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Operator Segal algebras in Fourier algebras

by

Brian E. Forrest, Nico Spronk and Peter J. Wood (Waterloo, ON)

Abstract. Let G be a locally compact group, A(G) its Fourier algebra and L1(G)
the space of Haar integrable functions on G. We study the Segal algebra S1A(G) =
A(G) ∩ L1(G) in A(G). It admits an operator space structure which makes it a com-
pletely contractive Banach algebra. We compute the dual space of S1A(G). We use it
to show that the restriction operator u 7→ u|H : S1A(G) → A(H), for some non-open
closed subgroups H, is a surjective complete quotient map. We also show that if N is
a non-compact closed subgroup, then the averaging operator τN : S1A(G) → L1(G/N),
τNu(sN) =

T
N

u(sn) dn,is a surjective complete quotient map. This puts an operator space

perspective on the philosophy that S1A(G) is “locally A(G) while globally L1”. Also, using
the operator space structure we can show that S1A(G) is operator amenable exactly when
when G is compact; and we can show that it is always operator weakly amenable. To
obtain the latter fact, we use E. Samei’s theory of hyper-Tauberian Banach algebras.

1. Operator Segal algebras

1.1. Notation. For any Banach space X we let B(X ) denote the Banach
algebra of bounded linear operators from X to itself, and b1(X ) the set of
all vectors of norm not exceeding 1.

For details on classical harmonic analysis, we use [15, 23]. We will always
let G denote a locally compact group with a fixed left invariant Haar mea-
sure m. For 1 ≤ p ≤ ∞, Lp(G) is the usual Lp-space with respect to m. If
f, g are Borel measurable functions and s ∈ G, then for almost every t in G
we denote by

s ∗ f(t) = f(s−1t), f ∗ g(t) =
\
G

f(s)s ∗ g(t) dt and f̌(t) = f(t−1)

the left group action, convolution (when the integrand makes sense) and in-
version. We note that L1(G) is a Banach algebra with respect to convolution.
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We let A(G) and B(G) denote the Fourier and Fourier–Stieltjes algebras

of G, which are Banach algebras of continuous functions on G and were
introduced in [7]. We recall, from that article, that A(G) consists exactly
of functions on G of the form u(s) = 〈λ(s)f | g〉 = g ∗ f̌(s), where λ : G →
B(L2(G)) is the left regular representation given by λ(s)f = s ∗ f . The dual
of A(G) is the von Neumann algebra VN(G), which is generated by λ(G) in
B(L2(G)).

Our standard references for operator spaces are [6, 22]. An operator space
is a complex Banach space V equipped with an operator space structure:
for each space of matrices Mn(V) with entries in V, n ∈ N, we have a
norm ‖·‖Mn(V), and the norms satisfy Ruan’s axioms in addition to that
‖·‖M1(V) is the norm on V = M1(V). A map T from V to another operator
space W is said to be completely bounded if the family of linear operators
[vij ] 7→ [Tvij ] : Mn(V) → Mn(W) is uniformly bounded over n. If A is
an algebra and an operator space for which V is a left module over A, we
say V is a completely bounded A-module if there is C > 0 so that for each
[aij ] in Mn(A) and each [vkl] in Mm(V) we have

‖[aijvkl]‖Mnm(V) ≤ C‖[aij]‖Mn(A)‖[vkl]‖Mm(V).

We say V is a completely contractive A-module if we can set C = 1. This is
the same as asserting that the module multiplication extends to a map on the
operator projective tensor product A ⊗̂ V → V and is bounded at all matrix
levels by C. We say A is a completely bounded (contractive) Banach algebra

if it itself is a completely bounded (contractive) A-module. We note that
any C∗-algebra admits a canonical operator space structure. The algebras
L1(G) and A(G) will always have the standard predual structures (see [3]),
in their respective roles as the preduals of L∞(G) and VN(G). With these
operator space structures, these are completely contractive Banach algebras.

1.2. Abstract operator Segal algebras. Let A be a completely contrac-
tive Banach algebra. A (contractive) [left] operator Segal algebra in A is a
dense [left] ideal SA equipped with an operator space structure {‖·‖Mn(SA) :

Mn(SA) → R≥0} under which

(OSA1) (SA, ‖·‖SA) is a Banach space,
(OSA2) the identity map SA →֒ A is completely bounded (contractive),
(OSA3) SA is a completely bounded (contractive) A-bimodule.

Note that (OSA2) and (OSA3) imply that SA is a completely bounded
Banach algebra. Moreover SA is a completely contractive Banach algebra if
the associated maps and module actions are completely contractive.

Let us see that operator Segal algebras are reasonably common.
(i) For any Banach space X , let maxX denote the maximal operator

space whose underlying Banach space is X . If A is any Banach algebra with
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abstract Segal subalgebra SA, then maxSA is an operator Segal algebra
in maxA.

(ii) Let H be a Hilbert space, K(H) the C∗-algebra of compact operators
on H, and for 1 ≤ p < ∞, Sp(H) be the Schatten p-class operators. Since
we have S1(H) ∼= K(H)∗ under the dual pairing (s, k) 7→ trace(sk), we see
that S1(H) is a completely contractive K(H)-module in its dual operator
space structure, and hence is an operator Segal algebra. For 1 < p < ∞,
we assign to Sp(H) the interpolated operator space structure Sp(H) =
(K(H),S1(H))1/p. See [22] for more on this. By the functorial properties
of operator interpolation we can verify that (OSA2) and (OSA3) obtain for
Sp(H), and, in fact, Sp(H) is a contractive Segal algebra in K(H).

(iii) Similarly to (ii) above, we can see that if I is any set and c0(I)
denotes the C∗-algebra of functions on I vanishing at infinity, then ℓ1(I) ∼=
c0(I)

∗ is a contractive operator Segal algebra in c0(I). With the operator
interpolation structure ℓp(I) = (c0(I), ℓ

1(I))1/p (1 ≤ p ≤ ∞) we see that
ℓp(I) is a contractive operator Segal algebra in c0(I).

1.3. The 1-Segal Fourier algebra. We define the 1-Segal Fourier algebra

to be the space
S1A(G) = A(G) ∩ L1(G).

For u in S1A(G) we let

‖u‖S1A = ‖u‖A + ‖u‖L1 .

In [12] this space is denoted LA(G). It is shown in Lemma 1.1 of that article
that it is complete; and in Proposition 2.5 that it is a Segal algebra in
A(G). We will reserve the notation LA(G) for S1A(G), when it is treated as
a Segal algebra in L1(G), and call it the Lebesgue–Fourier algebra. If G is

abelian, with dual group Ĝ, then there is an isometric algebra isomorphism
S1A(G) ∼= LA(Ĝ).

Let us assign to S1A(G) a natural operator space structure. The norm
on S1A(G) was gained via the embedding S1A(G) →֒ A(G) ⊕1 L1(G) : u 7→
(u, u). The space A(G)⊕1 L1(G) is the predual of the von Neumann algebra
VN(G) ⊕∞ L∞(G) and as such inherits a natural operator space structure
[3, 6]. Thus we identify the matrix space Mn(S1A(G)) as a subspace of
A(G)⊕1 L1(G) ∼= CBσ(VN(G)⊕∞ L∞(G),Mn). Hence if [uij ] ∈ Mn(S1A(G))
we obtain

‖[uij ]‖Mn(S1A) = sup{‖[〈Tpq, uij〉 + 〈ϕpq, uij〉]‖Mnr
}

where the supremum is taken over [Tpq] in b1(Mr(VN(G))), [ϕpq] in
b1(Mr(L

∞(G))) and r in N, and where 〈Tpq, uij〉 indicates the VN(G)-
A(G) dual pairing and 〈ϕpq, uij〉 =

T
G ϕpq(s)uij(s) ds is the L∞(G)-L1(G)

dual pairing, for each quadruple index p, q, i, j. It follows immediately that
‖[uij ]‖Mn(S1A) ≥ ‖[uij]‖Mn(A), so (OSA2) is satisfied.
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It remains to check the axiom (OSA3). Suppose [vkl] ∈ b1(Mm(A(G))).
Then ‖[vkl]‖Mm(L∞) ≤ ‖[vkl]‖Mm(A) ≤ 1, since the injection A(G) →֒ L∞(G)
is a contraction, hence a complete contraction, so ‖[ϕpqvkl]‖Mrm(L∞) ≤ 1 for
each [ϕpq] in b1(Mr(L

∞(G))). Hence

‖[vkluij ]‖Mmn(S1A) = sup{‖[〈Tpq, vkluij〉 + 〈ϕpq, vkluij〉]‖Mnr
}

= sup{‖[〈Tpqvkl, uij〉 + 〈ϕpqvkl, uij〉]‖Mnr
}

≤ sup{‖[〈Tpq, uij〉 + 〈ϕpq, uij〉]‖Mnr
} = ‖[uij]‖Mn(S1A)

where the suprema are taken over [Tpq] in b1(Mr(VN(G))), [ϕpq] in
b1(Mr(L

∞(G))) and varying r in N. Thus if [vkl] ∈ b1(Mm(A(G))) and [uij]
∈ Mn(S1A(G)) then

‖[vkluij ]‖Mmn(S1A) ≤ ‖[vkl]‖Mm(A)‖[uij ]‖Mn(S1A).

Collecting these facts together we obtain

Proposition 1.1. S1A(G) is a contractive operator Segal algebra in A(G).

The convolution algebra LA(G) was shown in [12] to be a left Segal alge-
bra in L1(G). It is immediate, under the operator space structure developed
above, that the injection LA(G) →֒ L1(G) is a complete contraction and,
since L1(G) has the maximal operator space structure, that LA(G) is a com-
pletely contractive L1(G)-module. Thus LA(G) is an operator Segal algebra
as well.

1.4. Other Segal algebras. If 1 < p < ∞ we define the Segal p-Fourier

algebra by

SpA(G) = A(G) ∩ Lp(G).

It is standard to show that if we embed SpA(G) →֒ A(G) ⊕1 Lp(G), then

we obtain a Segal algebra in A(G). If G is abelian with dual group Ĝ,

then SpA(G) is the Segal algebra in L1(Ĝ) given by {f ∈ L1(Ĝ) : f̂ ∈
Lp(G)}; see [23]. If we admit on Lp(G) an operator space structure for which
it is a completely contractive L∞(G)-module—we might refer to this as
an “L∞-homogeneous operator space structure”—then we may assign an
operator space structure to SpA(G) analogously to that which we assigned
to S1A(G) above. The result is still a contractive operator Segal algebra.
If p = 2, there are many candidate operator space structures for L2(G),
including row, column and the “operator Hilbert space” OL2(G). For any p,
the interpolated structures Lp(G) = (minL∞(G),maxL1(G))1/p suffice. See

[22] for information on interpolation and OL2(G). By [20, Theo. 3.5] or [19]
there are certain row and column operator space structures ROW(Lp(G))
and COL(Lp(G)) which are also L∞-homogeneous operator space structures.

For 0 < q <∞ the Figà-Talamanca–Herz algebra Aq(G) has been shown
in [20] to admit an operator space structure under which it is a completely
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bounded Banach algebra. If 1 < p < ∞ we can define the Segal p, q-Figà-

Talamanca–Herz algebra by

SpAq(G) = Aq(G) ∩ Lp(G).

If on Lp(G) we admit an L∞-homogeneous operator space structure, then
just as above we obtain an operator Segal algebra in Aq(G). Note that
SpAq(G) may not be a completely contractive Banach algebra as Aq(G) is
not known to be.

2. Dual spaces. In this section we develop the dual of S1A(G) and
apply this to determining some restriction and averaging theorems.

We begin with a useful lemma. We denote the group action of right
translation by

t · f(s) = f(st)

for t, s in G, where f is any function on G. If S1(G) is a left Segal algebra
in L1(G), then we say that S1(G) has continuous right translations if for
any u in S1(G), t · u ∈ S1(G), and t 7→ t · u : G → S1(G) is continuous. For
example, if u ∈ LA(G) we have

‖t · u− u‖LA = ‖t · u− u‖L1 + ‖t · u− u‖A
t→e
−→ 0.

However, the right action of G on LA(G) is isometric (bounded) if and
only if G is unimodular—in which case we say LA(G) is a symmetric Segal
algebra in L1(G). Indeed, ‖t · u‖LA = ∆(t)‖u‖L1 + ‖u‖A, where ∆ is the
Haar modular function.

Lemma 2.1. Let U denote a neigbourhood basis of relatively compact

symmetric neighbourhoods of the identity e in G, which is a directed set

via reverse inclusion. For each U in U let eU = (1/m(u))1U (normalised

indicator function). If S1(G) is any Segal algebra in L1(G) with continuous

right translations, then, for any u in S1(G), u ∗ eU ∈ S1(G) for each U and

limU∈U ‖u ∗ eU − u‖S1 = 0.

Proof. If u ∈ S1(G) then for each U in U and almost every s in G we
have

u ∗ eU (s) =
\
G

u(t)eU (t−1s) dt =
\
G

u(st)eU (t) dt =
1

m(U)

\
U

f(st) dt

where we used symmetry of U to obtain ěU = eU . Since right translation is
continuous on G, and U is relatively compact, we may regard

u ∗ eU =
1

m(U)

\
U

t · u dt
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as a Bochner integral, converging in S1(G). We then obtain

‖u ∗ eU − u‖S1 =

∥∥∥∥
1

m(U)

\
U

(t · u− u) dt

∥∥∥∥

≤
1

m(U)

\
U

‖t · u− u‖S1dt ≤ sup
t∈U

‖t · u− u‖S1

U∈U
−→ 0.

We note that {eU}U∈U is a well-known symmetric bounded approximate
identity in L1(G).

2.1. L∞-convolvers. Since the metrical structure on S1A(G) is deter-
mined by an embedding S1A(G) →֒ A(G) ⊕1 L1(G), the dual S1A(G)∗ is
a quotient of VN(G) ⊕∞ L∞(G) by the annihilator S1A(G)⊥. The L∞-
convolvers allow us to describe this annihilator.

Proposition 2.2. Let ϕ ∈ L∞(G). Then the following statements are

equivalent :

(i) sup{‖ϕ ∗ f‖L2 : f ∈ L2(G) ∩ L1(G)∨ and ‖f‖L2 ≤ 1} <∞,
(ii) sup{|

T
G ϕ(s)u(s) ds| : u ∈ S1A(G) and ‖u‖A ≤ 1} <∞.

In this case the operator f 7→ ϕ ∗ f : L2(G) ∩ L1(G)∨ → L2(G) extends

uniquely to a bounded linear operator Λ(ϕ) on L2(G). Furthermore Λ(ϕ) ∈
VN(G), and the quantities in (i) and (ii) are each equal to ‖Λ(ϕ)‖VN.

In (i), L1(G)∨ = {f̌ : f ∈ L1(G)}; which is L1(G) itself exactly when G
is unimodular. By [15, 20.16], if ϕ ∈ L∞(G) and f ∈ L1(G)∨, then ϕ ∗ f
makes sense; however, in general, it is not square integrable, even if we
further assume that f is. For example, if G is non-compact then 1 ∗ f =
(
T
G f̌ dm) 1 6∈ L2(G) if

T
G f̌ dm 6= 0.

We call a ϕ which satisfies the conditions of the proposition an L∞-

convolver, and Λ(ϕ) its convolution operator. We define

Conv∞(G) = {ϕ ∈ L∞(G) : ϕ is a convolver}.

Proof of Proposition 2.2. (i)⇒(ii). Since L2(G)∩L1(G)∨ defines a dense
subspace of L2(G), the operator f 7→ ϕ ∗ f : L2(G) ∩ L1(G)∨ → L2(G) is a
continuous linear operator and hence extends uniquely to a bounded linear
operator Λ(ϕ) in B(L2(G)).

If ̺ : G→ B(L2(G)) is the right regular representation given by ̺(t)f =
∆(t)−1/2t·f for f in L2(G) and t in G, then it is easy to check that (Λ(ϕ)̺(t)
−̺(t)Λ(ϕ))f= 0 for each f in L2(G)∩L1(G)∨, and hence for each f in L2(G).
This implies that Λ(ϕ) ∈ VN(G).

If f ∈ L2(G) ∩ L1(G)∨ and g ∈ L2(G) ∩ L1(G), then the associated
coefficient function satisfies

(2.1) 〈λ(·)f | g〉 = g ∗ f̌ ∈ S1A(G).
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Moreover, in the VN(G)-A(G) dual pairing we obtain

〈Λ(ϕ), g ∗ f̌〉 = 〈ϕ ∗ f | g〉 =
\
G

( \
G

ϕ(s)f(s−1t) ds
)
g(t) dt(2.2)

=
\
G

ϕ(s)
( \

G

f(s−1t)g(t)dt
)
ds =

\
G

ϕ(s)g ∗ f̌(s) ds

where the use of Fubini’s Theorem is justified by our choices for f and g.
Now if u ∈ S1A(G) then u ∈ L∞(G)∩L1(G) ⊆ L2(G), so u ∈ L2(G)∩L1(G).
Moreover, if (eU )U∈U is the bounded approximate identity from Lemma 2.1,
then each eU is in L2(G)∩L1(G)∨ with ěU = eU . Also, limU∈U ‖u∗eU −u‖S1A

= 0. We then have 〈λ(·)eU |u〉 = u ∗ eU and

〈Λ(ϕ), u〉 = lim
U∈U

〈Λ(ϕ), u ∗ eU 〉(2.3)

= lim
U∈U

\
G

ϕ(s)u ∗ eU (s) ds =
\
G

ϕ(s)u(s) ds.

Hence

sup
{∣∣∣
\
G

ϕ(s)u(s) ds
∣∣∣ : u ∈ S1A(G) and ‖u‖A ≤ 1

}

≤ sup{|〈Λ(ϕ), u〉| : u ∈ b1(A(G))} = ‖Λ(ϕ)‖VN <∞.

(ii)⇒(i). Since L2(G) ∩ L1(G) is dense in L2(G) we have, for each f in
L2(G) ∩ L1(G)∨,

‖ϕ ∗ f‖L2 = sup{|〈ϕ ∗ f | g〉| : g ∈ L2(G) ∩ L1(G) and ‖g‖L2 ≤ 1}.

Restating (2.2) and (2.1) we deduce for f ∈ L2(G)∩L1(G)∨ and g ∈ L2(G)∩
L1(G) that

〈ϕ ∗ f | g〉 =
\
G

ϕ(s)〈λ(s)f | g〉 ds and 〈λ(·)f | g〉 ∈ S1A(G).

Thus

sup{‖ϕ ∗ f‖L2 : f ∈ L2(G) ∩ L1(G)∨ and ‖f‖L2 ≤ 1}

= sup






∣∣∣
\
G

ϕ(s)〈λ(s)f | g〉 ds
∣∣∣ :

f ∈ L2(G) ∩ L1(G)∨,

g ∈ L2(G) ∩ L1(G)

and ‖f‖L2‖g‖L2 ≤ 1






≤ sup
{∣∣∣
\
G

ϕ(s)u(s) ds
∣∣∣ : u ∈ S1A(G) and ‖u‖A ≤ 1

}
<∞.

By density of L2(G)∩L1(G)∨ in L2(G), the left hand side quantity above is
‖Λ(ϕ)‖.

Unfortunately, we cannot determine if formula (2.3) obtains for any u
in A(G), since if u 6∈ S1A(G), then the limit of the integrals in that equation
cannot be expected to hold.
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We note that if G is discrete, then it is well-known that every element of
VN(G) is an ℓ2-convolver, and in particular an ℓ∞-convolver, i.e. VN(G) =
Λ(Conv∞(G)). This corresponds to the fact that S1A(G) = A(G)∩ ℓ1(G) =
ℓ1(G).

If G is compact, then L∞(G) ⊆ L1(G), and hence L∞(G) = Conv∞(G).
This corresponds to the fact that S1A(G) = A(G) in this case. Here we see
that Λ(Conv∞(G)) is a dense ∗-subalgebra of the (reduced) group C∗-algebra
C∗

r (G).
There are natural questions concerning the extent of Conv∞(G). We

note that in both cases above, Conv∞(G) ⊆ L2(G). Moreover, L∞(G) ∩
L1(G), which is necessarily always contained in Conv∞(G), is always a subset
of L2(G). Thus we ask: for which G is Conv∞(G) contained in L2(G)? It
is also natural to wonder about the norm closure Λ(Conv∞(G)). When is

Λ(Conv∞(G)) a ∗-subalgebra of VN(G)? How big is Λ(Conv∞(G))? We note
that Λ(Conv∞(G)) always contains the reduced C∗-algebra C∗

r(G) of G.

2.2. The dual of the 1-Segal Fourier algebra

Theorem 2.3. There is an isometric isomorphism

S1A(G)∗ ∼= VN(G) ⊕∞ L∞(G)/{(Λ(ϕ),−ϕ) : ϕ ∈ Conv∞(G)}.

In particular , Conv∞(G) is linearly isomorphic to a norm-closed subspace

of VN(G) ⊕∞ L∞(G).

Proof. We have an isometry S1A(G) →֒ A(G) ⊕1 L1(G). Hence by the
Hahn–Banach Theorem every continuous linear functional may be realised
as one from VN(G) ⊕∞ L∞(G) ∼= (A(G) ⊕1 L1(G))∗ via the form

〈(T, ϕ), u〉 = 〈T, u〉 +
\
G

ϕudm

for (T, ϕ) in VN(G) ⊕∞ L∞(G) and u in S1A(G), where 〈T, u〉 denotes the
VN(G)-A(G) dual pairing. It follows that the annihilator of S1A(G) will
consist exactly of those pairs (T, ϕ) for which 〈T, u〉 = −

T
G ϕudm for each

u in S1A(G). But then

sup
{∣∣∣
\
G

ϕudm
∣∣∣ : u ∈ S1A(G) and ‖u‖A ≤ 1

}

≤ sup{|〈T, u〉| : u ∈ b1(A(G))} = ‖T‖VN <∞.

Hence ϕ ∈ Conv∞(G). Moreover, since S1A(G) is dense in A(G), it follows
that T = −Λ(ϕ).

We have found no obvious direct computation which allows us to obtain
the following corollary, in general. We note that, by [4, Theo. 2.1], S1A(G),
being a Segal algebra in A(G), has spectrum G. If A(G) were assumed to
have an approximate unit (maybe unbounded!), then the corollary would
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be a consequence of [4, Theo. 1.1]. We let Ac(G) denote the subalgebra of
compactly supported elements of A(G) and recall that A(G) is Tauberian,
as Ac(G) is dense in A(G).

Corollary 2.4. S1A(G) is an essential A(G)-module, i.e., A(G)·S1A(G)
is a dense subspace of S1A(G). In particular S1A(G) is a Tauberian Banach

algebra.

Proof. Let (T,−ϕ) in VN(G) ⊕∞ L∞(G) be such that

〈T, uv〉 −
\
G

ϕuv dm = 0

for every u in A(G) and v in S1A(G). Then we see from the theorem above
that Tu = Λ(ϕu) for every u in A(G). It is clear that Ac(G) ⊂ S1A(G).
Thus, for any v ∈ Ac(G) we see that

〈T, uv〉 = 〈Tu, v〉 =
\
G

ϕuv dm = 〈Λ(ϕ), uv〉

for all u in A(G), from which it follows that 〈T,w〉 = 〈Λ(ϕ), w〉 for any
w ∈ Ac(G). Since Ac(G) is dense in A(G), T = Λ(ϕ). It follows, again
for the theorem above, that (T,−ϕ) is the zero functional on S1A(G). The
Hahn–Banach Theorem then implies that A(G) ·S1A(G) is dense in S1A(G).

We observe that Ac(G) = Ac(G) · S1A(G) consists of the compactly
supported elements in S1A(G) and is dense in there too.

2.3. The dual of the 2-Segal Fourier algebra. We note that the com-
putations in this section work analogously for S2A(G). Let us briefly indi-
cate how. Since translations are continuous on S2A(G) we can deduce that
limU∈U ‖u ∗ eU − u‖S2A = 0 just as in Lemma 2.1. Then we find for a fixed
h in L2(G) that the following two quantities:

(i) sup{‖h ∗ f‖L2 : f ∈ L2(G) ∩ L2(G)∨ and ‖f‖L2 ≤ 1},
(ii) sup{|

T
G hu dm| : u ∈ S2A(G) and ‖u‖A ≤ 1}

are equal, in particular both are finite if one of them is. We call such a
function h an L2-convolver and denote the set of them by Conv2(G). If
h ∈ Conv2(G) then it defines a bounded operator Λ2(h) on L2(G) which is
an element of VN(G). We thus obtain the linear isometric identification

(2.4) S2A(G)∗ ∼= VN(G) ⊕∞ L2(G)/{(Λ2(h),−h) : h ∈ Conv2(G)}.

We note that if G is an abelian group with dual group Ĝ and U : L2(G) →

L2(Ĝ) is the Plancherel unitary, then U(Conv2(G)) = L∞(Ĝ) ∩ L2(Ĝ). Is

there an analogous description for UΛ(Conv∞(G))U∗?

3. Restriction and averaging operations. Let us first note that if
H is an open subgroup of G, then we have restrictions A(G)|H = A(H) and
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L1(G)|H = L1(H). Both restriction operations are quotient maps, the latter
so provided the Haar measure on H is the restricted Haar measure from G.
Hence we obtain the restriction

S1A(G)|H = S1A(H).

We shall see that for a non-open closed subgroup, this result can be much
different.

3.1. A distance formula. IfH is any closed subgroup of G, the restriction
map u 7→ u|H : A(G) → A(H) is also a surjective quotient map by [14, 28].
The kernel of this map is the ideal I(H) = {u ∈ A(G) : u|H = 0}. Dual
to this is the fact that the subalgebra VNH(G), which is the weak operator
closure of the span of {λ(s) : s ∈ H} in VN(G), is the annihilator of I(H)
in G and hence ∗-isomorphic to A(H)∗ ∼= VN(H).

If H is a closed subgroup of G, we say H admits a bounded approximate

indicator in G (after [1]) if there is a bounded net (uα) from B(G) such that

(i) limα uα|Hv = v for each v in A(H),
(ii) limα uαu = 0 for each u in I(H).

By [1, Theo. 3.7] we can suppose that ‖uα‖B ≤ 1 for each α. We will have
a bounded approximate indicator for H in G provided:

• H is neutral in G, i.e. there is a neighbourhood basis V of e for which
V H = HV for each V in V (see [18, Prop. 2.2])—this is always true if
G is a small invariant neighbourhood group; or

• G is amenable (see [9, Theo. 1.3] and [1, Prop. 4.1]).

Since there is a completely contractive injection S1A(G) →֒ A(G) with
dense range, there is a completely contractive injection VN(G) →֒ S1A(G)∗.
Using Theorem 2.3 we can obtain a lower bound on the norms of the range
of this map: if T ∈ VN(G) then

‖T‖S1A∗ = inf{max{‖T + Λ(ϕ)‖VN, ‖ϕ‖L∞} : ϕ ∈ Conv∞(G)}

≥ inf{‖T +Λ(ϕ)‖VN : ϕ∈Conv∞(G)}= distVN(T,Λ(Conv∞(G))).

We obtain a similar bound for matricial norms: if [Tij ] ∈ Mn(VN(G)), then

(3.1) ‖[Tij ]‖Mn(S1A∗) ≥ distMn(VN)([Tij ],Mn(Λ(Conv∞(G)))).

Under certain assumptions, the quantity on the right is as big as it can be.

Theorem 3.1. If H is a non-open closed subgroup of G which admits a

contractive approximate indicator (uα), then for any [Tij ] in Mn(VNH(G)),

distMn(VN)([Tij],Mn(Λ(Conv∞(G)))) = ‖[Tij ]‖Mn(VN).

Proof. Let us first suppose that n = 1. Given any ε > 0 find u ∈
b1(A(G)) for which supp(u) is compact and

|〈T, u〉| > ‖T‖VN − ε.
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Now let ϕ ∈ Conv∞(G). We then have, for any α,

(3.2) 〈T + Λ(ϕ), uuα〉 = 〈T, uuα〉 +
\
G

ϕuuα dm.

If we can find α0 for which

(3.3) |〈T, u〉 − 〈T, uuα0
〉| < ε and

∣∣∣
\
G

ϕuuα0
dm

∣∣∣ < ε

then it follows that

(3.4) |〈T + Λ(ϕ), uuα0
〉| > ‖T‖VN − 3ε.

But then distVN(T,Λ(Conv∞(G))) ≥ ‖T‖VN, whence equality must hold.
Let us verify the first inequality from (3.3). Since T ∈ VNH(G) there

is TH in VN(H) such that 〈T, v〉 = 〈TH , v|H〉 for each v in A(G). Hence by
condition (i) in the definition of (uα) we have

〈T, uuα〉 = 〈TH , (uuα)|H〉
α
→ 〈TH , u|H〉 = 〈T, u〉

and we can find α1 for which the desired inequality is satisfied for any
α0 ≥ α1. Now let us verify the second inequality from (3.3). Since H is not
open it is locally null [15, 20.17], so m(S ∩H) = 0 where S = supp(u). Let
C be any compact neighbourhood of S ∩H with

m(C) <
ε

2‖ϕ‖L∞ + 1
.

Let U be a symmetric neighbourhood of e for which (S ∩H)U2 ⊆ C. Then
if for s in G we let

v(s) =
1

m(U)
〈λ(s)1U | 1(S∩H)U 〉 =

m(sU ∩ (S ∩H)U)

m(U)

we obtain

‖v‖L∞ = 1, v|S∩H = 1, supp(v) ⊆ (S ∩H)U2 ⊆ C.

Now we have \
G

ϕuuα dm =
\
G

ϕuuαv dm+
\
G

ϕuuα(1 − v) dm,

where ‖uuαv‖L∞ ≤ 1, so
∣∣∣
\
G

ϕuuαv dm
∣∣∣ ≤

\
C

|ϕ| dm ≤ ‖ϕ‖L∞m(C) <
ε

2
,

while

‖uαu(1 − v)‖L∞ ≤ ‖uαu(1 − v)‖A
α
→ 0

as u(1 − v) ∈ I(H), so
∣∣∣
\
G

ϕuuα(1 − v) dm
∣∣∣ ≤

\
S

‖ϕ‖L∞‖uuα(1 − v)‖L∞ dm
α
→ 0.
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Hence we can find α2 so that the desired inequality holds for α0 ≥ α2. To
obtain (3.3), we now choose α0 ≥ α1, α2.

We can now obtain the theorem for n > 1. First, given ε > 0 we can
choose m and [ukl] in b1(Mm(A(G))) for which each supp(uij) is compact
and

‖〈Tij , ukl〉‖Mmn
> ‖[Tij ]‖Mn(VN) − ε.

Then, as in (3.2), if [ϕij ] ∈ Mn(Conv∞(G)) we have

[〈Tij + Λ(ϕij), ukluα〉] = [〈Tij , ukluα〉] +
[ \

G

ϕijukluα dm
]
.

As above we can arrange to find an α0 for which

|〈Tij, ukluα0
〉 − 〈Tij , ukl〉| <

ε

n2
and

∣∣∣
\
G

ϕijukluα0
dm

∣∣∣ <
ε

n2
,

and then the matricial analogue of (3.4) is satisfied.

3.2. A restriction theorem. We conjecture that the following theorem
holds for general closed non-open subgroups of G.

Theorem 3.2. If H is a closed non-open subgroup of G which admits a

bounded approximate indicator in G, then the restriction map

u 7→ u|H : S1A(G) → A(H)

is a surjective complete quotient map.

Proof. The adjoint of the restriction map is the composition of the injec-
tive ∗-homomorphism J : VN(H) → VNH(G) ⊂ VN(G) with the completely
contractive injection VN(G) →֒ S1A(G)∗. It follows from (3.1) and Theorem
3.1 that for [Tij ] in Mn(VN(H)), we have

‖[JTij ]‖Mn(S1A∗) ≥ distMn(VN)([JTij ],Mn(Λ(Conv∞(G))))

= ‖[JTij ]‖Mn(VN) = ‖[Tij]‖Mn(VNH).

Hence J : VNH(G) → S1A(G)∗ is a complete isometry, so the restriction
map must be a surjective complete quotient map.

We recall that for the operator projective tensor product ⊗̂ we have the
formulas

L1(G) ⊗̂ L1(G) ∼= L1(G×G), A(G) ⊗̂ A(G) ∼= A(G×G).

It is thus a little surprising that the 1-Segal Fourier algebra S1A(G) admits
no such formula.

Corollary 3.3. If G is a non-compact , non-discrete group which is

either amenable or admits small invariant neighbourhoods, then

S1A(G) ⊗̂ S1A(G) 6∼= S1A(G×G).
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Proof. If the two spaces were isomorphic, then the multiplication map
S1A(G) ⊗̂ S1A(G) → S1A(G) ⊂ A(G) would be isomorphic to the restriction
map w 7→ w|D : S1A(G×G) → A(D) ∼= A(G), where D = {(s, s) : s ∈ G}
is the diagonal subgroup. Since our assumptions on G allow D to admit a
bounded approximate indicator in G×G by [1, Theo. 2.4], the restriction
map is surjective. But this contradicts the fact that S1A(G) ( A(G); see
[12, Prop. 2.6].

3.3. An averaging theorem. We note an analogous result to Theorem 3.2
which applies to LA(G), which we recall is L1(G)∩A(G), the Segal algebra
of L1(G).

Let N be a normal subgroup of G, admitting left Haar integral
T
N · · · dn

(normalised ifN is compact). It is well-known that theN -averaging operator
τN : L1(G) → L1(G/N) given by

τNf(tN) =
\
N

f(tn) dn

for almost every tN in G/N is a contractive surjective algebra homomor-
phism. See [23, III.4], for example.

Let us note that τN is a quotient map, but offer an alternative proof to
the standard one. We let

L∞(G :N) =

{
ϕ ∈ L∞(G) :

for locally almost every t in G,

ϕ(tn) = ϕ(t) for every n in N

}
,

which is clearly a closed subspace of L∞(G). We note that if ϕ ∈ L∞(G :N),
then for locally almost every t in G and every n in N we have ϕ(nt) =
ϕ(t · t−1nt) = ϕ(t). If q : G → G/N is the quotient map then ϕ 7→ ϕ ◦ q is
a linear isometry from L∞(G/N) onto L∞(G :N). Now let us compute the
adjoint of τN : if ϕ ∈ L∞(G/N) and f ∈ L1(G), then

〈τ∗Nϕ, f〉 = 〈ϕ, τNf〉 =
\

G/N

ϕ(tN)
\
N

f(tn) dn dtN

=
\

G/N

\
N

ϕ ◦ q(tn)f(tn) dn dtN =
\
G

ϕ ◦ q(t)f(t) dt = 〈ϕ ◦ q, f〉

by Weil’s integral formula, so τ∗Nϕ = ϕ ◦ q. Thus τ∗N : L∞(G/N) → L∞(G)
is an isometry, so τN is a quotient map.

If N is a compact group, then we may let L1(G :N) be defined similarly
to L∞(G :N), and we note it is a subalgebra of L1(G) which is isometrically
algebraically isomorphic to L1(G/N). We may consider τN to have range
L1(G : N). It is well-known that τNA(G) = A(G : N) = {u ∈ A(G) :
u is constant on cosets of N} ∼= A(G/N), and that τNu = u for u in A(G).
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Hence it follows that

τN (LA(G)) = LA(G :N) ∼= LA(G/N)

where LA(G :N) = {u ∈ LA(G) : u is constant on cosets of N}. This result
does not hold if N is not compact. In the case that G is abelian, the following
is due to Krogstad, whose unpublished result is announced in [8]. Our proof
is for general locally compact G.

Theorem 3.4. If N is a non-compact closed normal subgroup of G, then

the N -averaging operator τN : LA(G) → L1(G/N) is a surjective complete

quotient map.

As with Theorem 3.2, the proof relies on a distance formula.

Lemma 3.5. If N is a non-compact closed normal subgroup of G, and

[ϕij ] ∈ Mn(L∞(G :N)), then

distMn(L∞)([ϕij],Mn(Conv∞(G))) = ‖[ϕij ]‖Mn(L∞).

Proof. Let us begin with the “scalar” case. Let ϕ ∈ L∞(G :N) and ε > 0.
Let f ∈ (L1(G) ∩ L2(G))∨ be so that ‖f‖L1 = 1 and |〈ϕ, f〉| > ‖ϕ‖L∞ − ε.
Then for any ψ ∈ Conv∞(G) and any n ∈ N we have

〈ϕ+ ψ, n ∗ f〉 = 〈n−1 ∗ ϕ, f〉 + 〈ψ, n ∗ f〉 = 〈ϕ, f〉 +
\
G

ψ(t)f̌(t−1n) dt

= 〈ϕ, f〉 + ψ ∗ f̌(n).

By [15, 20.16] we find that h = ψ ∗ f̌ is left uniformly continuous. Since
ψ ∈ Conv∞(G), h ∈ L2(G). It then follows that h is a continuous function
vanishing at ∞. Indeed, if not, then there is a δ > 0 and a net (tα) in G such
that limα tα = ∞ and for which |h(tα)| > δ for each α. Then, by uniform
continuity, there is a compact neighbourhood U of the identity in G such
that |h(tαs)| > δ/2 for s ∈ U . By dropping to a subnet, we may assume
that tαU ∩ tβU = ∅ if α 6= β. But then, selecting any finite collection F of
indices we find \

G

|h|2 dm ≥
∑

α∈F

\
tαU

|h|2 dm ≥
|F |δ2

4
,

which, since |F | can be chosen arbitrarily large, contradicts that h ∈ L2(G).
Thus, since N is non-compact, we may find n in N for which

|〈ϕ+ ψ, n ∗ f〉| > ‖ϕ‖L∞ − ε.

Hence distL∞(ϕ,Conv∞(G)) = ‖ϕ‖L∞ .
The general matricial case can be deduced from the scalar case, exactly

as in the proof of Theorem 3.1.

Proof of Theorem 3.4. The adjoint of τN : LA(G) → L1(G/N) is the
composition of the injective ∗-homomorphism ϕ 7→ ϕ ◦ q : L∞(G/N) →
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L∞(G :N) ⊂ L∞(G) with the contractive inclusion L∞(G) →֒ LA(G)∗. We
recall that LA(G)∗ = S1A(G)∗, which is described in Theorem 2.3. Now if
[ϕij ] ∈ Mn(L∞(G/N)), then we obtain, just as in (3.4), and using the lemma
above,

‖[ϕij]‖Mn(L∞) ≥ ‖[τ∗Nϕij ]‖Mn(LA∗)

≥ distMn(L∞)([ϕij ◦ q],Mn(Conv∞(G)))

= ‖[ϕij ◦ q]‖Mn(L∞) = ‖[ϕij ]‖Mn(L∞).

Hence τ∗N : L∞(G/N) → LA(G)∗ is a complete isometry, which implies that
τN : LA(G) → L1(G/N) is a surjective complete quotient map.

It was shown in [13] that if G is a unimodular group—so LA(G) is a
symmetric Segal algebra—then LA(G) is Arens regular if and only if G is

compact. Let us briefly note that this result holds without assuming a priori

that G is unimodular. We refer the reader to the survey article [5] for details
on, and functorial properties of, Arens regularity.

Corollary 3.6. If G is not unimodular, then LA(G) is not Arens regular.

Proof. Let us note that if G admits a continuous homomorphism δ : G→
R for which K = ker δ is compact, then G is an extension of K by an abelian
group. Since abelian groups are small invariant neighbourhood groups, by
[21, 12.1.31] we deduce that G is an invariant neighbourhood group. Then
it is well-known (see [21, 21.1.9], for example) that G is unimodular.

Hence, if G is not unimodular, then N = ker∆ is necessarily a non-
compact closed subgroup of G, with G/N isomorphic to an infinite subgroup
of R. Hence L1(G/N) is not Arens regular and τN : LA(G) → L1(G/N) is a
quotient homomorphism.

4. Cohomological properties. In this section we discuss amenability
and operator amenability of the 1-Segal Fourier algebra S1A(G). We have
opted to keep our presentation simple by focusing on S1A(G). With suit-
able modifications to the proofs, we believe that all of our results hold for
SpAq(G), which was defined and given an operator space structure in Section
1.4, where 1 ≤ p <∞, 1 < q <∞.

4.1. Amenability. Ruan’s result, that A(G) is operator amenable if and
only if G is amenable [24], is one of the most important results which justifies
treating A(G) as an operator space. We recall that a completely contrac-
tive Banach algebra A is operator amenable if every completely bounded
derivation D : A → V∗, where V∗ is the operator dual space to a completely
bounded A-bimodule, is inner. We note that there exist compact groups, for
example G = SO(3), such that A(G) is not amenable [17].
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Proposition 4.1. S1A(G) = A(G) completely isomorphically if and only

if G is compact.

Proof. By [12, Prop. 2.6], S1A(G) = A(G) if and only if G is compact.
Thus it remains to show that if G is compact then the identity map j :
A(G) → S1A(G) is completely bounded. For [uij] in Mn(A(G)) we have

‖[uij]‖Mn(S1A) = ‖[uij1]‖Mn(S1A) ≤ ‖[uij]‖Mn(A)‖1‖S1A = 2‖[uij]‖Mn(A).

Thus j is completely bounded with ‖j‖cb ≤ 2. In fact, since 2 = ‖j(1)‖ we
have 2 ≤ ‖j‖ ≤ ‖j‖cb as well. Since j−1 : S1A(G) → A(G) is completely
contractive we obtain S1A(G) = A(G) completely isomorphically.

Thus we obtain the main result of this section.

Theorem 4.2. S1A(G) is operator amenable if and only if G is compact.

Proof. (⇒) S1A(G) is operator amenable only if it has a bounded ap-
proximate identity [24, 16]. This happens if and only if G is compact by [12,
Prop. 2.6].

(⇐) By Proposition 4.1 above, any completely bounded S1A(G)-module
V is a completely bounded A(G)-module. Moreover, every completely
bounded derivation D : S1A(G) → V∗ induces a completely bounded deriva-
tion D ◦ j : A(G) → V∗. By [24], D ◦ j is inner, whence so too is D.

The main result of [10] states that A(G) is amenable if and only if G
admits an abelian subgroup of finite index. Combining this with [12, Cor.
2.7] we obtain the following.

Corollary 4.3. S1A(G) is amenable if and only if G is compact and

admits an abelian subgroup of finite index.

4.2. Weak amenability. The theory of hyper-Tauberian Banach alge-
bras, developed by Samei [26], extends very easily to Segal algebras. We are
grateful to E. Samei for pointing out an error we made, applying his work,
in an earlier draft of this article.

Let us first recall some basic definitions. Let A be a semisimple abelian
(completely contractive) Banach algebra with Gelfand spectrum X. Hence
we identify A as a subspace of C0(X). We define for a in A its support by
supp(a) = {x ∈ X : a(x) 6= 0}. We say that A is Tauberian if the subalgebra
of compactly supported elements, Ac, is dense in A. If V is a symmetric
Banach A-module and v ∈ V, we define the support of v over A by

suppA(v) = {x ∈ X : a(x) = 0 whenever a · v = 0}.

If V = A∗, with the usual dual module action a · f(b) = f(ba), this agrees
with the usual notion of support of a linear functional. If V = A, then
suppA(a) = supp(a) for any a in A. If V and W are (completely bounded)
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Banach A-modules, a linear operator T : V → W is called A-local if

suppA(Tv) ⊆ suppA(v) for any v in V.

We say that A is (operator) hyper-Tauberian if every (completely) bounded
local operator T : A → A∗ is an A-module map.

Now suppose that the semisimple abelian (completely contractive)
Banach algebra A has an abstract (operator) Segal algebra SA. By [4, Theo.
2.1], SA is also semisimple with Gelfand spectrum X.

Theorem 4.4. If A is (operator) hyper-Tauberian and SA is an essen-

tial A-module, i.e., A · SA is dense in SA, then SA is (operator) hyper-

Tauberian.

Note that the converse follows from [26, Theo. 4.6] and (OSA2).

Proof. It is immediate that for v in SA,

(4.1) suppA(v) = supp(v) = suppSA(v).

Also, since SA is a subalgebra of A, we see that if f ∈ SA∗ then

(4.2) suppA(f) ⊆ suppSA(f).

Now suppose T : SA → SA∗ is a (completely) bounded SA-local operator.
Then we have for u in SA, combining (4.2) and (4.1),

suppA(Tu) ⊆ suppSA(Tu) ⊆ supp(u) = suppA(u).

Hence T is also an A-local operator. Hence by [26, Prop. 2.3], T is an
A-module map. Thus it is an SA-module map.

One of the main motivations for studying hyper-Tauberian algebras is
the result [26, Theo. 3.2]: if A is (operator) hyper-Tauberian, then it is

(operator) weakly amenable. We recall that A is (operator) weakly amenable

if every (completely) bounded derivation D : A → A∗ is inner [2]. We
also recall that the subalgebra Ac(G) of the Fourier algebra of compactly
supported elements lies within S1A(G), and is exactly the subalgebra of
compactly supported elements there.

Corollary 4.5.

(i) S1A(G) is always operator weakly amenable.

(ii) S1A(G) is weakly amenable if the connected component Ge of G is

abelian.

Proof. In [26, Theo. 7.4] it is shown that A(G) is always operator hyper-
Tauberian. Thus (i) follows from [26, Theo. 3.2], whose statement was men-
tioned above, the preceding theorem, and Corollary 2.4. In [26, Theo. 6.5] it
is shown that A(G) is hyper-Tauberian if Ge is abelian. Hence (ii) follows,
similarly to (i) above.
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We note that weak amenability of A(G) is discussed in [17] and [10], and
operator weak amenability in [11], [27] and [25].
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