STUDIA MATHEMATICA 180 (1) (2007)

Stability of the index of a linear relation under compact perturbations

by

DANA GHEORGHE (Pitesti and Lille)

Abstract. We prove the stability under compact perturbations of the algebraic index of a Fredholm linear relation with closed range acting between normed spaces. Our main tool is a result concerning the stability of the index of a complex of Banach spaces under compact perturbations.

1. Introduction. The purpose of this paper is to show that the algebraic index of a Fredholm linear relation with closed range acting between normed spaces is stable under compact perturbations.

Let X and Y be two normed spaces. We denote by $\mathcal{B}(X, Y)$ the normed space of bounded linear operators from X into Y and by $\mathcal{K}(X, Y)$ the normed space of compact operators from X into Y. A *linear relation* is a map T from X into $\mathcal{P}(Y) := \{A \subset Y : A \neq \emptyset\}$ such that

$$Tx + Ty = T(x + y), \quad \alpha Tx = T(\alpha x), \quad \forall x, y \in X, \, \forall \alpha \in \mathbb{C} \setminus \{0\}.$$

We denote by $\operatorname{LR}(X, Y)$ the set of all linear relations from X into Y. The kernel of $T \in \operatorname{LR}(X, Y)$ is the set $N(T) = \{x \in X : 0 \in Tx\}$ and the range of T is the set $R(T) = \bigcup_{x \in X} Tx$. The linear relation T is called *Fredholm* if dim $N(T) < \infty$ and codim $R(T) < \infty$. In this case, the integer

 $\operatorname{ind}(T) := \dim N(T) - \operatorname{codim} R(T)$

is called, as usual, the *index* of T. The main result of this article is the following.

THEOREM 1. Let $T \in LR(X, Y)$ be a Fredholm linear relation with closed range. If $K \in \mathcal{K}(X, Y)$ is such that the range of T+K is closed, then T+Kis Fredholm and ind(T) = ind(T+K).

Note that if T is a continuous Fredholm operator between Banach spaces, then R(T) and R(T+K) are closed linear subspaces of Y. In our case, the

[95]

²⁰⁰⁰ Mathematics Subject Classification: Primary 47A53; Secondary 47A06.

Key words and phrases: Fredholm operators, index, Banach space complexes, linear relations.

condition "R(T+K) is closed" becomes a hypothesis because of the possible lack of continuity of T.

Our main tool is a result of Ambrozie [1, Theorem 5] concerning the stability of the index of a complex of Banach spaces under compact perturbations. We state a particular case of this theorem in Section 2. To relate the index of a linear relation between normed spaces to the index of a complex of normed spaces we use an idea of H. Zhang [8]. A similar result for the stability of the algebraic index of a linear relation under small perturbations has been proved in [4].

Acknowledgements. The author is grateful to Professor F.-H. Vasilescu for his constant help and encouragement.

2. Notation and preliminaries. Let X_i (i = 1, 2, 3) be normed spaces, and $\alpha_i \in \mathcal{B}(X_i, X_{i+1})$ (i = 1, 2). The sequence

(1)
$$0 \to X_1 \xrightarrow{\alpha_1} X_2 \xrightarrow{\alpha_2} X_3 \to 0$$

is called a *complex* if $R(\alpha_1) \subset N(\alpha_2)$. The complex (1) is said to be *Fredholm* if dim $N(\alpha_1)$, dim $N(\alpha_2)/R(\alpha_1)$ and codim $R(\alpha_2)$ are finite. Define the *index* of (1) by

(2)
$$\operatorname{ind}(1) := \dim N(\alpha_1) - \dim N(\alpha_2)/R(\alpha_1) + \operatorname{codim} R(\alpha_2).$$

The next result is a particular case of Theorem 5 in [1] (see also [2]), and will be used to prove our main result.

THEOREM 2. Let X_i (i = 1, 2, 3) be Banach spaces. Assume that the complex (1) is Fredholm and $\beta_i \in \mathcal{B}(X_i, X_{i+1})$ (i = 1, 2) are such that the sequence

(3)
$$0 \to X_1 \xrightarrow{\beta_1} X_2 \xrightarrow{\beta_2} X_3 \to 0$$

is a complex. If $\beta_i - \alpha_i \in \mathcal{K}(X_i, X_{i+1})$ (i = 1, 2), then (3) is Fredholm and $\operatorname{ind}(3) = \operatorname{ind}(1)$.

REMARK 1. The above theorem is due to A. S. Faĭnshteĭn and V. S. Shul'man. On the other hand, to prove our main result we may also use a result of F.-H. Vasilescu [7] where α_i, β_i (i = 1, 2) are as above and satisfy the supplementary condition that $(\beta_2 - \alpha_2)(\beta_1 - \alpha_1)$ is of finite rank.

Let X and Y be normed spaces, $X_0 \subset X$ a closed linear subspace and $Y_0 \subset Y$ a linear subspace. Let $T_0 : X \to Y$ be a linear operator such that $T_0(X_0) \subset Y_0$. Then T_0 induces the linear transformation $T : X/X_0 \to Y/Y_0$ defined by

$$T(x+X_0) = T_0 x + Y_0, \quad \forall x \in X.$$

Let N(T) be the kernel of T, R(T) the range of T, G(T) the graph of T, $G_0(T) := \{(x, y) \in X \times Y : T(x + X_0) = y + Y_0\}$ and $R_0(T) :=$ $\{y \in Y : y + Y_0 \in R(T)\}$. Notice that $R(T) = R_0(T)/Y_0$, $G_0(T) = G(T_0) + X_0 \times Y_0$ and $R_0(T) = R(T_0) + Y_0$. The transformation T is said to be *Fredholm* if dim N(T) and codim $R(T) := \dim(Y/Y_0)/R(T)$ are finite, and we define

$$\operatorname{ind}(T) = \dim N(T) - \operatorname{codim} R(T)$$

to be the *index* of T.

We associate to T the sequence of normed spaces

(4)
$$0 \to X_0 \xrightarrow{\imath_T} X \times Y_0 \xrightarrow{\jmath_T} Y \to 0,$$

where

$$i_T(x_0) = (x_0, T_0 x_0), \quad \forall x_0 \in X_0,$$

 $j_T(x, y_0) = T_0 x - y_0, \quad \forall x \in X, \ y_0 \in Y_0$

It is easy to see that (4) is a complex.

LEMMA 1. The linear transformation T is Fredholm iff the complex (4) is Fredholm, and in this case,

$$\operatorname{ind}(T) = -\operatorname{ind}(4).$$

Proof. Define

 $\alpha: N(j_T) \to X/X_0, \quad \alpha((x, T_0 x)) = x + X_0.$

Clearly $R(\alpha) = N(T)$ and $N(\alpha) = R(i_T)$, thus $N(j_T)/R(i_T)$ is algebraically isomorphic to N(T). Define

$$\beta: Y \to Y/R_0(T), \quad \beta(y) = y + R_0(T).$$

The map β is surjective and $N(\beta) = R(j_T)$, thus $Y/R(j_T)$ is algebraically isomorphic to $Y/R_0(T) \cong (Y/Y_0)/R(T)$. The proof is complete.

LEMMA 2. Let X, Y be normed spaces, $M \subset X$ a linear subspace of X, $A \subset X$ an arbitrary subset of X, $T \in \mathcal{B}(X,Y)$ and $T' \in \mathcal{B}(Y',X')$ the adjoint of T. Let B_X and B_Y be the closed unit balls in X and Y, respectively. Then

- (i) $N(T') = R(T)^{\perp}$ and $N(T) = R(T')^{\perp}$ (where \perp denotes the annihilator or preannihilator of a set).
- (ii) $(B_X \cap M)^\circ = B_X^\circ + M^\perp$, $(M + A)^\circ = M^\perp \cap A^\circ$, $T(B_X)^\circ = T'^{-1}(B_X^\circ)$ and $[T^{-1}(B_Y)]^\circ = T'(B_Y^\circ)$ (where the circle denotes the polar of a set).

Proof. The proof of (i) is classical and for the proof of (ii) see [6].

DEFINITION 1. Let X, Y be normed spaces and $T : X \to Y$ a linear operator. We say that the operator T is *open* if there exists $\rho > 0$ such that

(5)
$$\varrho B_Y \cap R(T) \subset T(B_X).$$

REMARK 2. If X, Y are normed spaces and $T \in \mathcal{B}(X, Y)$ then T is open if and only if the map $X \ni x \mapsto Tx \in R(T)$ takes open sets in X into open sets in R(T).

PROPOSITION 1. Let X, Y be normed spaces, $T \in \mathcal{B}(X,Y)$ and $K \in \mathcal{K}(X,Y)$. If T is open and $\operatorname{codim} R(T) < \infty$, then T + K is open.

Proof. First of all we show that the adjoint $T' \in \mathcal{B}(Y', X')$ is open. Because T is open, from Lemma 2 it follows that there exists $\rho > 0$ such that

(6)
$$T(B_X)^{\circ} \subset [\varrho B_Y \cap R(T)]^{\circ} = R(T)^{\perp} + \frac{1}{\varrho} B_Y^{\circ}.$$

Using again Lemma 2 and (6) we deduce that

$$T'^{-1}(B_X^\circ) \subset N(T') + \frac{1}{\varrho} B_Y^\circ.$$

Hence,

$$\varrho B_X^\circ \cap R(T') \subset T'(B_Y^\circ),$$

that is, T' is open. Remark 2 implies that R(T') is closed. From

$$\dim N(T') = \operatorname{codim} R(T) \le \operatorname{codim} R(T) < \infty$$

it follows that T' has an index. Applying [5, Corollary V.2.2] we find that R(T' + K') is closed, and because T' + K' is continuous, it follows that $T' + K' : Y' \to R(T' + K')$ is open. This implies that there exists $\rho > 0$ such that

(7)
$$\varrho B_X^{\circ} \cap R(T'+K') \subset (T'+K')(B_Y^{\circ}).$$

Using (7), Lemma 2 and the closedness of R(T' + K') we obtain

(8)
$$\varrho[B_X + N(T+K)]^\circ \subset [(T+K)^{-1}(B_Y)]^\circ.$$

Taking the polars of both sides in (8) and using the bipolar theorem it follows that

$$\varrho(T+K)^{-1}(B_Y) = \varrho[(T+K)^{-1}(B_Y)]^{\circ\circ} \subset [B_X + N(T+K)]^{\circ\circ}$$
$$= \overline{B_X + N(T+K)} \subset 2B_X + N(T+K),$$

which yields

$$\varrho B_Y \cap R(T+K) \subset 2(T+K)(B_X),$$

that is, T + K is open.

REMARK 3. If $T \in \mathcal{B}(X, Y)$ is open then the proof above shows that R(T') is closed.

3. Proof of the main result. The product of two normed spaces X_1 and X_2 will be endowed with the norm

$$||(x_1, x_2)|| = (||x_1||^2 + ||x_2||^2)^{1/2}, \quad \forall (x_1, x_2) \in X_1 \times X_2.$$

LEMMA 3. Let X and Y be normed spaces, $X_0 \subset X$ a closed linear subspace and $Y_0 \subset Y$ a linear subspace. Let $T_0 \in \mathcal{B}(X,Y)$ and $K_0 \in \mathcal{K}(X,Y)$ be such that $T_0(X_0) \subset Y_0$ and $K_0(X_0) \subset Y_0$. Suppose that T_0 is open, $K_0|X_0: X_0 \to Y_0$ is compact, and $R(T_0) + Y_0$, $R(T_0 + K_0) + Y_0$ are closed subspaces of Y. Let $T, K: X/X_0 \to Y/Y_0$ induced by T_0 and K_0 respectively. If T is Fredholm, then T + K is Fredholm and $\operatorname{ind}(T) = \operatorname{ind}(T + K)$.

Proof. Associate to T + K, as in the case of T, the sequence of normed spaces

(9)
$$0 \to X_0 \xrightarrow{i_{T+K}} X \times Y_0 \xrightarrow{j_{T+K}} Y \to 0,$$

where

$$i_{T+K}(x_0) = (x_0, (T_0 + K_0)x_0), \quad \forall x_0 \in X_0, j_{T+K}(x, y_0) = (T_0 + K_0)x - y_0, \quad \forall x \in X, \ y_0 \in Y_0.$$

It is easy to check that (9) is a complex.

(a) Some properties of i_T , j_T , i_{T+K} and j_{T+K} . It is clear that $i_T \in \mathcal{B}(X_0, X \times Y_0)$ and $R(i_T)$ is closed. On the other hand,

$$||x_0|| \le ||(x_0, T_0 x_0)|| = ||i_T(x_0)||.$$

It follows that

$$B_{X \times Y_0} \cap R(i_T) \subset i_T(B_{X_0}),$$

hence i_T is open. Clearly, $j_T \in \mathcal{B}(X \times Y_0, Y)$. Because $R(T_0) + Y_0$ is closed, the map β from the proof of Lemma 1 is continuous. As $R(j_T) = N(\beta)$, it follows that $R(j_T)$ is closed. Consider the maps

$$s: X \times Y_0 \to R(T_0) \times Y_0, \quad s(x, y_0) = (T_0 x, y_0), t: R(T_0) \times Y_0 \to Y, \quad t(T_0 x, y_0) = T_0 x - y_0.$$

Notice that t is open. Because T_0 is open, it follows easily that s is open. Hence, $j_T = t \circ s$ is open. On the other hand, $\operatorname{codim} R(T_0) = \operatorname{codim} R(T) < \infty$. Hence, Proposition 1 shows that $T_0 + K_0$ is open. So, we can replace T_0 with $T_0 + K_0$ to conclude that i_{T+K} and j_{T+K} have the same properties as i_T and j_T .

(b) The adjoints of complexes (4) and (9). We consider the sequences

(10)
$$0 \to Y' \xrightarrow{j'_T} X' \times Y'_0 \xrightarrow{i'_T} X'_0 \to 0,$$

(11)
$$0 \to Y' \xrightarrow{j'_{T+K}} X' \times Y'_0 \xrightarrow{i'_{T+K}} X'_0 \to 0.$$

Using Lemma 2 and Remark 3 it follows that (10), (11) are complexes, (10) is Fredholm, and

(12)
$$\operatorname{ind}(4) = \operatorname{ind}(10).$$

Moreover, (9) is Fredholm iff (11) is Fredholm, and in this case,

(13)
$$ind(9) = ind(11).$$

We will use Theorem 2 to prove that (11) is Fredholm and ind(10) = ind(11). To do this, we write (11) as a compact perturbation of (10) as follows. Consider the compact operators

$$i: X_0 \to X \times Y_0, \quad i(x_0) = (0, K_0 x_0),$$

$$j: X \times Y_0 \to Y, \quad j(x, y_0) = K_0 x.$$

Note that $i_{T+K} = i_T + i$ and $j_{T+K} = j_T + j$. Because *i* and *j* are compact it follows that $i'_{T+K} - i'_T$ and $j'_{T+K} - j'_T$ are compact. Applying Theorem 2 we deduce that (11) is Fredholm and

(14)
$$\operatorname{ind}(10) = \operatorname{ind}(11).$$

(c) End of proof. Using Lemma 1 and (12)–(14) we find that

$$\operatorname{ind}(T) = \operatorname{ind}(T+K).$$

Let X be a normed space and $M := \{x \in X : ||x|| = 1\}$. Define

 $l_0^1(M) := \{\lambda : M \to \mathbb{C} : \operatorname{supp} \lambda \text{ is finite}\},\$

where supp $\lambda = \{x \in M : \lambda(x) \neq 0\}$. We endow the vector space $l_0^1(M)$ with the norm $\|\lambda\| = \sum_{x \in M} |\lambda(x)|$. Consider the linear operator

$$S_0: l_0^1(M) \to X, \quad S_0 \lambda = \sum_{x \in M} \lambda(x) x.$$

Obviously, $S_0 \in \mathcal{B}(l_0^1(M), X)$ and S_0 is surjective. Define the linear operator

$$S: l_0^1(M)/N(S_0) \to X, \quad S(\lambda + N(S_0)) = S_0 \lambda.$$

Then S is continuous and bijective.

Let $T \in LR(X, Y)$ be a linear relation and $q_T : Y \to Y/T(0)$ be the canonical surjection. Associate to T, as in [3, Section I.6], the linear transformation

$$q_T T: X \to Y/T(0), \quad (q_T T)(x) = y + T(0),$$

where $y \in Tx$ is arbitrarily chosen. We see that $R_0(q_T T) = R(T)$ and

(15) T is Fredholm iff $q_T T$ is Fredholm, and $\operatorname{ind}(T) = \operatorname{ind}(q_T T)$.

Proof of Theorem 1. We denote $N(S_0)$ by X_0 and T(0) by Y_0 . Consider the linear relation $TS \in LR(l_0^1(M)/X_0, Y)$. Because S is bijective, we have T(0) = (TS)(0), and hence (15) shows that $ind(T) = ind(q_T T) = ind(q_T (TS)) = ind(Q)$, where $Q = q_T TS$. Thus

(16)
$$\operatorname{ind}(Q) = \operatorname{ind}(T).$$

Consider

$$q_1: G_0(Q) \to l_0^1(M), \quad q_1(\lambda, y) = \lambda,$$

$$q_2: G_0(Q) \to Y, \qquad q_2(\lambda, y) = y.$$

Clearly q_1, q_2 are continuous and q_2 is open. On the other hand, the map q_1 takes open sets in $G_0(Q)$ to open sets in $R(q_1)$, hence

$$\gamma(q_1) := \sup\{\delta > 0 : \delta d(\xi, N(q_1)) \le ||q_1\xi||, \, \forall \xi \in G_0(Q)\} > 0.$$

Let

$$Q_1: G_0(Q)/(X_0 \times Y_0) \to l_0^1(M)/X_0, \quad Q_2: G_0(Q)/(X_0 \times Y_0) \to Y/Y_0$$

be induced by q_1 and q_2 . It follows easily that Q_1 is bijective and $Q = Q_2 \circ Q_1^{-1}$. For $x \in M$, let $e_x \in l_0^1(M)$ be such that $e_x(x) = 1$ and $\operatorname{supp} e_x = \{x\}$. Using the fact that q_1 is surjective and $\gamma(q_1) > 0$ we deduce that for all $x \in M$ there exists $\xi_x = (e_x, y_x) \in G_0(Q)$ such that $\|\xi_x\| \leq r$, where $r > \gamma(q_1)^{-1}$. Define the linear operator

$$q_0: l_0^1(M) \to G_0(R), \quad q_0(\lambda) = \sum_{x \in M} \lambda(x)\xi_x = \left(\lambda, \sum_{x \in M} \lambda(x)y_x\right).$$

From the choice of ξ_x it follows that q_0 is continuous and a simple computation shows that q_0 is open. Let

$$T_0: l_0^1(M) \to Y, \quad T_0 = q_2 \circ q_0.$$

The linear operator T_0 is continuous open and because q_2 induces Q_2 and q_0 induces Q_1^{-1} , we deduce that T_0 induces Q. Using

$$R(T) = R(TS) = R_0(Q) = R(T_0) + Y_0$$

and the closedness of R(T) it follows that $R(T_0) + Y_0$ is closed.

Let $\tau: l_0^1(M) \to l_0^1(M)/X_0$ be the canonical surjection and

$$K_0: l_0^1(M) \to Y, \quad K_0 = KS\tau$$

Note that K_0 is compact and $K_0|X_0$ is identically zero. Let

$$Q = q_{(T+K)S}(T+K)S = q_T(T+K)S.$$

We have

$$\widetilde{Q}(\lambda + X_0) = [q_T(T + K)S](\lambda + X_0) = Q(\lambda + X_0) + q_T K S \tau(\lambda) = T_0(\lambda) + Y_0 + q_T K_0(\lambda) = T_0(\lambda) + K_0(\lambda) + Y_0,$$

that is, \widetilde{Q} is induced by $T_0 + K_0$. From

$$R(T+K) = R((T+K)S) = R_0(\widetilde{Q}) = R(T_0 + K_0) + Y_0$$

and the closedness of R(T+K) it follows that $R(T_0+K_0)+Y_0$ is closed.

We are now in a position to apply Lemma 3 to the operators T_0 and K_0 . It follows that \widetilde{Q} is Fredholm and

(17)
$$\operatorname{ind}(Q) = \operatorname{ind}(Q).$$

On the other hand, using (15) we see that (T+K)S is Fredholm iff \widetilde{Q} is Fredholm, and

(18)
$$\operatorname{ind}((T+K)S) = \operatorname{ind}(Q).$$

From the bijectivity of S and (16)–(18) the conclusion of the theorem follows. \blacksquare

REMARK 4. Let X be a normed space. If $K \in \mathcal{K}(X)$, then $\operatorname{ind}(I - K) = 0$. In particular I - K is injective iff I - K is surjective.

REMARK 5. Let X, Y be normed spaces, $T: X \to Y$ a linear bijection and $K \in \mathcal{K}(X, Y)$. Suppose that the equation

$$Tx + Kx = 0$$

has at least one nontrivial solution. Then there exists $y \in Y$ such that the equation

$$Tx + Kx = y$$

has no solution.

References

- C.-G. Ambrozie, *The Euler characteristic is stable under compact perturbations*, Proc. Amer. Math. Soc. 127 (1996), 2041–2050.
- [2] C.-G. Ambrozie and F.-H. Vasilescu, Banach Space Complexes, Math. Appl. 334, Kluwer, Dordrecht, 1995.
- [3] R. W. Cross, Multivalued Linear Operators, Dekker, New York, 1998.
- [4] D. Gheorghe, Stability of the index of linear operators between quotient normed spaces, preprint, 2006.
- [5] S. Goldberg, Unbounded Linear Operators. Theory and Applications, McGraw-Hill, New York, 1966.
- [6] R. Menniken, Perturbations of semi-Fredholm operators in locally convex spaces, in: Functional Analysis, Holomorphy, and Approximation Theory (Rio de Janeiro, 1979), Lecture Notes in Pure and Appl. Math. 83, Dekker, New York, 1983, 233–304.
- [7] F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Operator Theory 2 (1979), 247–275.
- [8] H. Zhang, Fredholm theory for morphisms in quotient Banach spaces, Rev. Roumaine Math. Pures Appl. 34 (1989), 309–316.

Facultatea de matematica-informatica Universitátea din Pitesti Str. Targul din Vale, nr. 1 110040 Pitesti, Arges, Romania E-mail: gheorghedana@yahoo.com

> Received June 19, 2006 Revised version February 13, 2007

(5955)