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Deformation quantization and Borel's theoremin loally onvex spaesbyMiroslav Engli² (Praha and Opava) and Jari Taskinen (Helsinki)
Abstrat. It is well known that one an often onstrut a star-produt by expand-ing the produt of two Toeplitz operators asymptotially into a series of other Toeplitzoperators multiplied by inreasing powers of the Plank onstant h. This is the Berezin�Toeplitz quantization. We show that one an obtain in a similar way in fat any star-produt whih is equivalent to the Berezin�Toeplitz star-produt, by using instead ofToeplitz operators other suitable mappings from ompatly supported smooth funtionsto bounded linear operators on the orresponding Hilbert spaes. A ruial ingredientin the proof is the generalization, due to Colombeau, of the lassial theorem of Borelon the existene of a funtion with presribed derivatives of all orders at a point, whihredues the proof to a onstrution of a loally onvex spae enjoying some speial prop-erties.
1. Introdution and bakground. Let Ω be a domain in Cn ∼= R2nequipped with a Poisson braket {·, ·}, i.e. a �rst order bidi�erential operator

(1) {f, g}(x) =

2n∑

j,k=1

Bjk(x)
∂f

∂xj

∂g

∂xk
, x ∈ R

2n,

where, for eah x ∈ Ω, the matrix Bjk(x) is skew-symmetri and nonsingular.Denote by C∞(Ω)[[h]] the ring of formal power series in a variable h withoe�ients in C∞(Ω). A star produt on Ω is a C[[h]]-bilinear map ∗ :
C∞(Ω)[[h]] × C∞(Ω)[[h]] → C∞(Ω)[[h]] suh that(i) ∗ is assoiative,(ii) there exist bidi�erential operators Cj : C∞(Ω)×C∞(Ω) → C∞(Ω)2000 Mathematis Subjet Classi�ation: Primary 46A13; Seondary 53D55, 26B05,47B35.Key words and phrases: Berezin�Toeplitz quantization, Borel theorem, Fréhet spae,indutive limit.Researh of the �rst author supported by GA �R grant no. 201/03/0041 and byAV �R IRP no. AV0Z10190503. [77℄ © Instytut Matematyzny PAN, 2007



78 M. Engli² and J. Taskinensuh that
(2) f ∗ g =

∞∑

j=0

hjCj(f, g), ∀f, g ∈ C∞(Ω);(iii) the operators Cj satisfy
C0(f, g) = fg,

C1(f, g) − C1(g, f) =
i

2π
{f, g},and

Cj(f,1) = Cj(1, f) = 0, ∀j ≥ 1.Note that the last equality means preisely that 1 is the unit element for ∗.Remark. Generalization to omplex manifolds Ω is straightforward.Two star produts ∗, ∗′ are alled equivalent if there exists a sequeneof linear di�erential operators M0, M1, M2, . . . on C∞(Ω) with M0 = I(the identity operator) suh that we have the following equality of formalpower series:
(3) M(f ∗′ g) = Mf ∗ Mg, ∀f, g ∈ C∞(Ω)[[h]],where
(4) Mf =

∞∑

j=0

hjMjf.Star produts are the objet of study of deformation quantization, and were�rst introdued in the seminal paper by Bayen, Flato, Fronsdal, Lihnero-wiz and Sternheimer [BF℄. Some more information about them an be founde.g. in the reent surveys by Gutt [Gu℄ or by S.-T. Ali and the �rst au-thor [AE℄.Toeplitz star produt. One an sometimes onstrut a star produt usingToeplitz operators. Namely, under suitable hypotheses on Ω and the Poissonstruture (the boundary behaviour of the Bjk in (1)), there exists a family ofmeasures µh on Ω, 0 < h < 1, suh that the following holds. Let L2
hol(µh) bethe subspae of holomorphi funtions in L2(µh) (weighted Bergman spae),

Ph : L2(µh) → L2
hol(µh) the orthogonal projetion, and for f a boundedontinuous funtion on Ω de�ne the Toeplitz operator T

(h)
f on L2

hol(µh) by
T

(h)
f φ = Ph(fφ). Then for any f, g ∈ D(Ω) (:= the funtions in C∞(Ω) withompat support), there is an asymptoti expansion

(5) T
(h)
f T (h)

g ≃

∞∑

j=0

hjT
(h)
Cj(f,g) as h → 0,



Borel's theorem 79with some bidi�erential operators Cj (independent of f, g). Further, theseoperators Cj de�ne�via the formula (2)�a star produt on Ω.Here the expansion (5) is understood in the sense of operator norms,i.e. for eah N = 0, 1, 2, . . . ,

(6)
∥∥∥T

(h)
f T (h)

g −

N∑

j=0

hjT
(h)
Cj(f,g)

∥∥∥ ≤ CN,f,gh
N+1, ∀h ∈ (0, 1).

Remark. Formally, we an write (5) as
T

(h)
f T (h)

g = T
(h)
f∗g.Example ([Cob℄). If Ω = C and dµh(z) = (πh)−1e−|z|2/hdz (where dzstands for the two-dimensional Lebesgue measure), then (5) holds with

Cj(f, g) =
1

j!

∂jf

∂zj

∂jg

∂zj
.Similarly, (5) holds for Ω = D, the unit dis, with the standard weightedBergman spaes orresponding to dµh(z) = h+1

πh (1 − |z|2)1/h dz [KL℄.Other situations when the Berezin�Toeplitz quantization an be arriedout inlude bounded symmetri domains [BLU℄ (see also [E3℄ for an extensionfrom funtions in D to funtions not neessarily having ompat support),stritly pseudoonvex domains with Poisson brakets having a reasonableboundary behaviour [E1℄, or, provided one onsiders the manifold ase andallows also spaes L2
hol of setions of line bundles (instead of just funtions),all ompat Kähler manifolds [BMS℄, [Sh℄.The Berezin�Toeplitz quantization prompts the following de�nition.Definition. We say that a star produt (2) is indued by operators ifthere exists a family of Hilbert spaes Hh, 0 < h < 1, a �large� subspae Z ⊂

C∞(Ω), and linear maps f 7→ Q
(h)
f from Z into bounded linear operatorson Hh suh that

(7) Q
(h)
f Q(h)

g ≃
∞∑

j=0

hjQ
(h)
Cj(f,g) as h → 0, ∀f, g ∈ Z,

in the sense of operator norms.Here being �large� an be interpreted, for instane, as follows:
(8) for eah �nite set of multiindies α1, . . . , αk, omplex numbers

w1, . . . , wk, and point z ∈ Ω, there exists f ∈ Z suh that
Dαjf(z) = wj , ∀j = 1, . . . , k,



80 M. Engli² and J. Taskinenwhere Dα denotes the operator of di�erentiation. The merit of (8) is that itensures that the knowledge of Cj(f, g) for all f, g ∈ Z already determinesthe Cj uniquely.Conjeture. Every star produt is indued by operators.At the moment, we have no idea how to attak this onjeture. But weare able to prove at least a weaker result:Main Theorem. Every star produt equivalent to the Toeplitz star prod-ut is indued by operators.For the ase of bounded symmetri domains and star-produts whihare invariant with respet to holomorphi automorphisms, this theorem wasproved by one of the authors in [E2℄, using heavily the speial mahineryof Lie groups available in that setup (above all, the Helgason�Fourier trans-form and the related theory of invariant di�erential operators on symmetrispaes). No suh thing is available in the general ase treated here, and thuswe use another approah building on an extension of the lassial theoremof Borel to Fréhet spaes, due to Colombeau [Col℄.The paper is organized as follows. In Setion 2, we show how the proof ofthe theorem an be redued to the problem of existene of a loally onvexspae of funtions on Ω possessing ertain properties. This spae is thenonstruted in Setion 3 as the indutive limit of a sequene of Banahspaes. The neessary prerequisites on loally onvex spaes an be founde.g. in the books of Jarhow [Ja℄, Koethe [Koe℄, Meise and Vogt [MV℄, orBonet and Perez Carreras [BnC℄. In the �nal Setion 4, we brie�y mentionalso a nonlinear variant of the above quantization proedure, for whih amuh simpler proof an be given.2. Plan of proof of Main Theorem. Let ∗ denote the Toeplitz starprodut, and let ∗′ be a star produt equivalent to ∗. Let M0 = I, M1, M2, . . .be the di�erential operators furnishing the equivalene, and let M denotethe linear operator on C∞(Ω)[[h]] given by (4). Writing (5) and (7) for-mally as
TfTg = Tf∗g, QfQg = Qf∗′g,and omparing this with (3), we see that if we ould take

Q
(h)
f := T

(h)
Mfthen we would be done. The problem is that Mf is just a formal power series,whih may diverge if one assigns to h some value. So we need to approximate,in some sense, the formal power series M by genuine operators.



Borel's theorem 81Denote by Cj the oe�ients (2) of the Toeplitz star produt, and by C ′
jthe oe�ients of ∗′. Expanding (3) and omparing the expressions at likepowers of h on both sides, we see that Cj and C ′

j are related by
(9)

∑

j+k=N

MjC
′
k(f, g) =

∑

j+k+l=N

Cj(Mkf, Mlg), ∀f, g ∈ C∞(Ω),

for eah N = 0, 1, 2, . . . .Assume that we an onstrut a vetor spae Z ontained in C∞(Ω) suhthat(a) D ∩ Z is �large�, in the sense of (8);(b) MjZ ⊂ L∞ for all j;() Cl(MjZ, MkZ) ⊂ L∞ for all j, k, l;(d) C ′
k(Z,Z) ⊂ Z for all k; and, �nally,(e) there exists a family of linear operators M (h), 0 < h < 1, from Z into

L∞ suh that for eah N = 0, 1, 2, . . . and f ∈ Z,
∥∥∥
(
M (h) −

N∑

j=0

hjMj

)
f
∥∥∥
∞

≤ Cf,NhN+1

with some �nite onstant Cf,N , for all 0 < h < 1.(Note that, as M0 = I, (b) implies in partiular that Z ⊂ L∞.)Granted this, let us set, for f ∈ Z,
Q

(h)
f := T (h)[M (h)f ],where, for typographial reasons, we started writing T (h)[f ] instead of T

(h)
f .Sine the norm of a Toeplitz operator always satis�es

‖T
(h)
f ‖ ≤ ‖f‖∞,we see from (e) that, for eah N = 0, 1, 2, . . . ,

(10)
∥∥∥T (h)[M (h)f ] −

N∑

j=0

hjT (h)[Mjf ]
∥∥∥ = O(hN+1).

(Note that M (h)f, Mjf ∈ L∞ in view of (e) and (b).)If g is another funtion from Z, it follows that
(11)

∥∥∥Q
(h)
f Q(h)

g −
( N∑

j=0

hjT (h)[Mjf ]
)( N∑

j=0

hjT (h)[Mjg]
)∥∥∥ = O(hN+1).

Finally, if f and g (and hene also Mjf, Mkg) belong in addition to D,



82 M. Engli² and J. Taskinenthen (6) applies to T (h)[Mjf ]T (h)[Mkg], for eah j and k; thus for any
f, g ∈ D ∩ Z,
(12) Q

(h)
f Q(h)

g =
N∑

j,k=0

hj+kT (h)[Mjf ]T (h)[Mkg] + O(hN+1)

=
N∑

j,k,l=0

hj+k+lT (h)[Cl(Mjf, Mkg)] + O(hN+1) by (6)
=

∑

j+k+l≤N

hj+k+lT (h)[Cl(Mjf, Mkg)] + O(hN+1) by ()
=

∑

j+k≤N

hj+kT (h)[MjC
′
k(f, g)] + O(hN+1) by (9)

=
N∑

j,k=0

hj+kT (h)[MjC
′
k(f, g)] + O(hN+1) by (d) and (b)

=
N∑

j=0

hjT (h)
[
Mj

N∑

k=0

hkC ′
k(f, g)

]
+ O(hN+1)

= T (h)
[
M (h)

N∑

k=0

hkC ′
k(f, g)

]
+ O(hN+1) by (d) and (10) again

= Q(h)
[ N∑

k=0

hkC ′
k(f, g)

]
+ O(hN+1).(All the O-terms relate to errors in operator norm.) Thus (7) holds (with C ′

jin plae of Cj), and the proof is omplete.It thus only remains to onstrut the spae Z with the above properties.3. Constrution of the spae Z. Reall that the lassial theorem ofBorel asserts that for any sequene fn of omplex numbers, there exists afuntion f ∈ D(R) suh that
f (j)(0) = j!fj , ∀j = 0, 1, 2, . . . .In partiular, by Taylor's formula, it follows that

∣∣∣f(h) −
N∑

j=0

hjfj

∣∣∣ ≤ Cf,NhN+1, ∀h ∈ R.Comparing this with the ondition (e), we see that (e) is tantamount to hav-ing a Borel theorem for funtions on R with values in the spae of operatorsfrom Z into L∞ equipped with the strong operator topology (the topology of



Borel's theorem 83uniform onvergene in norm on �nite subsets of Z). Unfortunately, it turnsout that in this generality, i.e. for funtions with values in a loally onvexspae, Borel's theorem may fail in general (see [Col℄).However, it is a notable result of Colombeau [Col℄ that Borel's theoremis valid for funtions on R with values in a Fréhet spae. Furthermore, it isknown that if Z is an (LB)-spae, that is, a ountable indutive limit ofBanah spaes, then the spae Lb(Z, L∞(Ω)) of ontinuous linear operators,endowed with its natural loally onvex topology of uniform onvergene onbounded sets, automatially beomes a Fréhet spae. Consequently, if our
Z is an (LB)-spae, then Colombeau's result applies, and we get our require-ment (e) granted.Our purpose will therefore be to onstrut an (LB)-spae Z ⊂ C∞(Ω)whih satis�es the onditions (a)�(d).Let cjα ∈ C∞(Ω) be the oe�ients of the di�erential operators Mj , i.e.

Mjf(x) :=
∑

α multiindex

cjα(x)Dαf(x);and similarly de�ne
Cj(Mkf, Mlg) =

∑

α,β

cjklαβDαf · Dβg,

C ′
k(f, g) =

∑

α,β

c′kαβDαf · Dβg.

Let us enumerate the ountable set {cjα}j,α∪{cjklαβ}j,k,l,α,β ∪{c′kαβ}k,α,β ofall the above oe�ients as vj , j ∈ N. (Here and in what follows,
N := {0, 1, 2, . . .}.)Lemma 1. There exists a C∞ weight funtion w : Ω → R

+ suh that
w ≥ 1, w(x) → ∞ as x tends to the boundary or to in�nity , and

γα,j := sup
x∈Ω

|Dαvj(x)|

w(x)
< ∞for all j ∈ N and all multiindies α.Proof. Enumerate the (ountable) set of all the funtions Dαvj , j ∈ N,

α ∈ N
n, as fk, k = 1, 2, . . . . Further, pik a sequene φj of funtions in D(Ω)suh that 0 ≤ φj ≤ 1, the union of the supports of φj is all of Ω, and φj+1 = 1on the support of φj . De�ne Kj := suppφj , and set f0(x) :=

∑
j(1 − φj).Thus Kj is an inreasing sequene of ompat subsets suh that the unionof their interiors is Ω, and f0 is in C∞(Ω), f0 ≥ 0 and f0(x) → ∞ as xtends to the boundary of Ω or to in�nity. Now hoose onstants Cm suhthat

sup
x∈Km, j≤m, |α|≤m

|Dαfj(x)| ≤ Cm.



84 M. Engli² and J. TaskinenSet
w(x) := 1 +

∞∑

j=0

fj(x)

2jCj
.The sum onverges uniformly on ompat subsets, together with all its par-tial derivatives, thus w ∈ C∞(Ω). Clearly w ≥ 1, and w(x) → ∞ as x tendsto the boundary or to in�nity sine w ≥ C−1

0 f0. Finally, fk/w ≤ 2kCk. Thus
w does the job we need.We �x a funtion w as in the last lemma from now on, and also set

W (x) := ew(x).De�ne, for j ∈ N,
κj := sup

x∈Ω

w(x)j

W (x)
.From the fat that w → ∞ as x tends to the boundary or to in�nity itfollows that eah κj is �nite.Finally, we �x from now on a sequene φk of funtions in D suh thatthe union of their supports is Ω, and φk+1 = 1 on the support of φk.Lemma 2. There exists a sequene {εj}j∈N suh that 0 < εj ≤ 1 for all

j and
sup
x∈Ω

W (x)
∑

α

ε|α||D
α(xγφk(x))| < ∞for any k ∈ N and any multiindex γ. Here the summation extends over allmultiindies α ∈ N

n, and |α| := α1 + · · · + αn.Proof. Choose again onstants C ′
m < ∞ suh that

sup
x∈Ω, |γ|≤m, k≤m, |α|≤m

W (x)|Dα(xγφk(x))| ≤ C ′
m.Set εm := 2−m/C ′

m. Then for any k, γ and x,
∑

|α|≥max(k,|γ|)

W (x)|Dα(xγφk(x))|ε|α| ≤
∑

α

2−|α| = 2n < ∞,and the laim follows.Lemma 3. There exist positive onstants Ak, k ∈ N, suh that Ak ≥ γ0,kand
(13) AkA|ι| ≥ 2|ι|

(
ι

µ

)
γι−µ,k

(
µ

π

)

for any multiindies ι, µ, π suh that π ⊂ µ ⊂ ι.Here we are using the usual multiindex notation(
ι

µ

)
:=

(
ι1
µ1

)
· · ·

(
ιn
µn

)
,and π ⊂ µ means that πj ≤ µj for all j.



Borel's theorem 85Proof. The right-hand side of (13) an be bounded by a onstant A(k, ι)depending on k and ι only. Take
Am := max

k,|ι|≤m
A(k, ι) + 1.It is easy to see that (13) follows.We now de�ne, indutively, a sequene of small positive numbers am,i,

m, i ∈ N. Assume that m and i are given and that ak,j has already beende�ned for all (k, j) with k < m, or k = m and j < i. We hoose am,i > 0so small that the following requirements are satis�ed:
am,i ≤ εi ≤ 1,(14)

am,i ≤ am−1,i if m ≥ 1,(15)

am,i ≤ am−1,i+1 if m ≥ 1,(16)

am,i ≤
am,pam,q

Ai
for all p, q < i.(17)Lemma 4. For all k, m ∈ N and µ, π ∈ N

n with π ⊂ µ,
∑

ι⊃µ

am,|ι|

(
ι

µ

)
γι−µ,k

(
µ

π

)
≤ (2n + 1)Ak

am,|µ−π|am,|π|

am,0
,

where Ak is as in (13).Proof. As a ombination of (13) and (17) we obtain
∑

ι)µ

am,|ι|

(
ι

µ

)
γι−µ,k

(
µ

π

)
≤ Ak

∑

ι)µ

am,|ι|A|ι|2
−|ι|

≤ Akam,|µ−π|am,|π|

∑

ι)µ

2−|ι|

≤ 2nAkam,|µ−π|am,|π| ≤ 2nAk

am,|µ−π|am,|π|

am,0
,sine am,0 ≤ 1 by onstrution. The remaining term ι = µ redues to

am,|µ|γ0,k

(µ
π

). For 0 < |π| < |µ| we an again use (13) and (17) to boundthis by Akam,|µ−π|am,|π|2
−|µ| ≤ Akam,|µ−π|am,|π|. For π = 0 or π = µ, theterm beomes just am,|µ|γ0,k, whih is again bounded by am,|µ|am,0

am,0
Ak sine

Ak ≥ γ0,k by Lemma 3.We proeed to de�ne the spae Z := indk→∞Zk. The step spaes Zk arede�ned to onsist of the C∞ funtions f on Ω suh that
‖f‖k := sup

x∈Ω
W (x)w(x)−k

∑

α

ak,|α||D
αf(x)| < ∞.



86 M. Engli² and J. TaskinenWe have Zk ⊂ Zk+1 ontinuously, for all k. In fat, ‖f‖k+1 ≤ ‖f‖k by (15)and the fat that w ≥ 1.To reall the basi properties of the indutive limit, we have Z :=
⋃

k Zk,and if we de�ne Uk := {f ∈ C∞(Ω) : ‖f‖k ≤ 1}, then a basis of neighbour-hoods of zero is given by the sets
(18) U := Γ

∞⋃

k=1

bkUk :=
{ ∑

k

λkgk :
∑

k

|λk| ≤ 1, gk ∈ bkUk

}

for bj > 0. Here the sum in the de�nition of U is allowed to have only a�nite number of terms.We are now going to prove that the spae Z satis�es the onditions(a)�(e) from the preeding setion. This will �nish the proof of our Main The-orem.Proof of (a). By Lemma 2 and (14), all funtions of the form pφk, where
k ∈ N and p is an arbitrary polynomial, belong to Z. Sine these funtionsobviously also belong to D and the germ of pφk at any point of suppφk−1oinides with the germ of p at that point, it is obvious that D∩Z is �large�in the sense of (8).Proof of (b). It is enough to show that for eah l and α, the operator
vlD

α maps Z into L∞. However, if f ∈ Zk, then
|vl(x)Dαf(x)| ≤ |vl(x)|

‖f‖kw(x)k

ak,|α|W (x)
≤ γ0,l

‖f‖k

ak,|α|

w(x)k+1

W (x)

≤ γ0,l
‖f‖k

ak,|α|
κk+1 < ∞for any x ∈ Ω.Proof of (). Again, it is enough to prove that vl(D

αf)(Dβg) ∈ L∞ forany l ∈ N, α, β ∈ N
n and f, g ∈ Z. However, for f ∈ Zk and g ∈ Zm, by asimilar argument to the one above,

|vl(D
αf)(Dβg)| ≤ γ0,lw

‖f‖kw
k

ak,|α|W

‖g‖mwm

am,|β|W

≤ γ0,l
‖f‖k‖g‖m

ak,|α|am,|β|
κk+1κm < ∞.

Proof of (d). One more, we need only prove that vk(D
αf)(Dβg) belongsto Z whenever k ∈ N, α, β are multiindies and f, g ∈ Z.Assume that a neighbourhood of 0 as in (18) is given. So we are given apositive sequene {bj}j∈N.



Borel's theorem 87We pik numbers b̃j > 0, j ∈ N, suh that for all j we have
(19) b̃j ≤ min

m≤2j+|α|+|β|

(
bmam,0

κm+1(2n + 1)Ak
, 1

)
.We laim that f ∈ Γ

⋃∞
j=1 b̃jUj and g ∈ Γ

⋃∞
j=1 b̃jUj imply

vk(D
αf)(Dβg) ∈ Γ

∞⋃

j=1

bjUj .By the assumptions on f and g, we an �nd �nite sets of omplex numbers
λj and µj and funtions fj ∈ b̃jUj and gj ∈ b̃jUj suh that

∑

j

|λj| ≤ 1,
∑

j

|µj| ≤ 1, f =
∑

j

λjfj , g =
∑

j

µjgj .We have
vk(D

αf)(Dβg) =
∑

j,l

λjµlvk(D
αfj)(D

βgl),and here ∑
j,l |λjµl| ≤ 1, so it is enough to prove that for all j and l thereexists m suh that vk(D

αfj)(D
βgl) ∈ bmUm.We laim that this happens for m := j+ l+ |α|+ |β|. Reall that |Dιvk| ≤

γι,kw by Lemma 1.We have
(20) ‖vk(D

αfj)(D
βgl)‖m

= sup
x∈Ω

W (x)w(x)−m
∑

ι

am,|ι||D
ι(vk(D

αfj)(D
βgl))|.By the Leibniz rule,

∑

ι

am,|ι||D
ι(vk(D

αfj)(D
βgl))|

≤
∑

ι

am,|ι|

∑

µ⊂ι

(
ι

µ

)
|(Dι−µvk)D

µ((Dαfj)(D
βgl))|

≤
∑

ι

am,|ι|

∑

µ⊂ι

(
ι

µ

)
γι−µ,kw

∑

π⊂µ

(
µ

π

)
|(Dα+µ−πfj)(D

β+πgl)|

= w
∑

π

∑

µ⊃π

∑

ι⊃µ

am,|ι|

(
ι

µ

)
γι−µ,k

(
µ

π

)
|(Dα+µ−πfj)(D

β+πgl)|.By Lemma 4 this is bounded by
(2n + 1)Ak

am,0
w

∑

π

∑

µ⊃π

am,|µ−π|am,|π||(D
α+µ−πfj)(D

β+πgl)|.



88 M. Engli² and J. TaskinenHene, (20) an be bounded by
(2n + 1)Ak

am,0
sup
x∈Ω

W (x)w(x)−m+1

×
∑

π

∑

µ⊃π

am,|µ−π|am,|π||(D
α+µ−πfj)(D

β+πgl)|

≤
(2n + 1)Ak

am,0

(
sup
Ω

Ww−m
∑

µ

am,|µ||D
α+µfj |

)

×
(

sup
Ω

Ww−m
∑

µ

am,|µ||D
β+µgl|

)
·

(
sup
Ω

wm+1

W

)

≤ κm+1
(2n + 1)Ak

am,0

(
sup
Ω

Ww−m+|α|
∑

µ

am−|α|,|µ+α||D
α+µfj |

)

×
(

sup
Ω

Ww−m+|β|
∑

µ

am−|β|,|µ+β||D
β+µgl|

) by (16) and w ≥ 1

≤ κm+1
(2n + 1)Ak

am,0

(
sup
Ω

Ww−m+|α|
∑

γ

am−|α|,|γ||D
γfj |

)

×
(

sup
Ω

Ww−m+|β|
∑

γ

am−|β|,|γ||D
γgl|

)

≤ (2n + 1)Ak
κm+1

am,0
b̃j b̃l ≤ bm.Here in the penultimate inequality we have used the fat that

sup
Ω

Ww−m+|α|
∑

γ

am−|α|,|γ||D
γfj | = ‖fj‖m−|α| ≤ ‖fj‖j ≤ b̃j ,sine m − |α| = j + l + |β| ≥ j (and similarly for gl); while the very lastinequality follows from (19).Proof of (e). Let us �rst of all remark that Lb(Z, L∞(Ω)) is indeed aFréhet spae. Indeed, sine every (LB)-spae is a (DF )-spae (f. [Koe,part I, �29.5(5)℄), and Lb(E, F ) is omplete if E is (DF ) and F is any om-plete loally onvex spae (see [Koe, part II, �39.6(6)℄), the ompleteness of

Lb(Z, L∞(Ω)) follows. As for metrizability, Z has a fundamental sequene
(Bn)∞n=1 of bounded sets (by onstrution, or by the fat that it is (DF ),see [Koe, part I, beginning of �29.3℄). Hene every bounded subset of Z isontained in some multiple cBn, and from the de�nition of the topologyof uniform onvergene on bounded sets we see that the ountably manysets

Un := {T ∈ Lb(Z, L∞) : ‖Tf‖∞ ≤ 1 for all f ∈ Bn}



Borel's theorem 89form a basis of neighbourhoods of 0 in Lb(Z, L∞). Thus Lb(Z, L∞) isFréhet.Let us now show in detail how the norm estimate (e) follows fromColombeau's result. For the various fats from the di�erential alulus inBanah spaes, we refer to [Cha℄.Reall that a ontinuous mapping P : Y → X, where Y and X areBanah spaes, is alled a (ontinuous) j-homogeneous polynomial if thereexists a ontinuous symmetri j-linear mapping P̃ : Y j → X suh that
P (x) = P̃ (x, . . . , x). The de�nition for loally onvex spaes is the same.Given a P as above, the mapping P̃ is unique and an be onstruted from
P using the polarization formula ([Cha, Theorems 4.6 and 4.7℄).For all j ∈ N let us denote by Nj the j-homogeneous polynomial

Nj(h) := hjMjfrom R into Lb(Z, L∞(Ω)) =: X. Let Ñj be the orresponding symmetri
j-linear mapping. Clearly, both Nj and Ñj are ontinuous.By the main theorem of [Col℄ we �nd a C∞-mapping M : R → X whose
nth derivative oinides with Ñj . By the explanation after the main theoremin [Col℄, the jth derivative of M is even a ontinuous j-linear mapping from Rto XB, where XB ⊂ X denotes the linear span of some bounded onvexbalaned subset B ⊂ X. Also, XB is a Banah spae when endowed withthe norm ‖x‖B := 1/sup{r > 0 : rx ∈ B}, and the anonial injetion
XB → X is ontinuous.Hene, also Ñj : R

j → XB is ontinuous. By the Taylor formulafor Banah spaes ([Cha, Theorem 8.9℄), we obtain the error estimate(M (h) = M(h))
(21)

∥∥∥M (h) −
N∑

j=0

hjMj

∥∥∥
B
≤ CNhN+1.Now every bounded set B ⊂ X is ontained in the set

(22) U◦ := {T ∈ X : ‖Tf‖∞ ≤ 1 for all f ∈ U}for some neighbourhood of zero U of Z. Hene,
(23)

∥∥∥M (h) −

N∑

j=0

hjMj

∥∥∥
B
≥ sup

f∈U

∥∥∥
(
M (h) −

N∑

j=0

hjMj

)
f
∥∥∥
∞

.Let now f ∈ Z be given. Sine U is a neighbourhood of 0, it absorbs f ,i.e. there exists a c > 0 suh that f ∈ cU . The desired norm estimate (e)(for some f -dependent onstant) follows from this, (21) and (23).This ompletes the proof of the Main Theorem.



90 M. Engli² and J. TaskinenRemark. Note that in the above proofs we have atually establishedassertions slightly stronger than the properties (b)�(d), namely that theinlusions given there are in fat ontinuous: that is, for eah j, k and l,
Mj maps Z ontinuously into L∞, Cl(Mj · , Mk · ) maps Z ×Z ontinuouslyinto L∞, and C ′

l even maps Z×Z ontinuously into Z. (Well, for (b) and (),we have only shown that the operators map bounded sets into balls, butthis implies ontinuity by a simple argument: one forms a small enoughneighbourhood U of 0 in Z using just the de�nition of the indutive limittopology�that is, U is hosen as the balaned onvex hull of the union ofountably many bounded sets (the unit balls of the step spaes) multipliedby small onstants; if the onstants are small enough, U is still mapped intothe unit ball of L∞.) However, this extra piee of information seems to haveno impliations for the appliations to quantization.4. A nonlinear variant. Note that the argument (15) still works evenif the operators M (h) and Q(h) are not assumed to be linear, i.e. if we justrequire that for eah �xed f ∈ Z there be some funtions M (h)f ∈ L∞,
0 < h < 1, suh that (e) holds. In that ase, the sought-for operators M (h)an be onstruted for Z = D diretly along the lines of the usual proofof Borel's theorem. Let us inlude a proof of this assertion for omplete-ness.Take Z = D(Ω), the subspae of funtions in C∞(Ω) with ompatsupport. Then learly (a)�(d) hold; let us settle (e) (allowing M (h) to benonlinear). So let f ∈ D, and de�ne for brevity mj = Mjf ∈ D.Fix a funtion φ ∈ C∞(R) suh that 0 ≤ φ ≤ 1 and φ(x) = 1 for
|x| ≤ 1/2, φ(x) = 0 for |x| ≥ 1. Let νn,α := ‖Dαmn‖∞ and set qj :=
max|α|,n≤j να,n + 1, so that νn,α ≤ qnq|α|. Let now cn := max(2, n!qn) andde�ne

un(x, h) = φ(cnh)mn(x)hn.Clearly eah un is a bounded smooth funtion on Ω ×R. Observe that un isnonzero only if
(24) |h| ≤ 1/cn ≤ 1/2,owing to the fat that cn ≥ 2. Using the Leibniz rule, for any integer k ≥ 0and multiindex α we have

Dk
hDα

xun(x, h) = Dαmn(x) ·
k∑

j=0

(
k

j

)
Dk−jhn · cj

nφ(j)(cnh),where the subsripts at D indiate the di�erentiated variable. The lastfator on the right is bounded by |h|−jsj where sj := supx∈R |xjφ(j)(x)|
< ∞. Moreover, Dk−jhn = (n!/(n − k + j)!)hn−k+j, whih is bounded by
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n!|h|n−k+j (and vanishes for j < k − n). Thus

|Dk
hDα

xun(x, h)| ≤ ‖Dαmn‖∞

k∑

j=0

(
k

j

)
n!|h|n−ksj

≤ qnq|α|n!|h|n−kWk,where Wk :=
∑k

j=0

(
k
j

)
sj < ∞. Sine cn ≥ n!qn, it follows that

∞∑

n=k+1

|Dk
hDα

xun(x, h)| ≤ q|α|Wk

∞∑

n=k+1

qnn!|h|n−k

≤ q|α|Wk

∞∑

n=k+1

qnn!

cn
|h|n−k−1 by (24)

≤ 2q|α|Wk < ∞.As α and k an be arbitrary, we see that the series
(25) u(x, h) :=

∞∑

n=0

un(x, h)onverges in the C∞ topology to a funtion u ∈ C∞(Ω × R). Further,as eah un is, in view of (24), supported in suppmn× [−1/2, 1/2] ⊂ supp f ×
[−1/2, 1/2], we even have u ∈ D(Ω × (−1, 1)). Sine

Dj
hun(x, 0) =

{
0 if j 6= n,
j!mj(x) if j = n,the C∞ onvergene of (25) implies that Dj

hu(x, 0) = j!mj(x). By the Taylorremainder formula, we therefore have, for any integer N ≥ 0,
u(x, h) −

N∑

j=0

mj(x)hj =
hN+1

(N + 1)!
DN+1

h u(x, θ(x, h)h)

for some 0 ≤ θ(x, h) ≤ 1; onsequently,
h−N−1

∣∣∣u(x, h) −

N∑

j=0

mj(x)hj
∣∣∣ ≤

1

(N + 1)!
‖DN+1

h u‖∞ < ∞, ∀x, h,sine u is ompatly supported. Thus the hoie
M (h)f(x) := u(x, h)will do the job we need.Remark. In e�et, the above argument proves Borel's theorem for fun-tions from R into D, for the ase that the presribed derivatives mj havesupports in a �xed ompat set. Perhaps there is some hope that Borel's



92 M. Engli² and J. Taskinentheorem might hold even for funtions from R into more general loally on-vex spaes provided some additional hypothesis is assumed on the sequeneof the presribed derivatives�for instane, if the target spae is a spae ofoperators, when Mj are �tame� in the sense that there exists a shrinking ol-letion Uk of neighbourhoods of zero suh that eah Mj maps Uk+1 into Uk,for all k. Note that having larger and larger supports is also the idea be-hind Colombeau's ounterexample [Col℄ showing that Borel's theorem failsfor funtions from R into D.It should be remarked that from the point of view of physis, the nonlin-ear quantization treated in this setion is probably a rather doubtful busi-ness.
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