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Common zero sets of equivalent singular inner functions II

by

Keiji Izuchi (Niigata)

Abstract. We study connected components of a common zero set of equivalent singu-
lar inner functions in the maximal ideal space of the Banach algebra of bounded analytic
functions on the open unit disk. To study topological properties of zero sets of inner
functions, we give a new type of factorization theorem for inner functions.

1. Introduction. Let H∞ be the Banach algebra of bounded analytic
functions on the open unit disk D with the supremum norm. We denote by
M(H∞) the maximal ideal space ofH∞, the space of non-zero multiplicative
linear functionals on H∞ with the weak∗-topology. We identify a function
in H∞ with its Gelfand transform. We may think of D as an open subset
of M(H∞). By the well known corona theorem due to Carleson [2], D is
dense in M(H∞), so a function f in H∞ defined on D can be extended
continuously and uniquely onto M(H∞). Also we identify f ∈ H∞ with its
radial limit f∗(eiθ) = limr→1 f(reiθ) for almost all points eiθ ∈ ∂D, so we
may think of H∞ as a closed subalgebra of L∞(∂D). We write

Z(f) = {x ∈M(H∞) : f(x) = 0}

for the zero set of f in M(H∞). Also for r > 0, we write

{|f | < r} = {x ∈M(H∞) : |f(x)| < r}.

For a subset E of M(H∞), we denote by E the closure of E in M(H∞).
A function ϕ ∈ H∞ is called inner if |ϕ∗(eiθ)| = 1 a.e. on ∂D (see [11]).

We denote by C the space of continuous functions on the unit circle ∂D.
Sarason’s theorem tells us that H∞ + C is a closed subalgebra of L∞(∂D)
and M(H∞ + C) = M(H∞) \D (see [18]).

Let M+
s be the set of bounded positive singular Borel measures on ∂D

with respect to the Lebesgue measure on ∂D. We use familiar measure-
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theoretic notations; for µ, ν ∈ M+
s , µ ≪ ν (absolutely continuous), µ ⊥ ν

(mutually singular), µ ∼ ν (equivalent, i.e., µ ≪ ν and ν ≪ µ), µ ∧ λ (the
lower bound), and δeiθ (the unit point mass at eiθ ∈ ∂D). We denote by
supp(µ) the closed support set of µ. For each µ ∈M+

s , we have the singular
inner function ψµ defined by

ψµ(z) = exp

(
−
\

∂D

eiθ + z

eiθ − z
dµ(eiθ)

)
, z ∈ D.

Division in H∞ is well understood. Axler, Gorkin, Guillory, Mortini, Sara-
son, and the author [1, 5, 7, 9, 10, 17] studied division in H∞ +C. Division
involving Blaschke products has been well-studied. In this paper, we are
motivated by the study of division involving singular inner functions. The
following problem of Guillory and Sarason remains unsolved: Are there sin-
gular inner functions ψµ and ψν with µ ⊥ ν which are codivisible in H∞+C,
that is, ψµ/ψν ∈ H∞+C and ψν/ψµ ∈ H∞+C? This is an interesting prob-
lem that will reveal information about the structure of M(H∞) and singular
inner functions. The author believes that the answer is negative, but in order
to make progress on this question it is necessary to understand the boundary
behavior of singular inner functions. The author has studied this problem
from this point of view in [15] and [16]. The goal of this paper is to better
understand the zero sets of singular inner functions.

We denote by

E(µ) = {ν ∈M+
s : ν ∼ µ}

the set of measures equivalent to µ. The singular inner functions ψµ and ψν

are called equivalent if ν ∈ E(µ). So, for each µ ∈ M+
s , we have a family

of equivalent singular inner functions {ψν : ν ∈ E(µ)}. In [16], the author
considered the common zero set of {ψν : ν ∈ E(µ)},

(1.1) Z(µ) =
⋂

ν∈E(µ)

Z(ψν),

and proved that Z(µ) 6= ∅ and Z(µ) ∩ Z(ν) = ∅ if µ ⊥ ν. To understand
the boundary behavior of ψν , ν ∈ E(µ), it is important to know various
properties of Z(µ) in M(H∞).

In this paper, we study the topological properties of Z(µ). In [16], we
have defined a closed subset Φµ(x) of Z(µ) for every point x in M(L∞(µ)),
the maximal ideal space of L∞(µ). In Section 3, we prove that Φµ(x) is
a connected set and {Φµ(x) : x ∈ M(L∞(µ))} is the family of connected
components of Z(µ). This answers a problem posed in [16, p. 253]. To show
these facts, we need a new factorization theorem. In Section 2, we show that
for an inner function ϕ, if U and V are non-empty open and closed subsets
of Z(ϕ) with Z(ϕ) = U ∪ V and U ∩ V = ∅, then there is a factorization
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ϕ = ϕ1ϕ2 such that Z(ϕ1) = U and Z(ϕ2) = V for some inner functions ϕ1

and ϕ2. This is interesting enough in its own right, and it can be applied to
study the topological properties of Z(ϕ) for inner functions ϕ.

2. Factorization of inner functions. There are several factorization
theorems for Blaschke products (see [8, 12, 14]). The following factorization
theorem for inner functions is of a new type.

Theorem 2.1. Let ϕ be an inner function. Suppose that U1 and U2 are

non-empty open and closed subsets of Z(ϕ) satisfying Z(ϕ) = U1 ∪ U2 and

U1 ∩ U2 = ∅. Then there exists a factorization ϕ = ϕ1ϕ2, where ϕ1 and ϕ2

are inner with Z(ϕj) = Uj for j = 1, 2.

Proof. Let Ũ1 and Ũ2 be open subsets of M(H∞) such that Uj ⊂ Ũj and

Ũ1 ∩ Ũ2 = ∅. There exists r, 0 < r < 1, satisfying {|ϕ| < r} ⊂ Ũ1 ∪ Ũ2. Let

Wj = {|ϕ| < r} ∩ Ũj ∩D.

By the corona theorem, Wj 6= ∅ and

(2.1) |ϕ| = r on ∂Wj ∩D

for j = 1, 2. By Frostman’s theorem [4, p. 79], there is a sequence {αn}n of
complex numbers with 0 < |αn| ≤ r/3 such that αn → 0 and

(2.2) Bn(z) :=
ϕ(z) − αn

1 − αnϕ(z)

is a Blaschke product for every n. The zeros in D of Bn are contained in
W1 ∪W2. Let Bn,1 and Bn,2 be the Blaschke products with zeros of Bn in
W1 and W2, respectively. Note that Bn = Bn,1Bn,2. By (2.1) and (2.2),

|Bn| ≥
r − |αn|

1 + |αn|r
≥
r

2
on (∂W1 ∩D) ∪ (∂W2 ∩D).

Since |Bn,j| ≥ |Bn|, we have

(2.3) |Bn,1| ≥ r/2 on ∂W2 ∩D

and

(2.4) |Bn,2| ≥ r/2 on ∂W1 ∩D.

We shall prove that

(2.5) |Bn,1| ≥ r/2 on W2 and |Bn,2| ≥ r/2 on W1.

We only prove the first statement. Indeed, assume that |Bn,1(zn)| < r/2
for some zn ∈ W2. Write Bn,1,k for the kth partial product of Bn,1. Since
Bn,1,k → Bn,1 uniformly on each compact subset of D as k → ∞, there
exists a positive integer k satisfying |Bn,1,k(zn)| < r/2. Since Bn,1,k is a
finite Blaschke product, Bn,1,k is a continuous function on the closed unit
disk and |Bn,1,k| = 1 on ∂D. Since Bn,1,k has no zeros in W2, there exists



136 K. Izuchi

wn ∈ ∂W2 ∩ D such that |Bn,1,k(wn)| < r/2. Therefore |Bn,1(wn)| < r/2.
This contradicts (2.3). Thus we get (2.5).

Since {Bn,j}n is a normal family, there are subsequences {Bni,j}i of
{Bn,j}n, j = 1, 2, such that Bni,1 → ϕ1 and Bni,2 → ϕ2 uniformly on
each compact subset of D as i → ∞. Then ϕj ∈ H∞ and ‖ϕj‖∞ ≤ 1. By
(2.2), ‖Bn −ϕ‖∞ → 0 as n→ ∞. Since Bni

= Bni,1Bni,2, we get ϕ = ϕ1ϕ2.
One easily sees that both ϕ1 and ϕ2 are inner functions. By (2.5), |ϕ1| ≥ r/2
on W2 and |ϕ2| ≥ r/2 on W1. By the corona theorem, Uj ⊂ W j , so that
|ϕ1| ≥ r/2 on U2 and |ϕ2| ≥ r/2 on U1. Since

Z(ϕ1) ∪ Z(ϕ2) = Z(ϕ) = U1 ∪ U2,

we get Z(ϕj) = Uj for j = 1, 2.

Corollary 2.2. Let ϕ be an inner function. Suppose that U1 and U2 are

non-empty open and closed subsets of Z(ϕ)\D satisfying Z(ϕ)\D = U1∪U2

and U1 ∩U2 = ∅. Then there exists a factorization ϕ = ϕ1ϕ2, where ϕ1 and

ϕ2 are inner with Z(ϕj) \D = Uj for j = 1, 2.

Proof. Let Ũ1 and Ũ2 be open subsets of M(H∞) such that Uj ⊂ Ũj

and Ũ1 ∩ Ũ2 = ∅. If ϕ has a Blaschke factor, discarding some finite Blaschke
factor from ϕ, we may assume that Z(ϕ) ⊂ Ũ1 ∪ Ũ2. By Theorem 2.1, there

is a factorization ϕ = ϕ1ϕ2 such that Z(ϕj) = Z(ϕ)∩ Ũj for j = 1, 2. Hence
Z(ϕj) \D = Uj for j = 1, 2.

It is well known that Z(ψδ
eiθ

) is a connected set. The next two corollaries
show that, in general, if an inner function is discontinuous at more than one
point of the unit circle, then the zero set is disconnected.

Corollary 2.3. Let µ ∈ M+
s . Then Z(ψµ) is a connected set if and

only if supp(µ) is a one-point set.

Proof. Suppose that µ = aδeiθ with a > 0. By Theorem 2.1, one easily
sees that Z(ψµ) = Z(ψδiθ

e
) is a connected set.

Next, suppose that supp(µ) is not a one-point set. Since |ψ∗
µ| = 1 a.e. on

∂D, there exist two points eiθ1 , eiθ2 ∈ ∂D with 0 < θ1 < θ2 < 2π such that

(2.6) lim
r→1

|ψµ(reiθk)| = 1

and µ(Jk) 6= 0 for k = 1, 2, where J1 = {eiθ : θ1 < θ < θ2} and J2 = ∂D\J1.
By (2.6), we have µ({eiθ1, eiθ2}) = 0. Write µk = µ|Jk

for k = 1, 2. Then
µ = µ1 + µ2, so ψµ = ψµ1

ψµ2
. Since µk 6= 0, Z(ψµk

) 6= 0 for k = 1, 2.
Since Z(ψµ) = Z(ψµ1

) ∪ Z(ψµ2
), to prove that Z(ψµ) is not connected it is

sufficient to prove that Z(ψµ1
) ∩ Z(ψµ2

) = ∅. To prove this, let

Dk = {z ∈ D : z = reiθ, r > 0, eiθ ∈ Jk}, k = 1, 2.
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Since µ2(J1) = 0, |ψ∗
µ2

(eiθ)| = 1 for all eiθ ∈ J1. For z ∈ D1, we have

|ψµ2
(z)| = exp

(
−
\

∂D

Pz(e
iθ) dµ2(e

iθ)
)

≥ min
k=1,2

exp
(
−
\

∂D

P|z|eiθk (eiθ) dµ2(e
iθ)

)

= min
k=1,2

|ψµ2
(|z|eiθk)| ≥ min

k=1,2
|ψµ(|z|eiθk)|

→ 1 as |z| → 1 by (2.6),

where

Pz(e
iθ) =

1 − |z|2

|eiθ − z|2
, z ∈ D,

is the Poisson kernel for a point z ∈ D. Hence |ψµ2
| > 0 on D1, so

Z(ψµ2
) ⊂M(H∞) \D1.

Similarly, we have
Z(ψµ1

) ⊂M(H∞) \D2.

SinceM(H∞) = D1∪D2 by the corona theorem, we get Z(ψµ1
)∩Z(ψµ2

) = ∅.
Thus Z(ψµ) is disconnected.

For a discontinuous inner function ϕ, we denote by Sing(ϕ) the set of
eiθ ∈ ∂D at which ϕ(z) does not have a continuous extension. As in the
proof of Corollary 2.3, we can prove the following which is of interest when
ϕ has a Blaschke factor.

Corollary 2.4. Let ϕ be a discontinuous inner function such that

Sing(ϕ) has more than one point. Then Z(ϕ) \D is disconnected.

Proof. By our assumption, there are two points eiθ1 , eiθ2 ∈ ∂D with
0 < θ1 < θ2 < 2π such that

(2.7) lim
r→1

|ϕ(reiθk)| = 1

and Sing(ϕ) ∩ Jk 6= ∅ for k = 1, 2, where J1 = {eiθ : θ1 < θ < θ2} and
J2 = ∂D \ J1. By (2.7), there is a number R with 0 < R < 1 such that

(2.8) min
k=1,2

min
R≤r<1

|ϕ(reiθk)| > δ > 0

for some δ > 0. Moreover we may assume that

(2.9) min
θ1≤θ≤θ2

|ϕ(Reiθ)| > δ > 0.

Let
D1 = {z ∈ D : z = reiθ, R < r < 1, eiθ ∈ J1}

and D2 = D \D1. Write ϕ(z) = B(z)ψµ(z), where B and ψµ are a Blaschke
factor and a singular inner factor of ϕ(z), respectively. By (2.7), we have
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µ({eiθ1, eiθ2}) = 0. Write µk = µ|Jk
for k = 1, 2. Then µ = µ1 + µ2. Let

B1 and B2 be Blaschke factors of B with zeros in D1 and D2, respectively.
Then B = B1B2. By the proof of Corollary 2.3, (2.8), and (2.9), we have
|ψµ2

(z)| ≥ δ for every z ∈ D1. Also by the proof of Theorem 2.1, (2.8),
and (2.9), |B2(z)| ≥ δ for every z ∈ D1. Hence |(B2ψµ2

)(z)| ≥ δ2 > 0 for
every z ∈ D1. Therefore we get |B2ψµ2

| ≥ δ2 on D1. Similarly, |B1ψµ1
| ≥ δ2

on D2. Therefore we get

Z(B2ψµ2
) ⊂M(H∞) \D1 and Z(B1ψµ1

) ⊂M(H∞) \D2.

Since D1 ∪D2 = M(H∞), Z(B1ψµ1
)∩Z(B2ψµ2

) = ∅. As ϕ = B1ψµ1
B2ψµ2

,

Z(ϕ) \D = (Z(B1ψµ1
) \D) ∪ (Z(B2ψµ2

) \D).

Since Sing(ϕ) ∩ Jk 6= ∅, Z(Bkψµk
) \ D 6= ∅ for k = 1, 2. Thus Z(ϕ) \ D is

disconnected.

3. Connected components of common zero sets. For µ ∈M+
s , we

denote by M(L∞(µ)) the maximal ideal space of the Banach algebra L∞(µ).
It is a totally disconnected compact Hausdorff space. For f ∈ L∞(µ), we

denote by f̂ the Gelfand transform of f . For a measurable subset S of
supp(µ), we have χ̂2

S = χ̂S on M(L∞(µ)), where χS is the characteristic

function for S, so there exists an open and closed subset Ŝ of M(L∞(µ))
with χ̂S = χ

Ŝ
. The family {χ

Ŝ
}S coincides with the set of idempotents in

C(M(L∞(µ))), the space of continuous functions on M(L∞(µ)). We have

Ŝc = (Ŝ)c, where Sc = supp(µ) \ S and (Ŝ)c = M(L∞(µ)) \ Ŝ. See [3,
pp. 17–18].

For each point x ∈M(L∞(µ)), write

(3.1) Φµ(x) =
⋂

{S :x∈Ŝ}

Z(µ|S).

In [16, Theorem 6.3], the author proved the following.

Theorem A.

(i) ∅ 6= Φµ(x) ⊂ Z(µ) for every x ∈M(L∞(µ)).
(ii) Φµ(x) ∩ Φµ(y) = ∅ if x, y ∈M(L∞(µ)) and x 6= y.
(iii) Z(µ) =

⋃
x∈M(L∞(µ)) Φµ(x).

By this theorem, the family

{Φµ(x) : x ∈M(L∞(µ))}

is like an atomic decomposition of Z(µ), and we may consider Z(µ) as a
shadow of the measure µ on ∂D in the maximal ideal space of H∞.

The following is proved in [16, Theorem 2.2].
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Lemma 3.1. Let µ, ν ∈M+
s . If µ ⊥ ν, then Z(µ) ∩ Z(ν) = ∅.

The following is proved in [16, Lemma 3.3].

Lemma 3.2. Let µ, ν ∈M+
s .

(i) If µ≪ ν, then Z(µ) ⊂ Z(ν).
(ii) If µ ∧ ν 6= 0, then Z(µ ∧ ν) = Z(µ) ∩ Z(ν).
(iii) Z(µ+ ν) = Z(µ) ∪ Z(ν).

We now state our main theorem, which answers a problem posed in [16,
Problem 6.4]. To prove it, we use Theorem 2.1.

Theorem 3.3. Let µ ∈M+
s . Then:

(i) For each x ∈M(L∞(µ)), Φµ(x) is a connected set.

(ii) {Φµ(x) : x ∈ M(L∞(µ))} is the family of connected components of

Z(µ).

Proof. (i) Suppose that there exist non-empty open and closed subsets
U1 and U2 of Φµ(x) such that

Φµ(x) = U1 ∪ U2 and U1 ∩ U2 = ∅.

Then there are open subsets Ũ1 and Ũ2 of M(H∞) such that Uj ⊂ Ũj for

j = 1, 2 and Ũ1 ∩ Ũ2 = ∅. Since M(H∞) \ (Ũ1 ∪ Ũ2) is compact, by the
definition of Φµ(x), there are measurable subsets S1, . . . , Sn of supp(µ) such
that

x ∈
n⋂

j=1

Ŝj =
( n⋂

j=1

Sj

)∧
and

n⋂

j=1

Z(µ|Sj
) ⊂ Ũ1 ∪ Ũ2.

Write

S0 =
n⋂

j=1

Sj .

By (3.1) and Lemma 3.2(ii),

Φµ(x) ⊂ Z(µ|S0
) =

n⋂

j=1

Z(µ|Sj
) ⊂ Ũ1 ∪ Ũ2.

By the definition of Z(µ|Sj
), there exist ν1, . . . , νk in M+

s such that νj ∼ µ|Sj

and

Φµ(x) ⊂ Z(µ|S0
) ⊂

n⋂

j=1

Z(ψνj
) ⊂ Ũ1 ∪ Ũ2.

Let

ν =

k∧

j=1

νj .
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Then ν ∼ µ|S0
and

Φµ(x) ⊂ Z(µ|S0
) ⊂ Z(ψν) ⊂

n⋂

j=1

Z(ψνj
) ⊂ Ũ1 ∪ Ũ2.

Since Ũ1 ∩ Ũ2 = ∅, by Theorem 2.1 we have a decomposition ν = σ1 + σ2

such that

Z(ψσ1
) = Z(ψν) ∩ Ũ1 and Z(ψσ2

) = Z(ψν) ∩ Ũ2.

Note that σ1 ⊥ σ2. Then there exist measurable subsets R1 and R2 of S0

such that S0 = R1 ∪ R2, R1 ∩ R2 = ∅, σ1 = ν|R1
, and σ2 = ν|R2

. Therefore

σ1 ∼ µ|R1
and σ2 ∼ µ|R2

. Since x ∈ Ŝ0 = R̂1 ∪ R̂2 and R̂1 ∩ R̂2 = ∅, either

x ∈ R̂1 or x ∈ R̂2. If x ∈ R̂1, then

Φµ(x) ⊂ Z(µ|R1
) = Z(σ1) ⊂ Z(ψσ1

) = Z(ψν) ∩ Ũ1.

But

∅ 6= U2 = Φµ(x) ∩ U2 ⊂ Z(ψν) ∩ Ũ1 ∩ U2 = ∅.

This is the desired contradiction. Thus we get (i).
(ii) Let S be a measurable subset of supp(µ) with 0 < µ(S) < µ(∂D).

Since µ|S ⊥ µ|Sc , by Lemma 3.1 we have Z(µ|S) ∩ Z(µ|Sc) = ∅. By Lem-
ma 3.2(iii),

Z(µ) = Z(µ|S) ∪ Z(µ|Sc).

Hence Z(µ|S) is a non-empty open and closed subset of Z(µ). Therefore
by (3.1), Φµ(x) is a union of connected components of Z(µ). By (i), it is a
single connected component.

Remark. If we think of each set Φµ(x) as a one-point set Φ̃µ(x) and if

we equip Z̃(µ) := {Φ̃µ(x) : x ∈ M(L∞(µ))} with the quotient topology of
Z(µ), then

Φ̃µ : M(L∞(µ)) ∋ x 7→ Φ̃µ(x) ∈ Z̃(µ)

is a homeomorphism.

We give some additional properties of Φµ(x).

Proposition 3.4. Let µ, ν ∈M+
s , x ∈M(L∞(µ)), and y ∈M(L∞(ν)).

Then either Φµ(x) = Φν(y) or Φµ(x) ∩ Φν(y) = ∅.

Proof. Suppose that Φµ(x)∩Φν(y) 6= ∅. We write µ+ ν = µ1 + µ2 + µ3,
where {µ1, µ2, µ3} is a set of mutually singular measures with µ ∼ µ1 + µ2

and ν ∼ µ2 + µ3. We may write

M(L∞(µ)) = M(L∞(µ1)) ⊎M(L∞(µ2)),

M(L∞(ν)) = M(L∞(µ2)) ⊎M(L∞(µ3)),

M(L∞(µ+ ν)) = M(L∞(µ1)) ⊎M(L∞(µ2)) ⊎M(L∞(µ3)),
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where ⊎ denotes disjoint union. Now, we have x, y ∈M(L∞(µ+ν)), Φµ(x) =
Φµ+ν(x), and Φν(y) = Φµ+ν(y). Hence by Theorem A, we get the assertion.

Let

QC = (H∞ + C) ∩H∞ + C ⊂ L∞(∂D),

where H∞ + C is the set of complex conjugates of functions in H∞+C. For
each point ζ ∈M(H∞) \D, let

Q(ζ) = {ξ ∈M(H∞) \D : f(ξ) = f(ζ) for every f ∈ QC}.

The set Q(ζ) is called the QC-level set containing ζ (see [18, 19]). Generally,
for a subset E of M(H∞),

⋃
ζ∈E Q(ζ) is fairly bigger than E. Here we have

the following.

Proposition 3.5. If µ ∈M+
s and x, y ∈M(L∞(µ)) with x 6= y, then

⋃

ζ∈Φµ(x)

Q(ζ) ∩
⋃

ζ∈Φµ(y)

Q(ζ) = ∅.

Proof. By Theorem A, Φµ(x)∩Φµ(y) = ∅. There exist measurable subsets

S1 and S2 of supp(µ) such that x ∈ Ŝ1, y ∈ Ŝ2, and S1 ∩ S2 = ∅. By (3.1),

Φµ(x) ⊂ Z(µ|S1
) and Φµ(y) ⊂ Z(µ|S2

).

Since µ|S1
⊥ µ|S2

, by [16, Theorem 2.1] there exist ν1, ν2 ∈ M+
s such that

ν1 ∼ µ|S1
, ν2 ∼ µ|S2

, and

{ζ ∈M(H∞) \D : |ψν1
(ζ)| < 1} ∩ {ζ ∈M(H∞) \D : |ψν2

(ζ)| < 1} = ∅.

We have

Φµ(x) ⊂ Z(µ|S1
) = Z(ν1) ⊂ {ζ ∈M(H∞) \D : |ψν1

(ζ)| < 1},

Φµ(y) ⊂ Z(µ|S2
) = Z(ν2) ⊂ {ζ ∈M(H∞) \D : |ψν2

(ζ)| < 1}.

Therefore by [13, Corollary 3], we get the assertion.

We may think of M(L∞) as a closed subset of M(H∞). For each ζ ∈
M(H∞), it is known that there exists a unique probability measure µζ on
M(L∞) such that

f(ζ) =
\

M(L∞)

f dµζ

for every f ∈ H∞ (see [4]). Note that suppµζ ⊂ Q(ζ) (see [18]). There are
many studies of the representing measures µζ ; here we just mention [6].

Corollary 3.6. Let µ ∈ M+
s and x, y ∈ M(L∞(µ)) with x 6= y. Then

suppµζ ∩ suppµξ = ∅ for every ζ ∈ Φµ(x) and ξ ∈ Φµ(y).
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