ai ∈ L(ℓq) and Bi ∈ L(ℓp) for
i = 1, . . . , n. If A is an n × n salar matrix, we write ‖A‖p,q for the normof A as an operator from ℓnp to ℓnq .It is known that every operator in L(ℓp, ℓq) is stritly singular (see,e.g., [LT77℄). We all an operator S : X → Y �nitely stritly singular , orFSS , if for every ε > 0 there exists n ∈ N suh that infx∈E, ‖x‖=1‖Sx‖ < εfor every n-dimensional subspae E of X. This lass of operators alreadyappeared in [Milm70℄ where its introdution has been redited to Mityaginand Peªzy«ski. It an be easily veri�ed (see [Mas94℄) that S is FSS if andonly if every ultrapower of S is stritly singular. It follows immediately thatthe set of all FSS operators from X to Y is a losed ideal. Denote by J FSSthe ideal of all FSS operators in L(ℓp, ℓq).



242 B. Sari et al.We denote by (ei) and (fi) the standard bases of ℓp and ℓq respe-tively, and we denote their oordinate funtionals by (e∗i ) and (f∗i ). If (xn)is a sequene in a Banah spae, we write [xn] for its losed linear span.A sequene (xn) in a Banah spae is seminormalized if infn‖xn‖ > 0 and
supn‖xn‖ <∞.The following standard lemma is immediately dedued from Proposi-tions 1.a.12 and 2.a.1 of [LT77℄.Lemma 2.1. If X = ℓp (1 ≤ p <∞) or c0 and (xn) is a seminormalizedsequene in X whih onverges to zero oordinate-wise (that is, for every i,
e∗i (xn) → 0 as n → ∞), then there is a subsequene (xni) equivalent to (ei)suh that [xni ] is omplemented in X.Remark 2.2. Suppose that 1 ≤ p ≤ q < ∞ and T ∈ L(ℓp, ℓq). We saythat T is blok-diagonal if T =

⊕∞
n=1 Tn, where Tn : ℓmn

p → ℓmn
q . Equiva-lently, there exists a stritly inreasing sequene of integers (kn) suh that

T =
∑∞

n=1 PnTQn, where Qn and Pn are the anonial projetions from ℓpand ℓq onto the �nite-dimensional subspaes spanned by ekn+1, . . . , ekn+1 and
fkn+1, . . . , fkn+1 respetively. Note thatmn = kn+1−kn and Tn an be identi-�ed with PnTQn. It an be easily veri�ed that if p ≤ q then ‖T‖ = supn‖Tn‖.Indeed, ‖Tn‖ = ‖PnTQn‖ ≤ ‖T‖ as Pn and Qn are ontrations. On theother hand,

‖Tx‖ =
( ∞∑

n=1

‖PnTQnx‖
q
)1/q

≤ (sup
n
‖PnTQn‖)

( ∞∑

n=1

‖Qnx‖
q
)1/q

≤ ( sup
n
‖Tn‖)

( ∞∑

n=1

‖Qnx‖
p
)1/p

= (sup
n
‖Tn‖)‖x‖.Remark 2.3. Suppose that R ∈ L(ℓp, ℓq) for 1 ≤ p ≤ q < ∞, and Tis a blok-diagonal submatrix of R, that is, T =
∑∞

n=1 PnRQn, where (Pn)and (Qn) are as in Remark 2.2. Then T an be written as a onvex ombi-nation of operators of the form URV , where U and V are isometries. SeeProposition 1..8 of [LT77℄ and Remark 1 following it for the onstrution.3. The formal identity operator Ip,q. In this setion we onsider theformal identity operator Ip,q : ℓp → ℓq for 1 ≤ p < q < ∞. Clearly, Ip,q isnot ompat, so that K ( J Ip,q . First, we show that J Ip,q is ontained inevery losed ideal of L(ℓp, ℓq) exept K. This result is probably known tospeialists, but we provide a short proof for ompleteness.Proposition 3.1. Let 1 ≤ p < q < ∞. If J is any ideal in L(ℓp, ℓq)ontaining a non-ompat operator , then Ip,q ∈ J .Proof. Assume that J ontains a non-ompat operator T . There existsa normalized sequene (xn) in ℓp suh that (Txn) has no onvergent subse-



Norm losed ideals in L(ℓp, ℓq) 243quenes. By passing to subsequenes and using a standard diagonalizationargument, we an assume that (xn) and (Txn) onverge oordinate-wise.Let yn = xn − xn−1; then (yn) and (Tyn) onverge oordinate-wise to zero.Sine (Txn) has no onvergent subsequenes, we an assume (by passing toa further subsequene if neessary) that (Tyn) is seminormalized. It followsthat (yn) is also seminormalized. Using Lemma 2.1 twie, we an assume (bypassing to a subsequene) that (yn) is equivalent to (ei), (Tyn) is equivalentto (fi), and [Tyn] is omplemented in ℓq.Let B : ℓp → [yn] be an isomorphism given by Ben = yn, and A : [Tyn] →
ℓq be an isomorphism given by A(Tyn) = fn. Sine [Tyn] is omplemented,
A an be extended to an operator on all of ℓq. Thus we an view B and Aas elements of L(ℓp) and L(ℓq) respetively. Observe that ATBen = fn foreah n, hene ATB = Ip,q. It follows that Ip,q ∈ J .Corollary 3.2. If a losed ideal of L(ℓp, ℓq) ontains a non-ompatoperator , then it ontains J Ip,q .The following result was proved in [Milm70℄. For the reader's onvenienewe provide a short proof.Proposition 3.3. Suppose that 1 ≤ p < q < ∞. The formal identityoperator Ip,q is FSS.We will dedue this proposition from the following lemma, whih alsoappeared in [Milm70℄.Lemma 3.4. If E is an n-dimensional subspae of c0 then there exists
x ∈ E suh that x attains its sup-norm at at least n oordinates.Proof. The proof is by indution. The statement is trivial for n = 1.Suppose that it is true for n, take any subspae E of c0 of dimension n+ 1.By indution hypothesis, there exists x ∈ E suh that(1) δ := ‖x‖∞ = |xi1 | = · · · = |xin |for a set of distint indies I = {i1, . . . , in}. Suppose that |xi| < δ for all
i /∈ I (otherwise we are done). Let Y be the subspae of c0 onsisting ofall the sequenes that vanish at i1, . . . , in. Sine Y has o-dimension n, itfollows that Y ∩E 6= {0}. Pik a non-zero y ∈ Y ∩E. We laim that for some
s > 0 the sequene x+ sy attains its sup-norm at at least n+1 oordinates.Indeed, |xi + tyi| = δ for all i ∈ I and t ≥ 0. Consider the funtion

f(t) = max
j /∈I

|xj + tyj|.Clearly, f is ontinuous, f(0) < δ, and limt→∞ f(t) = ∞. It follows that
f(s) = δ for some s > 0. Then |xi + syi| = ‖x+ sy‖∞ = δ for some i /∈ I.Proof of Proposition 3.3. Given ε > 0, pik n ∈ N suh that n1/q−1/p < ε.Suppose that E is a subspae of ℓp with dimE = n. By Lemma 3.4 there



244 B. Sari et al.exists x ∈ E and indies i1, . . . , in satisfying (1). Without loss of generality,
‖x‖p = 1. It follows that 1 = ‖x‖p

p ≥ nδp, so that δ ≤ n−1/p. Then
‖x‖q

q ≤ ‖x‖q−p
∞ ‖x‖p

p = δq−p ≤ n−(q−p)/p,so that ‖x‖q ≤ n1/q−1/p < ε. It follows that Ip,q is FSS.Corollary 3.5. Let 1 ≤ p < q < ∞. The ideal K is a proper subsetof J FSS.4. Operators fatorable through ℓ2. In this setion we onsider theideal J ℓ2 for 1 < p < 2 < q. Using Peªzy«ski's deomposition, we willonstrut an operator T : ℓp → ℓq suh that J ℓ2 = J T . That is, the losureof the ideal of all ℓ2-fatorable operators is exatly the losed ideal generatedby T . Furthermore, we show that T fails to be FSS, hene the ideal J FSSis proper. It will be obvious from the de�nition of T that T fators through
ℓr whenever p ≤ r ≤ q, so it follows that J ℓ2 ⊆ J ℓr . We also show that
T fators through every non-FSS operator. It follows that any losed idealontaining a non-FSS operator neessarily ontains J ℓ2 .To onstrut T , reall that it follows from Peªzy«ski's deomposition the-orem that for every 1 < r <∞, ℓr is isomorphi to (

⊕∞
n=1 ℓ

n
2 )r, the ℓr-diretsum of ℓn2 's (see [LT77, p. 73℄). Let 1 < p ≤ q <∞, put U : ℓp → (

⊕∞
n=1 ℓ

n
2 )pand V : (

⊕∞
n=1 ℓ

n
2 )q → ℓq be two suh isomorphisms. By I2,p,q : (

⊕∞
n=1 ℓ

n
2 )p→

(
⊕∞

n=1 ℓ
n
2 )q we denote the formal identity operator, that is, just the hangeof the norm on the diret sum. Then let T = V I2,p,qU , that is,(2) T : ℓp

U
−→
( ∞⊕

n=1

ℓn2

)

p

I2,p,q
−−−→

( ∞⊕

n=1

ℓn2

)

q

V
−→ ℓq.We will all T a Peªzy«ski deomposition operator.Remark 4.1. Note that T is not unique, it is de�ned up to the isomor-phisms U and V , so that we have atually onstruted a lass of operators.It is lear, however, that any two Peªzy«ski deomposition operators fatorthrough eah other. Moreover, one an easily verify that if in the preedingonstrution we �skip� some of the bloks, that is, if we onsider (

⊕∞
n=1 ℓ

kn
2 )for some stritly inreasing sequene of indies kn, then the resulting opera-tor T ′ obviously fators through T . Conversely, T fators through T ′ beause

ℓn2 is a omplemented subspae of ℓkn2 .Furthermore, let En = U−1(ℓn2 ) ⊂ ℓp be the pre-image of the nth blokof (
⊕
ℓn2 )p. Similarly, put Fn = V (ℓn2 ) ⊂ ℓq. Then d(En, ℓ

n
2 ) ≤ ‖U‖ · ‖U−1‖and d(Fn, ℓ

n
2 ) ≤ ‖V ‖ · ‖V −1‖, where d(X,Y ) stands for the Banah�Mazurdistane between X and Y . Hene, (En) and (Fn) are sequenes of uniformlyEulidean subspaes of ℓp and ℓq respetively. Note that T (En) = Fn, so that
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T �xes opies of ℓn2 for all n ∈ N. This immediately implies the followingresult.Proposition 4.2. For 1 < p ≤ q < ∞, every Peªzy«ski deompositionoperator fails to be FSS.Corollary 4.3. For 1 < p ≤ q <∞, the ideal J FSS is proper.Our next goal is to show that if 1 < p ≤ 2 ≤ q < ∞ then J T = J ℓ2 .We will make use of the onept of ℓ2-fatorable norm γ2. Reall that if
S ∈ L(X,Y ) (X and Y Banah spaes) then γ2(S) = inf ‖S1‖ ‖S2‖, wherethe in�mum is taken over all fatorizations S = S1 S2 where S2 : X → ℓ2 and
S1 : ℓ2 → Y . It is known that γ2 is a norm on the ideal of all ℓ2-fatorableoperators, and γ2(ASB) ≤ ‖A‖γ2(S)‖B‖ whenever X B

−→ X
S
−→ Y

A
−→ Y .See [Tom89, DJT95℄ for more information on γ2.Lemma 4.4. Suppose that R ∈ L(ℓp, ℓq), 1 < p ≤ q <∞, and ε > 0.(i) There exist two blok-diagonal operators V,W ∈ L(ℓp, ℓq) suh that

‖W‖ ≤ ‖R‖ + ε, ‖V ‖ ≤ 2‖R‖ + 2ε, and ‖R− (W + V )‖ < ε.(ii) Suppose that , in addition, R is ℓ2-fatorable. Then V and W anbe hosen to be ℓ2-fatorable, and γ2(W ) ≤ γ2(R) + ε, γ2(V ) ≤
2γ2(R) + 2ε, and γ2(R− (W + V )) < ε.Proof. Let ri,j stand for the (i, j)th entry of the matrix of R, that is,

ri,j = f∗i (Rej). For the purpose of this proof we introdue the followingnotation: for Ω ⊂ N × N, we de�ne the matrix RΩ = (̺i,j) by
̺i,j =

{
ri,j if (i, j) ∈ Ω,

0 otherwise.We start by approximating R by a matrix S with �nitely many entriesin every row and every olumn. Namely, by trunating eah row and eaholumn of R su�iently far we an �nd two stritly inreasing sequenes
(Mj) and (Ni) of positive integers suh that ‖R−RΓ ‖ < ε where Γ ⊆ N×Nis de�ned by

(i, j) ∈ Γ i� i ≤Mj and j ≤ Ni.Put S = RΓ .We will de�ne two stritly inreasing sequenes (kn) and (ln) of positiveintegers suh that Γ is ontained in the union of two blok-diagonal sets
∆ =

⋃∞
n=1∆n and Λ =

⋃∞
n=1Λn where

∆n = {(i, j) ∈ Γ | kn−1 < i, j ≤ kn},

Λn = {(i, j) ∈ Γ | ln−1 < i, j ≤ ln}.We de�ne the sequenes (kn) and (ln) by an interlaed indution. Put k0 = 0,
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l0 = 1. For n ≥ 0 we let

kn+1 = max{Mln , Nln}, ln+1 = max{Mkn+1 , Nkn+1}.Clearly, (kn) and (ln) are stritly inreasing. Next, we show that Γ ⊆ ∆∪Λ.Let (i, j) ∈ Γ . There exists n suh that ln < max{i, j} ≤ ln+1. If ln <
min{i, j}, then ln < i, j ≤ ln+1, so that (i, j) ∈ Λ. Suppose now that
min{i, j} ≤ ln. Then either i or j is less than or equal to ln, while theother is greater than ln. Say, i ≤ ln and j > ln. It follows that

i ≤ ln ≤ Nln ≤ kn+1 and j > ln ≥ Nkn ≥ kn.Therefore j ≤ Ni ≤ Nln ≤ kn+1. Also, Ni ≥ j > ln ≥ Nkn yields i > kn.Hene, kn < i, j ≤ kn+1, so that (i, j) ∈ ∆.Set W = S∆ and V = S−W . Then the non-zero entries of W and V areloated in ∆ and Λ respetively, so that W and V are blok-diagonal. Bythe de�nition of S we have ‖R− (W +V )‖ < ε. Sine W is a blok-diagonalpart of S, Remark 2.3 yields ‖W‖ ≤ ‖S‖ ≤ ‖R‖+ ε. Finally, it follows from
V = S −W that ‖V ‖ ≤ 2‖R‖ + 2ε.If R is ℓ2-fatorable, then we an hoose S with �nitely many entries ineah row and olumn suh that S is also ℓ2-fatorable and γ2(R − S) < ε.Indeed, let R = R1R2 be a fatorization of R through ℓ2. Approximate R1and R2 in norm by S1 and S2, respetively, suh that S1 and S2 have �nitelymany entries in every row and olumn. Put S = S1S2; then S is as laimed.We use the triangle inequality to show that γ2(R− S) < ε when ‖R1 − S1‖and ‖R2 − S2‖ are su�iently small.Set W = S∆ and V = S −W . It follows from Remark 2.3 that γ2(W ) ≤
γ2(S) ≤ γ2(R) + ε. Then γ2(V ) = γ2(S −W ) ≤ 2γ2(R) + 2ε. In partiular,
W and V are ℓ2-fatorable.Remark 4.5. In a similar fashion one an show that every operatorbetween two Banah spaes with shrinking unonditional bases an be ap-proximated by a sum of two blok-diagonal operators.Remark 4.6. A slight modi�ation of the proof Lemma 4.4(i) yields
‖W‖ ≤ ‖R‖. Indeed, hoose Mj and Ni su�iently large so that not only
‖R−RΓ ‖ < ε but also ‖R−RΩ‖ < ε for every Ω ⊆ N×N suh that Γ ⊆ Ω.Then, after onstruting ∆ and Λ, put W = R∆ and V = R∆∪Λ −W . Thenthe non-zero entries ofW and V are loated in ∆ and Λ, respetively, so that
W and V are blok-diagonal. Sine ∆∪Λ ⊇ Γ we have ‖R− (W +V )‖ < ε.Sine W is a blok-diagonal part of R, Remark 2.3 yields ‖W‖ ≤ ‖R‖.Finally, ‖V ‖ ≤ ‖R∆∪Λ‖ + ‖W‖ ≤ 2‖R‖ + ε.Theorem 4.7. If 1 < p ≤ 2 ≤ q and T is a Peªzy«ski deompositionoperator , then J T = J ℓ2.



Norm losed ideals in L(ℓp, ℓq) 247Proof. Observe that I2,p,q, being the formal identity from (
⊕∞

n=1 ℓ
n
2 )pto (

⊕∞
n=1 ℓ

n
2 )q, fators through (

⊕∞
n=1 ℓ

n
2 )2 = ℓ2. It follows that T fatorsthrough ℓ2 and, therefore, J T ⊆ J ℓ2 .We show that J ℓ2 ⊆ J T . Clearly, it su�es to show that every ℓ2-fatorable operator belongs to J T . In view of Lemma 4.4(ii), it su�es toshow this for blok-diagonal operators. Let W be an ℓ2-fatorable blok-diagonal operator. Then we an write W =

⊕∞
n=1AnBn, where Bn :

ℓknp → ℓkn2 and An : ℓkn2 → ℓknq suh that supn‖An‖ and supn‖Bn‖ are �-nite. By merging onseutive bloks if neessary, we an assume without lossof generality that (kn) is stritly inreasing. Observe that the operators
B =

∞⊕

n=1

Bn :
( ∞⊕

n=1

ℓknp

)
p
→
( ∞⊕

n=1

ℓkn2

)
pand

A =
∞⊕

n=1

An :
( ∞⊕

n=1

ℓkn2

)
q
→
( ∞⊕

n=1

ℓknq

)
qare bounded, and W = AI0B, with I0 the formal identity from (

⊕∞
n=1 ℓ

kn
2 )pto (

⊕∞
n=1 ℓ

kn
q )q. Thus,W fators through I0. It follows from Remark 4.1 that

I0 fators through T . Hene, W fators through T .Remark 4.8. Atually, we proved that every operator in J ℓ2 an beapproximated by sums of two T -fatorable operators.Remark 4.9. Suppose that 1 < p < r < q. Then I2,p,q in (2) fatorsthrough (
⊕∞

n=1 ℓ
n
2 )r, whih is isomorphi to ℓr. It follows that T fatorsthrough ℓr. Then Theorem 4.7 implies that J ℓ2 ⊆ J ℓr when p ≤ 2 ≤ q.Next, we show that if p < 2 < q then J ℓ2 is the least losed idealbeyond J FSS, that is, every losed ideal that ontains a non-FSS operatoralso ontains J ℓ2 . For the proof we need the following well-known fat.Theorem 4.10. For every 1 < r < ∞ there exists K > 0 suh that forall n ∈ N there exists N ∈ N suh that every N -dimensional subspae F ⊂ ℓrontains an n-dimensional subspae E whih is K-omplemented in ℓr and

2-isomorphi to ℓn2 .Remark 4.11. The theorem follows by simultaneous use of Dvoretzky'stheorem both in a subspae F ⊂ ℓr and in its dual F ∗ (see, e.g., [MS86℄). Thisgives the result with N = Cnr/2 and K = C ′
√

max{r, r′}, where C,C ′ > 0are absolute onstants. This theorem an also be viewed, for example, as aspeial ase of results in [FT79℄.We will also routinely use the following observation.



248 B. Sari et al.Remark 4.12. Suppose that (En) is a sequene of subspaes of a Banahspae X whih are uniformly Eulidean and uniformly omplemented in X.That is, there exist a onstant C > 0 and sequenes (Pn) and (Vn) suh that
Pn is a projetion from X onto En with ‖Pn‖ < C, and Vn : En → ℓn2 is anisomorphism with ‖Vn‖ · ‖V −1

n ‖ ≤ C for every n. Let Gn be a subspae of
En (n ∈ N). Then it is easy to see that the Gn's are uniformly Eulideanand uniformly omplemented in X as well.For x ∈ ℓr we write suppx = {i ∈ N | xi 6= 0}. For A ⊆ ℓr put
suppA =

⋃
x∈A suppx.Theorem 4.13. Let 1 < p ≤ 2 ≤ q < ∞. If R ∈ L(ℓp, ℓq) is not FSS ,then every Peªzy«ski deomposition operator fators through R.Proof. Sine R is not FSS, there exist a onstant C > 0 and a sequene

(En) of subspaes of ℓp suh that dimEn → ∞ as n → ∞, and R|En isinvertible with ‖(R|En)
−1‖ ≤ C. We an assume, in addition, that suppEnis �nite by trunating all the vetors in a basis of En su�iently far (andadjusting C if neessary). Let Fn = R(En). Using Theorem 4.10 and Re-mark 4.12 we an easily obtain subspaes E′

n ⊂ En and F ′
n ⊂ Fn whihare C-Eulidean, C-omplemented in ℓp and ℓq respetively, and suh that

F ′
n = R(E′

n). By passing to a subsequene we may assume that dimE′
n = n,and we relabel the sequenes so obtained as (En) and (Fn). Let Qn : ℓq → Fnbe a projetion with ‖Qn‖ ≤ C.We are going to de�ne sequenes (Ên), (F̂n) and (Q̂n) whih satisfy allthe properties desribed in the previous paragraph and, in addition, thereexists a stritly inreasing sequene (mn) in N suh that the following fouronditions are satis�ed:(i) mn−1 < min supp Ên and mn−1 < min supp F̂n;(ii) Q̂ny = 0 whenever max supp y ≤ mn−1;(iii) mn ≥ max supp Ên;(iv) ‖Q̂ny‖ ≤ 2−n‖y‖ whenever min supp y > mn.We onstrut the sequenes indutively. Let m0 = 0, and suppose that wealready onstruted Êi, F̂i, Q̂i, and mi for all i < n. Let G and G′ be thesubspaes of ℓp and ℓq, respetively, onsisting of all vetors whose �rst mn−1oordinates are zero. Put k = 2mn−1 + n. It follows from dimFk = k and

codimG′ = mn−1 that mn−1 +n ≤ dimFk∩G
′ = dimR−1(Fk∩G

′), beause
R|Ek is an isomorphism. Sine codimG = mn−1 we have G ∩ R−1(Fk ∩G′)

≥ n. Let Ên be an n-dimensional subspae of G ∩ R−1(Fk ∩G′), and F̂n =

R(Ên). Then Ên ⊆ G and F̂n ⊆ G′, hene (i) is satis�ed. Clearly, F̂n is Ĉ-omplemented in ℓq, where Ĉ = C2. Then there exists a projetion Q′ : ℓq →

F̂n suh that ‖Q′‖ ≤ Ĉ. Let Q̂n = Q′P , where P is the basis projetion of ℓq



Norm losed ideals in L(ℓp, ℓq) 249onto [fi]i≥mn−1 . Then Q̂n is again a projetion from ℓq onto F̂n, ‖Q̂n‖ ≤ Ĉ,and so (ii) is satis�ed. Sine rank Q̂n = n, we an write Q̂n =
∑n

j=1 zj ⊗ z∗j ,where z1, . . . , zj ∈ ℓp and z∗1 , . . . , z∗j ∈ ℓ∗q . Then we an �nd r ∈ N su�ientlylarge suh that if ‖y‖ ≤ 1 and min supp y > r then |z∗j (y)| is su�ientlysmall for all j = 1, . . . , n, so that ‖Q̂y‖ ≤ 2−n. Let mn = max{r, s}, where
s = max supp Ên; then (iii) and (iv) are satis�ed.For onveniene, we relabel Ên, F̂n, Q̂n, and Ĉ as En, Fn, Qn, and Cagain. For every n suppose that Vn is a C-isomorphism of ℓn2 onto En with
‖Vn‖ = 1 and ‖V −1

n ‖ ≤ C. Put
V =

∞⊕

n=1

Vn :
( ∞⊕

n=1

ℓn2

)
p
→
( ∞⊕

n=1

En

)
p
.Sine the En's are disjointly supported, we an onsider (
⊕∞

n=1En)p as asubspae of ℓp. It follows that V is a C-isomorphism between (
⊕∞

n=1 ℓ
n
2 )pand a subspae of ℓp. De�ne

W : ℓq →
( ∞⊕

n=1

ℓn2

)
q

via x 7→ (V −1
n (R|En)

−1Qnx)
∞
n=1.We laim that W is bounded. Indeed, pik x ∈ ℓq. Then(3) ‖Wx‖ =

( ∞∑

n=1

‖V −1
n (R|En)

−1Qnx‖
q
2

)1/q
≤ C2

( ∞∑

n=1

‖Qnx‖
q
)1/q

.Let Pk be the basis projetion from ℓq onto [fi]
mk
i=mk−1+1. Then x =

∑∞
k=1 Pkx.It follows from (ii) that QnPkx = 0 whenever k < n. Furthermore, (iv)yields ‖Qn(

∑
k>n Pkx)‖ ≤ 2−n‖x‖. Also, ‖QnPnx‖ ≤ C‖Pnx‖. Therefore,

‖Qnx‖ ≤ C‖Pnx‖ + 2−n‖x‖. Using the Cauhy�Shwarz inequality, we get
( ∞∑

n=1

‖Qnx‖
q
)1/q

≤
( ∞∑

n=1

(C‖Pnx‖)
q
)1/q

+
( ∞∑

n=1

(2−n‖x‖)q
)1/q

≤ (C + 1)‖x‖.Together with (3) this shows that W is bounded.Finally, it is easy to see that WRV = I2,p,q; it follows easily that everyPeªzy«ski deomposition operator fators through R.Corollary 4.14. Let 1 < p ≤ 2 ≤ q < ∞. If R ∈ L(ℓp, ℓq) is not FSS ,then J ℓ2 ⊆ J R.5. Operators not fatorable through ℓ2. We employ the followingknown theorem (see [DJT95, Theorem 9.13℄ or [Tom89, Theorem 27.1℄) todedue onditions for an operator in L(ℓp, ℓq) to fator through ℓr.Theorem 5.1. Let 1 ≤ r < ∞, let U : X → Y be a bounded linearoperator between Banah spaes X and Y , and let C ≥ 0. The following areequivalent:



250 B. Sari et al.(i) There exists a subspae L of Lr(µ), µ a measure, and a fatorization
U = V W , where V : L → Y and W : X → L are bounded linearoperators with ‖V ‖ · ‖W‖ ≤ C.(ii) Whenever �nite sequenes (xi)

n
i=1 and (zi)

m
i=1 in X satisfy

m∑

i=1

|〈x∗, zi〉|
r ≤

n∑

i=1

|〈x∗, xi〉|
r for all x∗ ∈ X∗,then

m∑

i=1

‖Uzi‖
r ≤ Cr

n∑

i=1

‖xi‖
r.Let us use Theorem 5.1 to state a riterion for an operator U : ℓmp → ℓmqnot to fator as U = AB with ‖B‖p,r · ‖A‖r,q ≤ C.Corollary 5.2. Let m ∈ N, C > 1, and r > 1, and assume that U isan invertible m ×m matrix. Let δ = ‖U−1‖r′,r′ . Then ‖B‖p,r‖A‖r,q ≥ δ−1for any fatorization U = AB. Moreover , if Ũ is another m×m matrix with(4) ‖Ũ − U‖p,q ≤ (2 max

1≤i≤m
‖U−1ei‖p)

−1,then ‖B‖p,r‖A‖r,q ≥ (2δ)−1 for any fatorization Ũ = AB.Proof. For i = 1, . . . ,m let xi = ei and zi = δ−1U−1ei and observe thatfor any x∗ ∈ Rm,
( m∑

i=1

|〈x∗, zi〉|
r
)1/r

= δ−1
( m∑

i=1

|〈(U−1)∗x∗, ei〉|
r
)1/r

= δ−1‖(U−1)∗x∗‖r

≤ δ−1‖U−1‖r′,r′‖x
∗‖r =

( m∑

i=1

|〈x∗, xi〉|
r
)1/r

,whih implies that the hypothesis of (ii) in Theorem 5.1 is satis�ed. Seondlyit follows that(5) m∑

i=1

‖Uzi‖
r
q = δ−rm = δ−r

m∑

i=1

‖xi‖
r
p,whih means that the onlusion of (ii) in Theorem 5.1 is not satis�ed forany C < δ−1. It follows that ondition (i) in Theorem 5.1 fails whenever

C < δ−1.Now assume that Ũ is another m×mmatrix satisfying (4), then it followsfor i = 1, . . . ,m that
‖Ũ(zi)‖q ≥ ‖U(zi)‖q − ‖(U − Ũ)(zi)‖q

≥ 1
2‖U(zi)‖q +

(
1
2‖U(zi)‖q − ‖U − Ũ‖p,q‖zi‖p

)

= 1
2‖U(zi)‖q +

(
1
2δ − ‖U − Ũ‖p,qδ

−1‖U−1ei‖p

)
≥ 1

2‖U(zi)‖q,



Norm losed ideals in L(ℓp, ℓq) 251whih implies, together with (5), that for Ũ the onlusion of (ii) in Theo-rem 5.1 is not satis�ed for any C < δ−1/2, hene (i) fails in this ase.We will now de�ne an operator whih will be ruial for the rest ofthe paper, and we start with the following notations. Let Hn be the nthHadamard matrix. That is,
H1 = (1), Hn+1 =

(
Hn Hn

Hn −Hn

) for every n ≥ 1.
Then Hn is an N × N matrix where N = 2n. We use the identi�ations
ℓp = (

⊕∞
n=1Xn)p and ℓq = (

⊕∞
n=1 Yn)q, where Xn = ℓ2

n

p and Yn = ℓ2
n

q areblok subspaes of ℓp and ℓq respetively. We onsider Hn as an operatorfrom Xn to Yn. Put(6) Un = N−1/min{p′,q}Hn where N = 2n, and U =
∞⊕

n=1

Un : ℓp → ℓq.

Remark 5.3. Observe that N−1/2Hn is a unitary matrix on ℓN2 . In par-tiular, it is an isometry on ℓN2 , hene ‖Hn‖2,2 = N1/2, and H2
n = NI. Onean easily verify that ‖Hn‖1,∞ = 1 and ‖Hn‖1,1 = ‖H‖∞,∞ = N .Theorem 5.4. If 1 < p ≤ 2 ≤ q <∞, then the operator U de�ned by (6)has the following properties:(i) ‖U‖p,q = 1.(ii) U is not ompat.(iii) If p′ 6= q then U is FSS.(iv) Let p ≤ r ≤ q. Then U fators through ℓr when p ≤ r ≤ q′ or

p′ ≤ r ≤ q; otherwise U /∈ J ℓr .(v) In partiular , if p 6= q then U /∈ J ℓ2.Remark 5.5. In Setion 6 we treat (iii) in the muh harder ase when
p′ = q and show that in this ase U is still FSS.Proof of Theorem 5.4. Using the Riesz�Thorin interpolation theorem(e.g., [BL76, LT79℄) for Hn ating as an operator in L(ℓ1, ℓ∞) and as anoperator in L(ℓ2, ℓ2), and using Remark 5.3, we obtain ‖Hn‖r,r′ ≤ N1/r′whenever 1 ≤ r ≤ 2. Similarly, interpolating between ‖H‖1,1 and ‖Hn‖2,2,and between ‖Hn‖2,2 and ‖H‖∞,∞, we obtain ‖H‖r,r ≤ N1/min{r,r′} when-ever 1 ≤ r ≤ ∞.De�ne U (r)

n = N−1/r′Hn and U (r) =
⊕∞

n=1 U
(r)
n ; then ‖U

(r)
n ‖r,r′ ≤ 1 forevery n, hene ‖U (r)‖r,r′ ≤ 1. Considering U as an operator in L(ℓp, ℓq), we



252 B. Sari et al.an write
(7) U =





ℓp
U(p)

−−−→ ℓq when p′ = q,

ℓp
U(p)

−−−→ ℓp′
Ip′,q
−−−→ ℓq when p′ < q,

ℓp
Ip,q′
−−−→ ℓq′

U(q′)

−−−→ ℓq when p < q′.It follows immediately that ‖U‖p,q ≤ 1. Sine J FSS is an ideal, (iii) followsfrom Proposition 3.3. It also follows from (7) that U fators through ℓr if
p ≤ r ≤ q′ or p′ ≤ r ≤ q,Consider �rst the ase p′ ≤ q. Then Un = N−1/p′Hn. Let hn,i = Hnei,the ith olumn of the nth Hadamard matrix. It follows from H2

n = NI that
Unhn,i = N−1/p′H2

nei = N1/pei. Thus, ‖Unhn,i‖q = N1/p = ‖hn,i‖p, so that
‖Un‖p,q = 1. Hene, U is not ompat, and ‖U‖p,q = 1 by Remark 2.2.Next, suppose that p < r < p′ ≤ q. We use Corollary 5.2 to show that
U /∈ J ℓr in this ase. Indeed, assume to the ontrary that U ∈ J ℓr . Thenthere exists Ũ suh that ‖U − Ũ‖ < 1/2 and Ũ fators through ℓr. Let C bethe ℓr-fatorization onstant of Ũ . Sine p < min{r, r′} one an hoose n sothat C < 1

2N
1/p−1/min{r,r′}, where N = 2n. Let Ũn be the N ×N submatrixof Ũ orresponding to the nth blok of U , that is, Ũn = QnŨPn, where Pn(respetively, Qn) is the anonial projetion from ℓp (respetively, ℓq) ontothe span of eN+1, . . . , e2N . Then the ℓr-fatorization onstant of Ũn is atmost C. It follows from ‖U−1

n ei‖p = ‖N−1/phn,i‖p = 1 that
‖Un − Ũn‖ ≤ ‖U − Ũ‖ < 1/2 = (2 max

1≤i≤N
‖U−1

n ei‖p)
−1.Let δ = ‖U−1

n ‖r′,r′ . It follows from H2
n = NI and Un = N−1/p′Hn that

U−1
n = N−1/pH, so that

δ = N−1/p′‖Hn‖r′,r′ ≤ N−1/p+1/min{r,r′}.Corollary 5.2 implies that the ℓr-fatorization onstant of Ũn is at least
(2δ)−1 ≥ 1

2N
1/p−1/min{r,r′} > C, whih is a ontradition.The ase p < q′ an be redued to the previous ase by duality. Indeed, itfollows from (7) that U∗ = Iq,p′U

(q′) : ℓq′ → ℓp′ . Consequently, if p ≤ r ≤ q′then Iq,p′ and, therefore, U∗ fators through ℓr′ . Hene, U fators through ℓr.Furthermore, sine Hn is symmetri for every n, it follows that U∗
n oinideswith Un as a matrix and ‖U∗

n‖q′,p′ = 1. Applying the previous argument, weobserve that U∗ is non-ompat and ‖U∗‖q′,p′ = 1, hene the same is truefor U . Furthermore, if q′ < r < q, then U∗ /∈ J ℓr′ so that U /∈ J ℓr .Finally, (v) follows immediately from (iv).Remark 5.6. If p < r < r′ < q then the operator Ũ de�ned as
ℓp

Ip,r
−−→ ℓr

U(r)

−−−→ ℓr′
Ir′,q
−−→ ℓq
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Ũn = U (r)

n = N−1/r′Hn = N1/min{p′,q}−1/r′Un.It follows from ‖Un‖p,q = 1 and r′ < min{p′, q} that
‖Ũn‖p,q = N1/min{p′,q}−1/r′ → 0 as n→ 0.Remark 5.7. It follows from Theorem 5.4(iv) that J ℓr is proper when

max{p, q′} < r < min{p′, q}. In partiular, J ℓ2 is proper. It follows fromRemark 4.9 and Theorem 5.4(iv) that J ℓ2 ( J ℓr whenever p < r < q′ or
p′ < r < q. We do not know, however, whether J ℓr is proper in this ase.Next, we show that if U ′ is another �U -like� operator then U and U ′fator through eah other.Again, we view ℓp = (

⊕∞
n=1Xn)p and ℓq = (

⊕∞
n=1 Yn)q, where Xn = ℓ2

n

pand Yn = ℓ2
n

q . Denote the basis vetors in Xn and Yn by e(n)
1 , . . . , e

(n)
2n and

f
(n)
1 , . . . , f

(n)
2n , respetively. We an view Hn and Un as operators from Xnto Yn.Theorem 5.8. Suppose that (ni) is an inreasing sequene, and let Ũ =⊕∞

i=1 Uni , viewed as an operator from ℓp = (
⊕∞

i=1Xni)p to ℓq = (
⊕∞

i=1 Yni)q.Then U and Ũ fator through eah other.Proof. Consider the following diagram:
ℓp =

( ∞⊕

i=1

Xni

)
p

ı
→֒
( ∞⊕

n=1

Xn

)
p

U
−→
( ∞⊕

n=1

Yn

)
q

R
−→
( ∞⊕

i=1

Yni

)
q

= ℓq,where ı is the anonial embedding, and R is the anonial projetion. We anview ı and R as operators on ℓp and ℓq, respetively. Thus, we get Ũ = RUı.Next, we prove that U fators through Ũ . First, we show that whenever
n < m then there exist operators C : Xn → Xm and D : Ym → Yn suh that
Un = DUmC and ‖C‖p,p ≤ 1 and ‖D‖q,q ≤ 1.First, we onsider the ase q ≤ p′. De�ne Cn : Xn → Xn+1 via Cne

(n)
i =

e
(n+1)
i for i = 1, . . . , 2n. Clearly, Cn is an isometry.Let Zn be the subspae of Yn+1 onsisting of all the vetors whose �rsthalf oordinates are equal to the last half oordinates, respetively, thatis, Zn = span{f

(n+1)
i + f

(n+1)
i+2n | i = 1, . . . , 2n}. Let Pn be the �averaging�projetion from Yn+1 onto Zn given by

Pn

(2n+1∑

i=1

αif
(n+1)
i

)
=

2n∑

i=1

αi + αi+2n

2
(f

(n+1)
i + f

(n+1)
i+2n ).Then ‖Pn‖ = 1.



254 B. Sari et al.De�ne Bn : Zn → Yn via Bn(f
(n+1)
i + f

(n+1)
i+2n ) = 21/qf

(n)
i ; then Bn is anisometry. Hene, Dn = BnPn : Yn+1 → Yn is of norm one.Fix 1 ≤ i ≤ 2n. Sine Cne

(n)
i = e

(n+1)
i , Hn+1Cne

(n)
i is the ith olumnof Hn+1. Sine i ≤ 2n it follows from the onstrution of Hn's that the itholumn ofHn+1 is exatly the ith olumn ofHn repeated twie. In partiular,

Hn+1Cne
(n)
i ∈ Zn and, therefore, Hn+1Cne

(n)
i = PnHn+1Cne

(n)
i . Finally,

BnPnHn+1Cne
(n)
i = 21/q(the ith olumn of Hn) = 21/qHne

(n)
i .Consequently, we have DnHn+1Cn = 21/qHn. It follows from Hn = 2n/qUnthat DnUn+1Cn = Un. Iterating this m−n times, we get DUmC = Un where

C : Xn → Xm is an isometry, and D : Ym → Yn is of norm one.If q ≥ p′, then we onsider the adjoint operators. Note that U∗
n = Un asmatries. Applying the previous argument we �nd matries C and D suhthat U∗

n = DU∗
mC with ‖C‖q′,q′ ≤ 1 and ‖D‖p′,p′ ≤ 1. Then Un = C∗UmD

∗is a required fatorization in the ase q ≥ p′.It follows that for every i we have(8) D̃iUniC̃i = Uifor some ontrations C̃i : Xi → Xni and D̃i : Xni → Xi. Let
C̃ =

∞⊕

i=1

C̃i :
( ∞⊕

i=1

Xi

)
p
→
( ∞⊕

i=1

Xni

)
p
,

D̃ =
∞⊕

i=1

D̃i :
( ∞⊕

i=1

Xni

)
q
→
( ∞⊕

i=1

Xi

)
q
.

Then C̃ : ℓp → ℓp and D̃ : ℓq → ℓq are bounded, and by (8) we dedue that
D̃ŨC̃ = U .It follows that any two operators of type Ũ generated by di�erent se-quenes fator through eah other.6. The operator U is FSS. Again, let U be the operator de�ned by (6).Theorem 5.4(iii) states that U is FSS when p 6= q′. We will show in thissetion that U is still FSS when 1 < p = q′. The argument requires somepreparation.Reall that the nth s-number of an operator T ∈ L(H) on a Hilbertspae H is de�ned via sn(T ) = inf{‖T −R‖ | rankR < n}. For 1 ≤ r < ∞,the Shatten norm ‖T‖Sr of T equals the ℓr norm of the sequene of the
s-numbers. We say that T belongs to the Shatten lass Sr if ‖T‖Sr < ∞.We denote by S∞ the set of all ompat operators equipped with the operatornorm.



Norm losed ideals in L(ℓp, ℓq) 255Lemma 6.1. If T ∈ L(H) is suh that ‖T‖Sq = 1 and infx∈F, ‖x‖=1‖Tx‖
≥ ε for a subspae F of H, then dimF ≤ ε−q.Proof. Suppose that dimF = k. For every operator S of rank k−1 thereexists x ∈ F suh that ‖x‖ = 1 and Sx = 0. It follows that ‖T − S‖ ≥
‖Tx‖ ≥ ε, so that s1 ≥ · · · ≥ sk ≥ ε. Therefore, 1 = ‖T‖q

Sq
≥ kεq. Hene

k ≤ ε−q.We will also utilize the following result of Maurey [Maur74, Corollary 11,p. 21℄.Theorem 6.2. Let (Ω,µ) be a measure spae, Y a Banah spae, 0 <
u ≤ v < ∞, 1/u = 1/v + 1/r, T a bounded operator from a losed subspae
E of Lv(µ) to Y , and C > 0. Then the following are equivalent :(i) There exists a losed subspae F of Lu(µ) suh that T fators as T =

V Mg, where V : F → Y with ‖V ‖ ≤ C, and Mg : Lv(µ) → Lu(µ) isa multipliation operator de�ned by Mgf = gf for every f ∈ Lv(µ),with g ∈ Lr(µ) and ‖g‖r ≤ 1.(ii) For any x1, . . . , xn in E,
( n∑

i=1

‖Txi‖
u
)1/u

≤ C
[\( n∑

i=1

|xi|
u
)v/u

dµ
]1/v

.In what follows, KG will denote the so-alled Grothendiek onstant, afundamental onstant in Banah spae theory (see [DJT95, Tom89, LT77℄for details).Corollary 6.3. Let (Ω,µ) be a measure spae. Suppose that q = p′ and
1/p = 1/2 + 1/r.(i) If T : Lq(µ) → ℓk2 then T an be fatored through a multipliationoperator from Lq(µ) to L2(µ), i.e., T = SMg, where S : L2(µ) → ℓk2with ‖S‖ ≤ KG‖T‖ and ‖g‖r = 1.(ii) If T : ℓk2 → Lp(µ) then T an be fatored through a multipliationoperator from L2(µ) to Lp(µ), i.e., T = Mh S, where S : ℓk2 → L2(µ)with ‖S‖ ≤ KG‖T‖ and ‖h‖r ≤ 1.Proof. Suppose that T : Lq(µ) → ℓk2. We verify that ondition (ii) ofTheorem 6.2 holds for u = 2, v = q = p′, and r > 1 suh that 1/p = 1/2+1/r(whih is equivalent to 1/2 = 1/v + 1/r). Let f1, . . . , fn ∈ Lq. Then

n∑

i=1

‖Tfi‖
2 =

n∑

i=1

k∑

j=1

|(Tfi)j|
2 =

k∑

j=1

n∑

i=1

|(Tfi)j|
2 =

∥∥∥
( n∑

i=1

|Tfi|
2
)1/2∥∥∥

2

ℓ2
,

where the last expression is the norm of the sequene ((
∑n

i=1|(Tfi)j|
2)

1
2 )n

j=1.It follows from [LT79, Theorem 1.f.14℄ that
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∥∥∥
( n∑

i=1

|Tfi|
2
)1/2∥∥∥

ℓ2
≤ KG‖T‖

∥∥∥
( n∑

i=1

|fi|
2
)1/2∥∥∥

Lq

= KG‖T‖
[\( n∑

i=1

|fi|
2
)q/2

dµ
]1/q

.Now (i) follows from Theorem 6.2. To prove (ii), apply (i) to T ∗.For N ∈ N and 1 ≤ p ≤ ∞, by LN
p we denote the spae Lp(µ) where

µ is the uniform probability measure on Ω = {1, . . . , N}. Thus, LN
p =

(RN , ‖·‖LNp
) where, for x = (xi) ∈ RN , ‖x‖LNp

= (N−1
∑N

i=1|xi|
p)1/p for

p < ∞ and ‖x‖LN∞
= max1≤i≤N |xi|. Clearly, ‖·‖LNp

is a salar multipleof ‖·‖ℓNp
.The following easy lemma is well-known to speialists. We state it exatlyin the form required later and we provide a short proof.Lemma 6.4. Consider a produt of three operators

S : LN
2

Mψ
−−→ LN

1
T
−→ ℓN∞

D
−→ ℓN2where D = diag(dj)

N
j=1, i.e., the diagonal operator with diagonal (dj). Thenthe Hilbert�Shmidt norm of S satis�es ‖S‖HS ≤ ‖ψ‖LN2

‖T‖ ‖(dj)‖ℓN2
.Proof. Observe that, in the notation of funtion spaes on (Ω,µ),

S : f 7→ ψf 7→ (〈gn, ψf〉)
N
n=1 7→ (dn〈gn, ψf〉)

N
n=1for f ∈ LN

2 and for some sequene (gn)N
n=1 in LN

∞, so that ‖T‖ = supn‖gn‖LN∞
.(Here 〈·, ·〉 denotes the inner produt with respet to µ.) Let (fi)

N
i=1 be anorthonormal basis of LN

2 ; then
‖S‖2

HS =
N∑

i=1

‖Sfi‖
2
ℓN2

=
N∑

i=1

N∑

n=1

d2
n〈gn, ψfi〉

2 =
N∑

n=1

d2
n

N∑

i=1

〈ψgn, fi〉
2

=
N∑

n=1

d2
n‖ψgn‖

2
LN2

≤ ‖ψ‖2
LN2

(sup
n
‖gn‖

2
LN∞

)‖(dj)‖
2
ℓN2
.

Theorem 6.5 ([Pis04℄). Suppose that T : LN
p → ℓNq for some 1 ≤ p < 2and q = p′. Let E be a k-dimensional subspae of LN

p , and C1, C2, and C3be positive onstants suh that(i) ‖T‖LN2 ,ℓN2
≤ 1 and ‖T‖LN1 ,ℓN∞

≤ 1;(ii) E is C1-isomorphi to ℓk2;(iii) F = T (E) is C2-omplemented in ℓNq ;(iv) T|E is invertible and ‖(T|E)−1‖ ≤ C3.Then k ≤ (C3
1C2C

2
3K

2
G)q.



Norm losed ideals in L(ℓp, ℓq) 257Proof. Suppose that T , E, and F satisfy the hypotheses for some C1, C2,and C3. Let r be suh that 1/p = 1/2 + 1/r. There exists an isomorphism
V : ℓk2 → E suh that ‖V ‖ ≤ 1 and ‖V −1‖ ≤ C1. By Corollary 6.3(ii),
V fators through LN

2 . Namely, V = MgS with S : ℓk2 → LN
2 suh that

‖S‖ ≤ C1KG and ‖g‖r ≤ 1. Let J : E → LN
p be the anonial inlusion map.We have the diagram

LN
2

Mg
−−−−→ LN

p
T

−−−−→ ℓNq
D

−−−−−→
diagonal

ℓN2

S

x J

xincl. proj.

yQ

yR

ℓk2
V

−−−−−→
C1-isom.

E
T|E

−−−−→ F
W

−−−−−−−→
C1C3-isom.

ℓk2Let Q be a projetion from ℓNq onto F with ‖Q‖ ≤ C2. It follows from (i)that ‖T‖LNp ,ℓNq
≤ 1. Then F is C1C3-isomorphi to ℓk2. Let W : F → ℓk2 bean isomorphism suh that ‖W‖ ≤ 1 and ‖W−1‖ ≤ C1C3. Corollary 6.3(i)implies that WQ fators through ℓN2 , that is, WQ = RD where R : ℓN2 → ℓk2with ‖R‖ ≤ KG‖WQ‖ ≤ C2KG, and D is a multipliation (or diagonal)operator D = diag(dj)

N
j=1 with ‖(dj)‖ℓNr

≤ 1.We are going to show that ‖DTMg‖SNq
≤ 1, using the lassial omplexinterpolation argument (see, e.g., [BL76℄). For the onveniene of the readernot familiar with the subjet, we provide the details. Let Z = {z ∈ C | 0 ≤

Re z ≤ 1}, and de�ne a funtion F from Z to the unit ball B(LN
2 , ℓ

N
2 ) of

L(LN
2 , ℓ

N
2 ) as follows:(9) F (z) = |D|(1−z)r/2 signDTM|g|(1−z)r/2 sign g.Here, as usual, |D| = diag(|dj|) and signD = diag(sign dj). Observe that Fis analyti in the interior of Z as a funtion from Z to CN×CN . Furthermore,

F is ontinuous and bounded on Z. A diret alulation shows that if 1/r =
(1 − θ)/2 then F (θ) = DTMg.If Re z = 1, it follows from (9) that F (1 + it) = AtTBt, where At =
|D|−itr/2 signD and Bt = M|g|−itr/2 sign g. Notie that At and Bt viewed asoperators from ℓN2 to ℓN2 and from LN

2 to LN
2 respetively are ontrations.It follows that(10) ‖F (z)‖LN2 ,ℓN2

≤ ‖T‖LN2 ,ℓN2
≤ 1 whenever Re z = 1.If Re z = 0 then we an write

F (it) = At|D|r/2TM|g|r/2Bt.It an be easily veri�ed that ‖ |g|r/2‖LN2
≤ 1 and ‖(|di|

r/2)‖ℓN2
≤ 1. Sine

‖T‖LN1 ,ℓN∞
≤ 1, it follows by Lemma 6.4 that(11) ‖F (z)‖HS ≤ 1 whenever Re z = 0.



258 B. Sari et al.Put SN
q = Sq(L

N
2 , ℓ

N
2 ). It is known (see, e.g., [GK65, Theorem 13.1℄) thatthe Shatten lasses interpolate like Lp-spaes. Sine

1

∞
(1 − θ) +

1

2
θ =

1

2
−

1

r
=

1

q
,it follows that (SN

∞, S
N
2 )θ = SN

q .On the other hand, by de�nition of a omplex interpolation spae,
B(SN∞,SN2 )θ

= {f(θ) | f : Z → B(LN
2 , ℓ

N
2 ) analyti,

‖f|{Re z=0}‖S2 ≤ 1 and ‖f|{Re z=1}‖S∞ ≤ 1}.Sine ‖·‖S2 = ‖·‖HS and ‖·‖S∞ = ‖·‖LN2 ,ℓN2
, it follows from (10) and (11) that

DTMg = F (θ) ∈ B(SN∞,SN2 )θ
and, thus, ‖DTMg‖SNq

≤ 1. It follows that
‖WTV ‖Sq = ‖RDTMgS‖Sq ≤ ‖R‖ ‖DTMg‖Sq‖S‖ ≤ C1C2K

2
G.Note that ‖(WTV )−1‖ ≤ C2

1C
2
3 . It follows from Lemma 6.1 that

k ≤

(
1

C2
1C

2
3

1

C1C2K2
G

)−q

= (C3
1C2C

2
3K

2
G)q.This onludes the proof.We also need the following lemma, whih generalizes Lemma 3.4. Assumethat X is a Banah spae with an FDD (Xn)∞n=1 (see [LT77℄ for the de�nitionof FDD). Let Pn be the anonial projetion from X onto Xn, and assumethat X satis�es the following ondition, whih means that X is far from a

c0-sum of the Xn's:
(12) for any δ > 0 there is a k = k(δ) in N so that whenever x ∈ SX , then

card{n ∈ N | ‖Pnx‖ ≥ δ} < k.Suppose that for every n ∈ N we are given a seminorm qn on Xn suh that
qn(x) ≤ ‖x‖, where qn(x) stands for qn(Pnx) whenever x ∈ X.Lemma 6.6. Suppose that X, (Xn), and (qn) are as in the preedingparagraph and 0 < r ≤ 1. Then there exists ε > 0 suh that for every
l ∈ N there exists L ∈ N suh that for every L-dimensional subspae G of Xsuh that maxn∈N qn(x) ≥ r‖x‖ for all x ∈ G there exists an l-dimensionalsubspae F ⊆ G and an index n0 suh that qn0(x) ≥ ε‖x‖ for all x ∈ F .To prove Lemma 6.6 we need the following stabilization result (see, e.g.,[MS86, p. 6℄).Theorem 6.7. For every n ∈ N, ε > 0 and c > 0 there is an N =
N(n, ε, c) ∈ N so that for any N -dimensional spae E, and any Lipshitzmap f : SE → R whose Lipshitz onstant does not exeed c, there is an n-dimensional subspae F of E so that

max{f(x) : x ∈ SF } − min{f(x) : x ∈ SF } ≤ ε.



Norm losed ideals in L(ℓp, ℓq) 259Proof of Lemma 6.6. Let k(·) be the funtion de�ned in (12). Put
m = k(r2/4), δ = r/4m, s = k(δ).It su�es to show that for l′ ∈ N there exists L so that, if G is a subspaeof X of dimension L and maxn∈N qn(x) ≥ r‖x‖ for all x ∈ G, then G hasan l′-dimensional subspae F ′ and a set I ⊂ N with card I = s suh that

maxn∈I qn(x) ≥ δ‖x‖ for all x ∈ F ′.Indeed, one we prove this formally weaker laim, we an take a number
l′ large enough so that Theorem 6.7 an be applied s times to dedue that F ′has an l-dimensional subspae F whih has the property that, for all n ∈ I,

max
x∈SF

qn(x) − min
x∈SF

qn(x) ≤ δ/2.Now pik any y ∈ SF ; then qn0(y) = maxn∈I qn(y) ≥ δ for some n0 ∈ I.Then for every x ∈ SF we have
qn0(x) ≥ min

z∈SF
qn0(z) ≥ max

z∈SF
qn0(z) − δ/2 ≥ qn0(y) − δ/2 ≥ δ/2,so that the statement of our lemma is satis�ed for ε = δ/2.Let l′ ∈ N and de�ne numbers L0, L1, . . . , Lm as follows. Put L0 = l′,and, assuming that L0, L1, . . . , Ln, n < m, have already been de�ned, useTheorem 6.7 to hoose Ln+1 large enough so that for every Ln+1-dimensionalsubspae G of X and every Lipshitz-1 map f : SG → R there is an Ln-dimensional subspae G′ ⊆ G suh that

max
x∈G′

f(x) − min
x∈G′

f(x) ≤ δ.Let L = Lm. Assume that our laim is false. This would mean that thereexists a subspae G of X with dimG = L suh that
(13) max

n∈N

qn(x) ≥ r‖x‖ for all x ∈ G, and
(14) for eah I ⊂ N of card I = s and eah subspae F ′ ⊆ G of dimF ′ = l′there exists x ∈ SF ′ suh that maxn∈I qn(x) ≤ δ.Choose an arbitrary vetor x1 ∈ SG and a subset I1 ⊂ N with card I1 = sso that minn∈I1 qn(x1) ≥ maxn∈N\I1 qn(x1). It follows from (13) that thereexists an index n1 suh that qn1(x1) ≥ r; we an assume that n1 ∈ I1. Onthe other hand, the de�nition of s implies that qn(x1) ≤ δ whenever n /∈ I1.It follows from the de�nition of Lm that there exists a subspae Gm−1 of Gof dimension Lm−1 so that(15) max

x∈SGm−1

max
n∈I1

qn(x) ≤ min
x∈SGm−1

max
n∈I1

qn(x) + δ ≤ 2δ,where the last inequality follows from (14).Next, pik an x2 ∈ SGm−1 and I2 ⊂ N \ I1 so that card I2 = s and
minn∈I2 qn(x2) ≥ maxn/∈I1∪I2 qn(x2). Again, it follows from (13) that there



260 B. Sari et al.exists an index n2 suh that qn2(x2) ≥ r; we an assume that n2 ∈ I1 ∪ I2.By (15), qn(x2) ≤ 2δ < r for eah n ∈ I1, so that n2 ∈ I2. Again, qn(x2) ≤ δwhenever n /∈ I1∪I2. We an hoose a subspae Gm−2 of Gm−1 of dimension
Lm−2 so that

max
x∈SGm−2

max
n∈I2

qn(x) ≤ 2δ.Proeeding this way, we obtain a sequene of vetors x1, . . . , xm anddisjoint sets I1, . . . , Im of ardinality s, and indies n1, . . . , nm, suh that foreah i = 1, . . . ,m we have ni ∈ Ii and qni(xi) ≥ r. Also,
qn(xi) ≤

{
2δ if n ∈ I1 ∪ · · · ∪ Ii−1,

δ if n /∈ I1 ∪ · · · ∪ Ii,hene qn(xi) ≤ 2δ whenever n /∈ Ii. If n ∈ Ii then qn(xi) ≤ ‖xi‖ = 1.Put x =
∑m

i=1 xi; then for every n ∈ N we have qn(x) ≤ 1 +m · 2δ ≤ 2.On the other hand,
r ≤ qni(xi) ≤ qni(x) + qni(x− xi) ≤ qni(x) + 2mδ,so that qni(x) ≥ r − 2mδ = r/2 for eah i = 1, . . . ,m. It follows fromthe de�nition of m that there an be at most m − 1 indies n suh that

qn(x) ≥ r2‖x‖/4, hene r2‖x‖/4 > r/2. It follows that ‖x‖ > 2/r, so that
qn(x) ≤ 2 < r‖x‖ for every n ∈ N, whih is a ontradition.Now we are ready to prove that U is FSS.Theorem 6.8. The operator U onstruted in (6) is FSS for all 1 < p ≤
2 ≤ q <∞, unless p = q = 2.Proof. In view of Theorem 5.4(iii) we may assume that q = p′. Reallthat U =

⊕∞
n=1 Un is omposed of bloks Un : Xn → Yn, where Xn = ℓ2

n

pand Yn = ℓ2
n

q . For eah n, let Pn : ℓp → Xn be the anonial projetion. For
x ∈ ℓp put qn(x) = ‖UnPnx‖. By Theorem 5.4(i) we have qn(x) ≤ ‖x‖.Assume that U is not FSS. Then there exists a onstant C suh that thereare subspaes G of ℓp of arbitrarily large dimension suh that the restritionof U to G is a C-isomorphism. Let x ∈ SG, and write x =

∑∞
n=1 xn where

xn ∈ Xn; then ‖Ux‖ ≥ 1/C. On the other hand,
‖Ux‖q =

∞∑

n=1

‖Unxn‖
q ≤ max

n∈N

‖Unxn‖
q−p

∞∑

n=1

‖Unxn‖
p ≤ max

n∈N

qn(x)q−p.Hene, maxn∈N qn(x) ≥ Cq/(p−q).It follows from Lemma 6.6 that there exists ε > 0 suh that for every kand for every G ⊆ ℓp of su�iently large dimension there exists a subspae
F of G and an index n suh that dimF = k and qn(x) ≥ ε for all x ∈ SF .This implies that the restrition of UnPn to F is a 1/ε-isomorphism. Put
E = Pn(F ); then E is a k-dimensional subspae of Xn, and Un is a 1/ε-



Norm losed ideals in L(ℓp, ℓq) 261isomorphism on E. In view of Theorem 4.10 we may assume that E is 2-isomorphi to ℓk2 and Un(E) is K-omplemented in ℓ2nq .Let Vn be the anonial isometry between LN
p and Xn = ℓNp , where

N = 2n. It follows that ‖Vnx‖ℓNr
= N1/r−1/p‖x‖LNr

for every x ∈ LN
p andevery r ∈ [p, q]. It follows from the de�nition of Un and Remark 5.3 that

‖UnVn‖LN2 ,ℓN2
= N1/2−1/p‖Un‖ℓN2 ,ℓN2

= N1/2−1/p−1/q‖Hn‖ℓN2 ,ℓN2
= 1,

‖UnVn‖LN1 ,ℓN∞
= N1−1/p‖Un‖ℓN1 ,ℓN∞

= N1−1/p−1/q‖Hn‖ℓN1 ,ℓN∞
= 1.Now applying Theorem 6.5 to UnVn and V −1

n (E) we obtain a ontraditionwith the fat that k = dimE was hosen arbitrarily.Remark 6.9. If p = q = 2 then U is an isometry, hene not FSS. Con-sider the ase when p = 1 and q = ∞. The preeding proof does not work,sine now we annot use Theorem 4.10. Atually, U is not FSS in this ase.Indeed, we now have Un = Hn. It is easy to see that among the olumns of
Hn one �nds all the Rademaher vetors (of length N = 2n). Sine the spanof these vetors in ℓN∞ is isometrially isomorphi to ℓn1 , it follows that therestrition of Hn to the appropriate subspae of ℓN1 preserves a opy of ℓn1 .Question. Are there any other losed ideals in L(ℓp, ℓq)? In view of thediagram at the beginning of our paper this question an be subdivided intothe following subquestions:(i) Is J Ip,q equal to J FSS ∩ J ℓ2? If not, is J FSS ∩ J ℓ2 an immediatesuessor of J Ip,q?(ii) Is J FSS an immediate suessor of J FSS ∩J ℓ2? More generally, arethere any immediate suessors of J FSS ∩ J ℓ2 other than J ℓ2?(iii) Is J FSS ∨ J ℓ2 an immediate suessor of J ℓ2?(iv) Is J FSS ∨ J ℓ2 equal to L(ℓp, ℓq)?Question. Suppose again that U is the operator de�ned in (6). Sine
U is FSS, we have J U ⊆ J FSS. Does J U equal J FSS?Referenes[BL76℄ J. Bergh and J. Löfström, Interpolation Spaes. An Introdution, GrundlehrenMath. Wiss. 223, Springer, Berlin, 1976.[Calk41℄ J. W. Calkin, Two-sided ideals and ongruenes in the ring of bounded opera-tors in Hilbert spae, Ann. of Math. (2) 42 (1941), 839�873.[CPY74℄ S. R. Caradus, W. E. Pfa�enberger, and B. Yood, Calkin Algebras and Alge-bras of Operators on Banah Spaes, Leture Notes in Pure and Appl. Math.9, Dekker, New York, 1974.[Daws06℄ M. Daws, Closed ideals in the Banah algebra of operators on lassial non-separable spaes, Math. Pro. Cambridge Philos. So. 140 (2006), 317�332.[DJT95℄ J. Diestel, H. Jarhow, and A. Tonge, Absolutely Summing Operators, Cam-bridge Stud. Adv. Math. 43, Cambridge Univ. Press, Cambridge, 1995.
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