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Non-smooth atomic decompositions

of anisotropic function spaces and some applications

by

Susana D. Moura (Coimbra), Iwona Piotrowska (Jena) and
Mariusz Piotrowski (Wien)

Abstract. The main purpose of the present paper is to extend the theory of
non-smooth atomic decompositions to anisotropic function spaces of Besov and Triebel–
Lizorkin type. Moreover, the detailed analysis of the anisotropic homogeneity property is
carried out. We also present some results on pointwise multipliers in special anisotropic
function spaces.

1. Introduction. In recent years, many efforts have been made to de-
velop decomposition techniques in function spaces using atoms, quarks or
wavelets as building blocks. All these techniques have found widespread ap-
plications in other branches of the theory of function spaces and still remain
very much alive as subjects of current research. For a deeper discussion of
these techniques, the reader is referred to the recent monograph [13].

In the present paper we are concerned with non-smooth atomic decom-
positions of special anisotropic function spaces of Besov type. Using non-
smooth atoms one can also improve the smoothness assumptions for classi-
cal smooth anisotropic atoms according to W. Farkas [3] in a natural way.
The problem of extending the theory of non-smooth isotropic atoms to the
anisotropic case was posed by H. Triebel in [13, Remark 5.16]. The sec-
ond purpose of this work is to study pointwise multipliers in these function
spaces.

We now describe briefly the contents of the paper. In Section 2 we set
up notation and terminology and summarize some basic facts on anisotropic
function spaces. In Section 3 the homogeneity properties of anisotropic func-
tion spaces are presented. Section 4 is concerned with the non-smooth atomic
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decomposition in some anisotropic spaces of Besov type. These results are
used in Section 5 to obtain some new assertions on pointwise multipliers in
anisotropic function spaces.

2. Preliminaries

2.1. Notation and conventions. For a real number a, let a+ := max(a, 0).
By c, c1, c2, etc. we denote positive constants independent of appropriate
quantities. For two non-negative expressions (i.e. functions or functionals)
A, B, the symbol A . B (or A & B) means that A ≤ cB (or cA ≥ B). If
A . B and A & B, we write A ∼ B and say that A and B are equivalent.
For p ∈ [1,∞], the conjugate number p′ is defined by 1/p + 1/p′ = 1 with
the convention that 1/∞ = 0. Given two quasi-Banach spaces X and Y ,
we write X →֒ Y if X ⊂ Y and the natural embedding is bounded. In the
following let both dx and | · | stand for the Lebesgue measure in R

n. Let

(1) (∆1
hf)(x) = f(x+ h) − f(x), (∆m+1

h f)(x) = ∆1
h(∆

m
h f)(x)

with x, h ∈ R
n and m ∈ N be the iterated differences in R

n. For x ∈ R
n and

β, γ ∈ N
n
0 we put

βγ = γβ =

n∑

j=1

γjβj and xγ = xγ11 · · ·xγn

n .

Let S(Rn) stand for the Schwartz space of all complex-valued rapidly de-
creasing C∞ functions on R

n. Further, we denote by S ′(Rn) its topological
dual, the space of all tempered distributions.

2.2. Anisotropic function spaces. In this subsection we introduce the
anisotropic Besov and Triebel–Lizorkin spaces and describe some of their
important properties. Let us start by recalling briefly the basic ingredi-
ents needed to introduce these spaces by the Fourier-analytical approach.
Throughout the paper we call a vector α = (α1, . . . , αn) with

(2) 0 < α1 ≤ · · · ≤ αn <∞ and
n∑

j=1

αj = n

an anisotropy in R
n. For t > 0, r ∈ R and x = (x1, . . . , xn) ∈ R

n we put

tαx := (tα1x1, . . . , t
αnxn) and trαx := (tr)αx.

For x = (x1, . . . , xn) ∈ R
n, x 6= 0, let |x|α be the unique positive number t

such that

(3)
x2

1

t2α1
+ · · · + x2

n

t2αn

= 1

and put |0|α = 0. It turns out that | · |α is an anisotropic distance function
according to [3, Definition 2.1] in C∞(Rn\{0}). Note that in the isotropic
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case, which means α1 = · · · = αn = 1, |x|α is the Euclidean distance of x to
the origin.

Let ϕα ∈ S(Rn) be a function such that

(4) ϕα(x) = 1 for |x|α ≤ 1, suppϕα ⊂ {x ∈ R
n : |x|α ≤ 2}.

For each j ∈ N we define

(5) ϕαj (x) := ϕα(2−jαx) − ϕα(2−(j−1)αx), x ∈ R
n,

and put ϕα0 = ϕα. Then since
∑∞

j=0 ϕ
α
j (x) = 1 for all x ∈ R

n, the sequence

(ϕαj )j∈N0
is an anisotropic resolution of unity. Recall that (ϕαj f̂ )∨ is an entire

function on R
n.

Definition 2.1. Let α be an anisotropy as in (2) and let ϕα = (ϕαj )j∈N0

be an anisotropic dyadic resolution of unity in the sense of (5).

(i) For 0 < p, q ≤ ∞ and s ∈ R the anisotropic Besov space Bs,α
pq (Rn) is

defined to be the set of all tempered distributions f ∈ S ′(Rn) such
that

(6) ‖f |Bs,α
pq (Rn)‖ :=

( ∞∑

j=0

2jsq‖(ϕαj f̂)∨ |Lp(Rn)‖q
)1/q

is finite. In the limiting case q = ∞ the usual modification is re-
quired.

(ii) For 0 < p < ∞, 0 < q ≤ ∞ and s ∈ R the anisotropic Triebel–

Lizorkin space F s,αpq (Rn) is defined to be the set of all tempered
distributions f ∈ S ′(Rn) such that

(7) ‖f |F s,αpq (Rn)‖ :=
∥∥∥
( ∞∑

j=0

2jsq|(ϕαj f̂)∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥

is finite. In the limiting case q = ∞ the usual modification is re-
quired.

Remark 2.2. We occasionally use the symbol As,αpq (Rn) to consider the
spaces Bs,α

pq (Rn) and F s,αpq (Rn) simultaneously. It turns out that As,αpq (Rn) are
quasi-Banach spaces which are independent of ϕα, in the sense of equivalent
quasi-norms, according to either (6) or (7). Taking α = (1, . . . , 1) brings us
back to the isotropic case usually denoted by Bs

pq(R
n) and F spq(R

n). The
above Fourier-analytical approach to anisotropic function spaces is due to
H. Triebel [9].

Let us now make a few historical comments on anisotropic function
spaces. A detailed treatment of the history of anisotropic function spaces can
be found in [13, Section 5]. There is quite an extensive literature concern-
ing anisotropic function spaces, beginning with the work of S. M. Nikol’skĭı
and O. V. Besov. The key objective is to make the smoothness properties
of an element from some function space dependent on the chosen direction
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in R
n. Roughly speaking, elements of Bs,α

pq (Rn) and F s,αpq (Rn) are smooth of
order s/αr in the direction of the rth coordinate with r = 1, . . . , n. Let us
explain this relationship in detail by discussing classical anisotropic spaces.
Let 1 < p <∞ and k = (k1, . . . , kn) with kr ∈ N, r = 1, . . . , n. The subspace
of all f ∈ Lp(R

n) for which the norm

(8) ‖f |W k
p (Rn)‖ := ‖f |Lp(Rn)‖ +

n∑

r=1

∥∥∥∥
∂krf

∂xkr
r

∣∣∣∣Lp(R
n)

∥∥∥∥

is finite is called the classical anisotropic Sobolev space W k
p (Rn). It is easily

seen that if k1 = · · · = kn = k ∈ N, then the spaceW k
p (Rn) becomes the well-

known isotropic Sobolev space W k
p (Rn). We now describe a generalization

of classical anisotropic Sobolev spaces, replacing the smoothness vector k =
(k1, . . . , kn) consisting of natural numbers by a vector with real entries.
We consider the anisotropic lift operator Iασ with σ ∈ R, which takes f ∈
S ′(Rn) to

Iασ (f) :=
([ n∑

r=1

(1 + ξ2r )
1/2αr

]σ
f̂
)∨

.

Then we refer to

Hs
p(R

n) := Iα−sLp(R
n)

with s̄ = (s1, . . . , sn) and sr = s/αr, r = 1, . . . , n, as anisotropic Sobolev

spaces or anisotropic Bessel potential spaces. In addition, if sr ∈ N for all
r = 1, . . . , n, then

Hs
p(R

n) = W s
p (R

n)

become the classical anisotropic Sobolev spaces with (8).
We proceed by describing the classical anisotropic Besov spaces. Let 1 <

p <∞ and 1 ≤ q ≤ ∞. Moreover let s = (s1, . . . , sn) with 0 < sr < Mr ∈ N

and set M = (M1, . . . ,Mn). The classical anisotropic Besov space consists
of those f ∈ Lp(R

n) for which

‖f |Bs
pq(R

n)‖M := ‖f |Lp(Rn)‖ +
n∑

r=1

( 1\
0

t−srq‖∆Mr

t,r f |Lp(Rn)‖q dt
t

)1/q

is finite. Here ∆m
t,rf = ∆m

h f with h = ter, t ∈ R, denote the iterated
differences according to (1) in the direction of the rth coordinate and er
stands for the corresponding unit vector in R

n. Once again putting s1 =
· · · = sn = s > 0, we recover the classical Besov spaces as presented for
instance in [10, Section 1.2.5].

We shall now discuss the relation between the function spaces introduced
in Definition 2.1 and the classical anisotropic function spaces. Given an
anisotropic smoothness vector s = (s1, . . . , sn), we define the so-called mean
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smoothness s and α = (α1, . . . , αn) by

(9)
1

s
=

1

n

n∑

r=1

1

sr
and αr =

s

sr
, r = 1, . . . , n.

This makes it possible to recover in Definition 2.1 the classical anisotropic
function spaces. For instance, restricting the range of the indices involved
in Definition 2.1(i) to 1 < p < ∞ and 1 ≤ q ≤ ∞, we obtain Bs

pq(R
n) =

Bs,α
pq (Rn). On the other hand, given a function spaceAs,αpq (Rn) with a suitable

combination of indices, the vector s̄ = (s1, . . . , sn) is calculated by s̄ =
(s/α1, . . . , s/αn). Let s ∈ R and 1 < p <∞. Then it can be shown that

F s,αp,2 (Rn) = Hs
p(R

n)

in the sense of equivalent norms. Moreover, we have the following anisotropic
Paley–Littlewood theorem:

F 0,α
p,2 (Rn) = Lp(R

n).

We conclude this subsection by discussing some characterizations of the
anisotropic spaces Bs,α

pq (Rn) and F s,αpq (Rn) with s > σp in terms of the

quasi-norms of their homogeneous counterparts, denoted by Ḃs,α
pq (Rn) and

Ḟ s,αpq (Rn), respectively. Recall that the latter are equipped with the quasi-
norms given by

(10) ‖f | Ḃs,α
pq (Rn)‖ :=

( ∞∑

j=−∞

2jsq‖(ϕαj f̂ )∨ |Lp(Rn)‖q
)1/q

and

(11) g‖f | Ḟ s,αpq (Rn)‖ :=
∥∥∥
( ∞∑

j=−∞

2jsq|(ϕαj f̂ )∨(·)|q
)1/q ∣∣∣Lp(Rn)

∥∥∥,

respectively. Here we have extended the definition of (ϕαj ) given by (5) to all
j ∈ Z with a minor modification: for j = 0, we put ϕα0 (x) = ϕα(x)−ϕα(2αx).
Denoting by Ȧs,αpq (Rn) one of the spaces Ḃs,α

pq (Rn) or Ḟ s,αpq (Rn), we may state
the next result.

Proposition 2.3. Let 0 < p, q ≤ ∞, with p < ∞ in the F -case, and

s > σp. Moreover let α be an anisotropy. Then

(12) ‖f |As,αpq (Rn)‖ ∼ ‖f |Lp(Rn)‖ + ‖f | Ȧs,αpq (Rn)‖
for all f ∈ As,αpq (Rn).

We will also need a “continuous” version of the above proposition re-
placing the homogeneous quasi-norm on the right-hand side of (12) by its
integral counterpart. Note that the Besov space case can be found in [8,
Theorem 3.3].
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Theorem 2.4. Let 0 < p, q ≤ ∞, s > σp, and let α be an anisotropy.

Moreover , put ̺α(tξ) = ϕα(tαξ) − ϕα((2t)αξ), where t > 0 and ϕα is as

in (4). Then

(i)

(13) ‖f |Lp(Rn)‖ +

(∞\
0

t−sq‖(̺α(t·)f̂ )∨ |Lp(Rn)‖q dt
t

)1/q

(modified for q = ∞) is an equivalent quasi-norm in Bs,α
pq (Rn).

(ii)

(14) ‖f |Lp(Rn)‖ +

∥∥∥∥

(∞\
0

t−sq|(̺α(t·)f̂ )∨(·)|q dt

t

)1/q ∣∣∣∣Lp(R
n)

∥∥∥∥

(modified for q = ∞) is an equivalent quasi-norm in F s,αpq (Rn).

Both Proposition 2.3 and Theorem 2.4 can be proved in the same way
as in [10, Section 2.3.3]. This will be omitted here.

2.3. Classical atomic decompositions in anisotropic function spaces. As
a preparation, we shall recall some basic notations of atomic decompositions
in the anisotropic setting. If ν ∈ N0 and m = (m1, . . . ,mn) ∈ Z

n, we
denote by Qανm the rectangle in R

n with sides parallel to the coordinate
axes, centered at 2−ναm = (2−να1m1, . . . , 2

−ναnmn) and with side lengths
2−(ν−1)α1, . . . , 2−(ν−1)αn . In particular, Qα0m is a rectangle of side lengths
2α1 , . . . , 2αn centered at m ∈ Z

n. If Q is a rectangle in R
n and d > 0, then

dQ is the rectangle in R
n concentric with Q and with side length d times

the side length of Q.

We are now in a position to introduce suitable building blocks.

Definition 2.5. Let α be an anisotropy. Let s ∈ R, 0 < p ≤ ∞, K,L
≥ 0 and d ≥ 1. A continuous function a : R

n → C with all derivatives Dγa
for αγ ≤ K is said to be an anisotropic (s, p)K,L-atom if

(i) supp a ⊂ dQανm for some ν ∈ N0, m ∈ Z
n,

(ii) |Dγa(x)| ≤ 2−ν(s−n/p−γα) for αγ ≤ K, x ∈ R
n,

(iii)
T
Rn x

βa(x) dx = 0 for all β ∈ N
n
0 with βα < L.

If conditions (i) and (ii) are satisfied for ν = 0, then a is called an anisotropic

1K-atom.

Remark 2.6. In the following, we will write aανm instead of a, to indicate
the localization and size of an anisotropic (s, p)K,L-atom a, i.e. if supp a ⊂
dQανm. If L = 0, then (iii) simply means that there are no moment conditions.
In this case, we shorten the notation by writing (s, p)K-atom instead of
(s, p)K,0-atom.
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The main advantage of the atomic decomposition approach is that we
can often reduce a problem formulated in As,αpq (Rn) to the corresponding
sequence space. We shall restrict ourselves to the case A = B and define the
Besov sequence spaces.

Definition 2.7. Let 0 < p, q ≤ ∞ and put λ = {λνm ∈ C : ν ∈ N0,
m ∈ Z

n}. The Besov sequence space bpq is defined as the set

bpq =
{
λ : ‖λ | bpq‖ :=

( ∞∑

ν=0

( ∑

m∈Zn

|λνm|p
)q/p)1/p

<∞
}

with the usual modification if either p = ∞ or q = ∞. In what follows, we
shall abbreviate bpp to bp.

To shorten the notation we utilize the following abbreviation:

(15) σp = n(1/p− 1)+.

Below we formulate the atomic decomposition characterization of aniso-
tropic Besov spaces Bs,α

pq (Rn), following essentially [3, Theorem 3.3].

Theorem 2.8. Let 0 < p, q ≤ ∞, s ∈ R, and let α be an anisotropy. Let

K,L ≥ 0 with

(16) K ≥
{

0 for s < 0,

s+ αn for s ≥ 0,

and L > σp − s be fixed. A tempered distribution f ∈ S ′(Rn) belongs to

Bs,α
pq (Rn) if , and only if , it can be written as

(17) f =
∞∑

ν=0

∑

m∈Zn

λνm a
α
νm (convergence in S ′(Rn)),

where for fixed d ≥ 1, the aανm are anisotropic 1K-atoms (ν = 0) or (s, p)K,L-
atoms (ν ∈ N) and λ = (λνm) ∈ bpq. Furthermore

(18) inf ‖λ | bpq‖,
where the infimum is taken over all admissible representations (17), is an

equivalent quasi-norm in Bs,α
pq (Rn).

As an application of the above smooth atomic decomposition theorem
we obtain the next result. For K ∈ N and α an anisotropy we denote by
CK,α(Rn) the set of all functions f ∈ C(Rn) such that Dβf ∈ C(Rn) for all
β ∈ N

n
0 with βα ≤ K, equipped with the norm given by

‖f |CK,α(Rn)‖ :=
∑

βα≤K

‖Dβf |L∞(Rn)‖.

Proposition 2.9. Let 0 < p, q ≤ ∞, s > σp, and let α be an anisotropy.

Let K ∈ N with K ≥ s + αn. Then there exists a positive constant c such
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that

(19) ‖gf |Bs,α
pq (Rn)‖ ≤ c ‖g |CK,α(Rn)‖ ‖f |Bs,α

pq (Rn)‖

for all f ∈ Bs,α
pq (Rn) and all g ∈ CK,α(Rn).

Proof. Let f ∈ Bs,α
pq (Rn) and consider an optimal smooth atomic decom-

position

f =
∞∑

ν=0

∑

m∈Zn

λνm a
α
νm with ‖f |Bs,α

pq (Rn)‖ ∼ ‖λ | bpq‖,

where the aανm are anisotropic 1K-atoms (ν = 0) or (s, p)K-atoms (ν ∈ N)
and λ = (λνm)ν∈N0,m∈Zn ∈ bpq. Then, for g ∈ CK,α(Rn),

(20) gf =
∞∑

ν=0

∑

m∈Zn

λνm (gaανm).

Note that

supp gaανm ⊂ supp aανm ⊂ dQανm,

and

|Dγ(gaανm)(x)| ≤
∑

β≤γ

(
γ

β

)
|Dβaανm(x)| |Dγ−βg(x)|(21)

≤ c(α,K)‖g |CK,α(Rn)‖2−ν(s−n/p−βα)

for all β with βα ≤ K. Assuming g 6= 0 (otherwise (19) is trivially satisfied),
we can rewrite (20) as

gf =
∞∑

ν=0

∑

m∈Zn

σνm bνm

with σνm = c(α,K)λνm ‖g |CK,α(Rn)‖, and with bνm(x) := g(x) − aανm(x) ·
(c(α,K)λνm‖g |CK,α(Rn)‖)−1 being anisotropic (s, p)K-atoms. Then, by the
smooth atomic decomposition theorem, it follows that gf ∈ Bs,α

pq (Rn) and,
moreover,

‖gf |Bs,α
pq (Rn)‖ ≤ c1‖σ | bpq‖ ≤ c2‖g |CK,α(Rn)‖ ‖λ | bpq‖

≤ c3‖g |CK,α(Rn)‖ ‖f |Bs,α
pq (Rn)‖,

with constants independent of f and g.

3. Homogeneity property for anisotropic function spaces. The
homogeneity property considered below is based on the Fubini property
defined as follows.
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Definition 3.1. Let 0 < p, q ≤ ∞, s > σp, and let α be an anisotropy.
Then Bs,α

pq (Rn) is said to have the Fubini property if

(22)
n∑

r=1

∥∥ ‖f(x1, . . . , xr−1, ·, xr+1, . . . , xn) |Bsr

pq(R)‖
∣∣Lp(Rn−1)

∥∥

is an equivalent quasi-norm in Bs,α
pq (Rn).

Note that the inner quasi-norm in (22) is taken only with respect to the
variable xr, and sr = s/αr.

Theorem 3.2. Let 0 < p, q ≤ ∞, s > σp, and let α be an anisotropy.

Then the space Bs,α
pq (Rn) has the Fubini property if , and only if , p = q.

For the proof and more details, we refer the reader to [2]. As we will
see below, the Fubini property will play a central role in the proof of the
homogeneity property for anisotropic Besov spaces Bs,α

p (Rn). The following
proposition is a simple consequence of recent results on the homogeneity
property in isotropic function spaces on domains due to A. Caetano et al. [1].

Proposition 3.3. Let 0 < p, q ≤ ∞ and s > σp. Furthermore, let

f ∈ Bs
pq(R

n) with supp f ⊂ {y ∈ R
n : |y| ≤ λ} for some 0 < λ < 1. Then

(23) ‖f(λ ·) |Bs
pq(R

n)‖ ∼ λs−n/p‖f |Bs
pq(R

n)‖,
where the equivalence constants are independent of λ.

For a complete treatment of the homogeneity property for isotropic Besov
and Triebel–Lizorkin spaces on domains, the reader may consult [1]. The
next result describes the homogeneity property in special anisotropic Besov
spaces, when p = q. Let us briefly comment on that property in Lebesgue
spaces Lp(R

n) with 0 < p ≤ ∞. A straightforward computation shows that
for λ > 0,

‖f(λα ·) |Lp(Rn)‖ = λ−(α1+···+αn)/p‖f |Lp(Rn)‖(24)

= λ−n/p‖f |Lp(Rn)‖.
In the following, we utilize the abbreviation

Bs,α
p (Rn) = Bs,α

pp (Rn), where 0 < p ≤ ∞, s ∈ R.

Proposition 3.4. Let 0 < p ≤ ∞, s > σp, and let α be an anisotropy.

Furthermore, let f ∈ Bs,α
p (Rn) with supp f ⊂ {y ∈ R

n : |y|α ≤ λ} for some

0 < λ < 1. Then

(25) ‖f(λα ·) |Bs,α
p (Rn)‖ ∼ λs−n/p‖f |Bs,α

p (Rn)‖,
where the equivalence constants are independent of λ.

Proof. The central idea of the proof is the use of the Fubini property
for anisotropic Besov spaces Bs,α

p (Rn), to obtain an equivalent quasi-norm
modeled only on Besov spaces defined on R, which are isotropic. For these
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spaces we shall employ the homogeneity property of isotropic Besov spaces
as described in Proposition 3.3. Assume that f ∈ Bs,α

p (Rn) with supp f ⊂
{y ∈ R

n : |y|α ≤ λ}. Recall that by Theorem 3.2 we have

(26) ‖f |Bs,α
p (Rn)‖

∼
n∑

r=1

∥∥ ‖f(x1, . . . , xr−1, ·, xr+1, . . . , xn) |Bsr

p (R)‖
∣∣Lp(Rn−1)

∥∥.

It may be worth reminding the reader that by (9) we know that s = αrsr
for r = 1, . . . , n. Applying (26) to f(λα ·), setting

gr(xr) = f(λα1x1, . . . , λ
αr−1xr−1, xr, λ

αr+1xr+1, . . . , λ
αnxn),

and using (23) and (24) results in
∥∥f(λα·) |Bs,α

p (Rn)
∥∥

∼
n∑

r=1

∥∥‖gr(λαr ·) |Bsr

p (R)‖
∣∣ Lp(Rn−1)

∥∥

∼
n∑

r=1

∥∥(λαr)sr−1/p‖gr(·) |Bsr

p (R)‖
∣∣Lp(Rn−1)

∥∥

∼ λs−αr/pλ−(α1+···+αr−1+αr+1+···+αn)/p
n∑

r=1

∥∥‖f(·) |Bsr

p (R)‖
∣∣Lp(Rn−1)

∥∥

= λs−n/p
n∑

r=1

∥∥‖f(·) |Bsr

p (R)‖
∣∣Lp(Rn−1)

∥∥ ∼ λs−n/p‖f(·) |Bs,α
p (Rn)‖,

which finishes the proof.

Next, we make full use of Theorem 2.4 to get the following assertion.

Proposition 3.5. Let f ∈ As,αpq (Rn) with s > σp (s > σpq in the F -

case). Then

(27) ‖f(λα·) |As,αpq (Rn)‖ ∼ λs−n/p‖f(·) | Ȧs,αpq (Rn)‖ + λ−n/p‖f |Lp(Rn)‖
for λ > 0. The underlying equivalence constants are independent of λ.

Proof. Taking into account the equivalent quasi-norm in As,αpq (Rn) given
by (12) with f(λα·) in place of f(·) yields

‖f(λα ·) |As,αpq (Rn)‖ ∼ ‖f(λα ·) |Lp(Rn)‖ + ‖f(λα ·) | Ȧs,αpq (Rn)‖
∼ λ−n/p‖f |Lp(Rn)‖ + ‖f(λα ·) | Ȧs,αpq (Rn)‖.

The last equivalence follows from (24). Recall that ̺α(tξ) = ϕ(tαξ) −
ϕ((2t)αξ). More precisely,

̺α(tξ) = ϕ(tα1ξ1, . . . , t
αnξn) − ϕ((2t)α1ξ1, . . . , (2t)

αnξn).
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Therefore, a chain of standard substitutions gives

(̺α(t ·)F(f(λα ·))(·))∨(x) = (̺α(t ·)λ−nF(f(·))(λ−α·))∨(x)

= (̺α((λt) ·)F(f(·))(·))∨(λαx).

To establish the assertion, we consider the integral part of the equivalent
quasi-norms given by (13) and (14). We consider the case of A = B. Then
we obtain

‖f(λα ·) | Ḃs,α
pq (Rn)‖ ∼

(∞\
0

t−sq‖(̺α(t ·)F(f(λα ·))(·))∨ |Lp(Rn)‖q dt
t

)1/q

=

(∞\
0

t−sq‖(̺α((λt) ·)f̂(·))∨(λα ·) |Lp(Rn)‖q dt
t

)1/q

=

(∞\
0

(λt)−sq

λ−sq
‖(̺α((λt)·)f̂(·))∨(λα ·) |Lp(Rn)‖q dt

t

)1/q

∼ λs−n/p
(∞\

0

t−sq‖(̺α(t ·)f̂(·))∨(·) |Lp(Rn)‖q dt
t

)1/q

∼ λs−n/p‖f | Ḃs,α
pq (Rn)‖,

which finishes the proof for the B-case. The proof of the F -case is analo-
gous.

4. Anisotropic non-smooth atoms

Definition 4.1. Let c ≥ 1, 0 < p ≤ ∞ and σp < s < σ < ∞, where σp
is given by (15). Then aανm ∈ Bσ,α

p (Rn) is called an anisotropic (s, p)σ-atom
(more precisely, an anisotropic (s, p)σ-c-atom) provided that

(28) supp aανm ⊂ cQανm where ν ∈ N0, m ∈ Z
n

and

(29) ‖aανm |Bσ,α
p (Rn)‖ ≤ 2ν(σ−s).

The next proposition summarizes the basic properties of these atoms.
In its first part we compare them with the classical atoms described in
Definition 2.5.

Proposition 4.2. Let c ≥ 1, ν ∈ N0 and m ∈ Z
n. Moreover , let 0 < p

≤ ∞ and σp < s < σ.

(i) Let σ + αn ≤ K ∈ N. Then any anisotropic (s, p)K-atom aανm ac-

cording to Definition 2.5 is an anisotropic (s, p)σ-atom as introduced

in Definition 4.1.
(ii) Let aανm be an anisotropic (s, p)σ-atom. Then
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(30) ‖aανm |Bs,α
p (Rn)‖ ≤ 1.

In particular , for p ≥ 1 we obtain

(31) ‖aανm |Lp(Rn)‖ ≤ 2−νs.

Proof. Let us start by recalling the needed homogeneity property. Taking
λ = 2−ν , ν ∈ N in Proposition 3.4 we find for g ∈ Bs,α

p (Rn) with supp g ⊂
{y ∈ R

n : |y|α ≤ 1} that

(32) ‖g |Bs,α
p (Rn)‖ ∼ 2−ν(s−n/p)‖g(2να·) |Bs,α

p (Rn)‖.
To establish (i) assume that aανm is an anisotropic (s, p)K-atom with

K > σ > s. We can write

(33) aανm(x) = 2ν(σ−s)bανm(x),

where
bανm(x) := 2ν(s−σ)aανm(x), x ∈ R

n, ν ∈ N0, m ∈ Z
n.

Note that, for each ν ∈ N0 and m ∈ Z
n, we have

supp bανm = supp aανm ⊂ cQανm

and
|Dγbανm(x)| ≤ 2−ν(σ−n/p−γα) for γα ≤ K,

so that bανm is an anisotropic (σ, p)K-atom. Then, by (33) and the classical
atomic decomposition theorem,

aανm ∈ Bσ,α
p (Rn) and ‖aανm |Bσ,α

p (Rn)‖ . 2ν(σ−s)

and hence aανm is an anisotropic (s, p)σ-atom.
We now prove (ii). We may assumem = 0 and we put aαν ≡ aαν0. Applying

(32) to g(x) = aαν (2−ναx) and using the elementary embedding Bσ,α
p (Rn) →֒

Bs,α
p (Rn), we obtain, for ν ∈ N0,

‖aαν |Bs,α
p (Rn)‖ ∼ 2ν(s−n/p)‖aαν (2−να·) |Bs,α

p (Rn)‖
. 2ν(s−n/p)‖aαν (2−να·) |Bσ,α

p (Rn)‖
. 2−ν(σ−s)‖aαν |Bσ,α

p (Rn)‖ . 1.

Let r ∈ (1,∞) be such that r > p and s− n/p ≥ −n/r. Then

Bs,α
p (Rn) = F s,αp,p (Rn) →֒ F 0,α

r,2 (Rn) = Lr(R
n).

Using the Hölder inequality combined with the homogeneity property (32)
we obtain, for ν ∈ N0,

‖aαν |Lp(Rn)‖ = 2−νn/p‖aαν (2−να·) |Lp(Rn)‖
. 2−νn/p‖aαν (2−να·) |Lr(Rn)‖
. 2−νn/p‖aαν (2−να·) |Bs,α

p (Rn)‖
. 2−νn/p2−ν(s−n/p)‖aαν |Bs,α

p (Rn)‖ . 2−νs.
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The main result in this section is the following atomic decomposition
theorem of type (17) and (18) based on the atoms introduced in Defini-
tion 4.1.

Theorem 4.3. Let 0 < p ≤ ∞, α be an anisotropy and σp < s < σ.
Then Bs,α

p (Rn) is the collection of all f ∈ Lloc
1 (Rn) ∩ S ′(Rn) which can be

represented as

(34) f =

∞∑

ν=0

∑

m∈Zn

λνma
α
νm,

where the aανm are anisotropic (s, p)σ-c-atoms according to Definition 4.1
and λ = (λνm) ∈ bp. The series on the right-hand side of (34) converges

unconditionally in S ′(Rn), and if p < ∞, absolutely in some Lr(R
n) with

1 < r <∞. Furthermore,

(35) inf ‖λ | bp‖,
where the infimum is taken over all admissible representations (34), is an

equivalent quasi-norm in Bs,α
p (Rn).

Proof. Our method will be an adaptation of the reasoning used in [13,
Section 2.2], but we have to examine very carefully the influence of the
anisotropy.

Step 1. We start by justifying the convergence of the series on the
right-hand side of (34) in some Lr(R

n) with 1 < r < ∞. Assume first that
p > 1. Then, by Proposition 4.2 combined with the support property (28),
we obtain

‖f |Lp(Rn)‖ .

∞∑

ν=0

2−νs
( ∑

m∈Zn

|λνm|p
)1/p

. ‖λ |bp‖.

Consequently, the series (34) converges absolutely in Lr(R
n) with r = p.

In order to establish its convergence in some Lr(R
n) in the case p ≤ 1, we

utilize the Sobolev embedding Bs,α
p (Rn) →֒ Bt,α

r (Rn) with s−n/p = t−n/r
and p ≤ r.

Step 2. By Theorem 2.8 and Proposition 4.2 the only point remaining
is to prove

(36) ‖f |Bs,α
p (Rn)‖ ≤ c‖λ | bp‖

for all decompositions (34). The fact that Bs,α
p (Rn) with p ≤ 1 is a p-Banach

space combined with Proposition 4.2(ii) yields

‖f |Bs,α
p (Rn)‖p ≤

∞∑

ν=0

∑

m∈Zn

|λνm|p‖aανm |Bs,α
p (Rn)‖p . ‖λ | bp‖p.
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Thus, we are left with the task of proving (36) with p > 1. We adopt
throughout the notational convention that the elements of N0 are denoted
by j, k and the elements of Z

n are denoted by m,w. Moreover aα, bα, dα

denote anisotropic atoms, whereas λ, η, ν stand for complex numbers or
sequences of complex numbers. Let us rewrite (34) as

f =

∞∑

k=0

∑

m∈Zn

λk,ma
α
k,m.

Consider an optimal smooth atomic decomposition of aαk,m(2−kα ·) in

Bσ,α
p (Rn) into smooth anisotropic (σ, p)K-atoms bk,mj,w with σ + αn ≤ K.

By (17) we have

(37) aαk,m(2−kαx) =

∞∑

j=0

∑

w∈Zn

ηk,mj,w b
k,m
j,w (x), x ∈ R

n,

with

(38) supp bk,mj,w ⊂ dQαjw, |Dγbk,mj,w (x)| ≤ 2−j(σ−n/p−γα)

for αγ ≤ K and x ∈ R
n. In addition,

(39)
( ∑

j,w

|ηk,mj,w |p
)1/p

∼ ‖aαk,m(2−kα ·) |Bσ,α
p (Rn)‖

∼ 2−k(σ−n/p)‖aαk,m |Bσ,α
p (Rn)‖ . 2−k(σ−n/p)2k(σ−s) = 2−k(s−n/p).

Consequently,

(40) aαk,m(x) =

∞∑

j=0

∑

w∈Zn

ηk,mj,w b
k,m
j,w (2kαx), x ∈ R

n,

where the functions bk,mj,w (2kα ·) have supports in cQαj+k,w. Indeed,

supp bk,mj,w (2kα ·) = {x ∈ R
n : |2kαixi − 2−jαiwi| ≤ c 2−jαi , i = 1, . . . , n}

= {x ∈ R
n : |xi − 2−(j+k)αiwi| ≤ c 2−(j+k)αi , i = 1, . . . , n}

= cQαj+k,w.

Furthermore, by (38), we obtain

|Dγbk,mj,w (2kαx)| = 2kαγ |(Dγbk,mj,w )(2kαx)| ≤ 2(j+k)αγ2−j(σ−n/p)

= 2(j+k)αγ2−(j+k)(σ−n/p)2−(j+k)(σ−s)2k(σ−n/p).

Replacing j + k by j yields

(41) aαk,m(x) = 2k(σ−n/p)
∑

j≥k

∑

w∈Zn

ηk,mj−k,w2−j(σ−s)dk,mj,w (x),
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where the dk,mj,w are classical anisotropic (s, p)K-atoms. Let (j, w, k) with

k ≤ j denote the set of all m ∈ Z
n for which the atoms dk,mj,w in (41) do not

vanish, that is,

(j, w, k) := {m ∈ Z
n : cQαk,m ∩ cQαj,w 6= ∅}.

Note that if there exists an x = (xi)
n
i=1 ∈ cQαk,m ∩ cQαj,w then

|2−jαiwi−2−kαimi| ≤ |2−jαiwi−xi|+ |2−kαimi−xi| ≤ c 2−jαi−1+c 2−kαi−1,

where i = 1, . . . , n, and hence, as k ≤ j,

|2(k−j)αiwi −mi| ≤ c 2(k−j)αi−1 + c 2−1 ≤ c, i = 1, . . . , n,

which means that, for each i ∈ {1, . . . , n}, there are at most 2c possible
values for mi. Therefore, the cardinality of (j, w, k) is less than or equal to
(2c)n (a number independent of j, w, k). Let

dαj,w(x) =

∑
k≤j 2k(σ−n/p)

∑
m∈(j,w,k) η

k,m
j−k,wλk,md

k,m
j,w (x)

∑
k≤j 2k(σ−n/p)

∑
m∈(j,w,k) |η

k,m
j−k,w| |λk,m|

.

We can assume that, for m ∈ (j, w, k), dk,mj,w is a smooth anisotropic (s, p)K-
atom with support in cQαk,m∩cQαj,w. Thus, by the definition of dαj,w, it clearly
follows that

supp dαj,w ⊂
⋃

k≤j

⋃

m∈(j,w,k)

supp dk,mj,w ⊂ cQαj,w

and

|Dγdαj,w(x)| ≤ 2−j(s−n/p−γα) for γα ≤ K,

and hence, dαj,w is a smooth anisotropic (s, p)K-atom. Thus,

(42) f =
∞∑

j=0

∑

w∈Zn

vj,wd
α
j,w,

where

vj,w = 2−j(σ−s)
∑

k≤j

2k(σ−n/p)
∑

m∈(j,w,k)

|ηk,mj−k,w| |λk,m|.

Choosing 0 < ε < σ − s, we get, for p <∞,

|vj,w|p .
∑

k≤j

∑

m∈(j,w,k)

2−(j−k)(σ−s−ε)p2k(σ−n/p)p|ηk,mj−k,w|p|λk,m|p

≤
∑

k≤j

∑

m∈(j,w,k)

2k(σ−n/p)|ηk,mj−k,w|p|λk,m|p.
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Finally, the above estimate combined with (39) gives
∞∑

j=0

∑

w∈Zn

|vj,w|p .

∞∑

k=0

∑

m∈Zn

|λk,m|p
∑

j≥k

∑

w∈Zn

2k(σ−n/p)p|ηk,mj−k,w|p

.

∞∑

k=0

∑

m∈Zn

|λk,m|p.

Consequently, (42) is a decomposition into smooth atoms and (36) follows
from Theorem 2.8 and the last estimate.

As an easy consequence of Proposition 4.2(i) and Theorem 4.3 we obtain
the following smooth atomic decomposition. Note that the smoothness of
the classical anisotropic atoms used below does not depend on the given
anisotropy as was the case in (16).

Corollary 4.4. Let 0 < p ≤ ∞ and α be an anisotropy. Moreover , let

σp < s < K. Then Bs,α
p (Rn) consists of all f ∈ Lloc

1 (Rn)∩S ′(Rn) which can

be written as

f =

∞∑

ν=0

∑

m∈Zn

λνma
α
νm,

where, for fixed d ≥ 1, the aανm are anisotropic (s, p)K-atoms according to

Definition 2.5 and λ ∈ bp.

5. Pointwise multipliers in anisotropic function spaces. Let
Aα(Rn) denote either Bs,α

pq (Rn) or F s,αpq (Rn) (see Definition 2.1) with 0 <
p, q ≤ ∞ (p < ∞ in the F -case) and s > σp. However, we will be mostly
concerned with Aα(Rn) = Bs,α

pq (Rn). A locally integrable function m in R
n

is called a pointwise multiplier for Aα(Rn) if

f 7→ mf

generates a bounded map in Aα(Rn). Since s > σp, the spaces under con-
sideration are embedded in some Lr(R

n) with 1 < r ≤ ∞, and therefore the
expression mf above makes sense as a product of functions. The collection
of all multipliers for Aα(Rn) is denoted by M(Aα(Rn)). In the following, let
ψ stand for a non-negative C∞ function with

(43) suppψ ⊂ {y ∈ R
n : |y|α ≤ √

n}
and

(44)
∑

l∈Zn

ψ(x− l) = 1, x ∈ R
n.

Definition 5.1. Let 0 < p, q ≤ ∞ (p < ∞ in the F -case), s ∈ R, and
let α be an anisotropy. We define the space Aαselfs(R

n) to be the set of all
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f ∈ S ′(Rn) such that

(45) ‖f |Aαselfs(Rn)‖ := sup
j∈N0,l∈Zn

‖ψ(· − l)f(2−jα ·) |Aα(Rn)‖

is finite.

Remark 5.2. The isotropic selfsimilar spaces were first introduced in
[12] and then considered in [13, Section 2.3]. A careful look at (45) reveals
that these spaces are closely connected with pointwise multipliers. We also
mention their forerunner, the so-called uniform spaces, studied in detail
in [5]. Using Proposition 3.5, one can easily show that

Aαselfs(R
n) →֒ L∞(Rn).

Applying (27) to f ∈ Aαselfs(R
n) gives

‖ψ(· − l)f(2−jα ·) |As,αpq (Rn)‖
∼ 2−j(s−n/p)‖ψ(2jα · −l)f | Ȧs,αpq (Rn)‖ + 2jn/p‖ψ(2jα · −l)f |Lp(Rn)‖

uniformly for all j ∈ N0 and l ∈ Z
n. Consequently,

(46) 2jn
\

Rn

|ψ(2jαy − l)|p|f(y)|p dy ≤ c‖f |Aαselfs(Rn)‖p.

Thus, the right-hand side of (46) is a uniform bound for |f(·)|p at its
(anisotropic) Lebesgue points, which proves the desired embedding (see [7,
Corollary p. 13]). The interested reader is referred to [4, Section 3] for further
assertions on embedding of anisotropic spaces into L∞(Rn).

Definition 5.3. Let 0 < p ≤ ∞, s > σp, and let α be an anisotropy.
We define

Bs+,α
p,selfs(R

n) :=
⋃

σ>s

Bσ,α
p,selfs(R

n).

Theorem 5.4. Let 0 < p ≤ ∞, σp < s < σ, and let α be an anisotropy.

Then:

(i) Bs+,α
p,selfs(R

n) ⊂M(Bs,α
p (Rn)) →֒ Bs,α

p,selfs(R
n).

(ii) M(Bs,α
p (Rn)) = Bs,α

p,selfs(R
n) for 0 < p ≤ 1.

Proof. We start by proving the right-hand side embedding in (i). Let
m ∈M(Bs,α

p (Rn)). Then the homogeneity property yields

(47) ‖ψ(· − l)m(2−jα·) |Bs,α
p (Rn)‖

∼ 2−j(s−n/p)‖ψ(2jα · −l)m |Bs,α
p (Rn)‖

. ‖m |M(Bs,α
p (Rn))‖2−j(s−n/p)‖ψ(2jα · −l) |Bs,α

p (Rn)‖

. ‖m |M(Bs,α
p (Rn))‖2−j(s−n/p)‖ψ(2−jα·) |Bs,α

p (Rn)‖
. ‖m |M(Bs,α

p (Rn))‖ ‖ψ |Bs,α
p (Rn)‖ . ‖m |M(Bs,α

p (Rn))‖
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for all l ∈ Z
n, j ∈ N0, and hence,

‖m |Bs,α
p,selfs(R

n)‖ψ = sup
j∈N0,l∈Zn

‖ψ(· − l)m(2−jα·) |Bs,α
p (Rn)‖

. ‖m |M(Bs,α
p (Rn))‖.

We now prove the first inclusion in (i). Let m ∈ Bσ,α
p,selfs(R

n) with σ > s.

Let f ∈ Bs,α
p (Rn) and let

(48) f =
∞∑

j=0

∑

l∈Zn

λjla
α
jl with ‖f |Bs,α

p (Rn)‖ ∼ ‖λ | bp‖

be an optimal smooth atomic decomposition, where the aαjl are anisotropic
(s, p)K-atoms with K ≥ σ + αn. Then

(49) mf =

∞∑

j=0

∑

l∈Zn

λjl (ma
α
jl)

and we wish to prove that, up to normalizing constants, the maαjl are
anisotropic (s, p)σ-atoms. The support condition is obvious:

suppmaαjl ⊂ supp aαjl ⊂ dQαjl, j ∈ N0, l ∈ Z
n.

If l = 0 then we put aαj = aαj0. Note that

(50) supp aαj (2−jα·) ⊂ {y : |yi| ≤ d/2}

and we can assume that

(51) ψ(y) > 0 if y ∈ {x : |xi| ≤ d}.

Using Lemma 2.9, we have, for any g ∈ Bσ,α
p (Rn),

‖aαj (2−jα ·)ψ−1g |Bσ,α
p (Rn)‖ . ‖aαj (2−jα ·)ψ−1 |CK,α(Rn)‖ ‖g |Bσ,α

p (Rn)‖
. 2−j(s−n/p)‖g |Bσ,α

p (Rn)‖

and hence

(52) ‖aαj (2−jα ·)ψ−1 |M(Bσ,α
p (Rn))‖ . 2−j(s−n/p), j ∈ N0.

By (52) and the homogeneity property we then get, for j ∈ N0,

(53) ‖maαj |Bσ,α
p (Rn)‖ ∼ 2j(σ−n/p)‖m(2−jα ·)aαj (2−jα ·) |Bσ,α

p (Rn)‖
. 2j(σ−n/p)‖aαj (2−jα ·)ψ−1 |M(Bσ,α

p (Rn))‖ ‖m(2−jα ·)ψ |Bσ,α
p (Rn)‖

. 2j(σ−s)‖m(2−jα ·)ψ |Bσ,α
p (Rn)‖.
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In the case of aαjl with l ∈ Z
n one arrives at (53) with aαjl and ψ(· − l) in

place of aαj and ψ, respectively. Hence

‖maαjl |Bσ,α
p (Rn)‖ . 2j(σ−s) sup

j,l
‖m(2−jα ·)ψ(· − l) |Bσ,α

p (Rn)‖(54)

= 2j(σ−s)‖m |Bσ,α
p,selfs(R

n)‖, j ∈ N0, l ∈ Z
n,

and therefore, maαjl is an anisotropic (s, p)σ-atom. By Theorem 4.3, in view

of (49), mf ∈ Bσ,α
p (Rn) and

‖mf |Bσ,α
p (Rn)‖ . ‖λ | bp‖ ‖m |Bσ,α

p,selfs(R
n)‖

∼ ‖f |Bs,α
p (Rn)‖ ‖m |Bσ,α

p,selfs(R
n)‖,

which completes the proof of (i).

We now prove (ii). Let m ∈ Bs,α
p,selfs(R

n) and p ≤ 1. It follows from (54)
with σ = s that

(55) ‖maαjl |Bs,α
p (Rn)‖ . ‖m |Bs,α

p,selfs(R
n)‖, j ∈ N0, l ∈ Z

n.

Since Bs,α
p (Rn) is a p-Banach space, from (48) and using (49) and (55), we

obtain

‖mf |Bs,α
p (Rn)‖p ≤

∞∑

j=0

∑

l∈Zn

|λjl|p‖maαjl |Bs,α
p (Rn)‖p

. ‖λ | bp‖p‖m |Bs,α
p,selfs(R

n)‖p

. ‖f |Bs,α
p (Rn)‖p‖m |Bs,α

p,selfs(R
n)‖p.

Hence m ∈ M(Bs,α
p (Rn)) and, moreover, Bs,α

p,selfs(R
n) →֒ M(Bs,α

p (Rn)). The

other embedding follows from part (i).

The final part of this work is devoted to the question in which anisotropic
function spaces the characteristic function χΩ of the domain Ω in R

n is a
pointwise multiplier.

Definition 5.5. Let α be an anisotropy and let Γ be a non-empty
compact set in R

n. Let h be a positive non-decreasing function on the interval
(0, 1]. Then Γ is called an anisotropic h-set if there is a finite Radon measure
µ in R

n with

(56) suppµ = Γ and µ(Bα(γ, r)) ∼ h(r), γ ∈ Γ, 0 < r ≤ 1,

where

Bα(γ, r) = {x ∈ R
n : |x− γ|α < r}.

We say that the measure µ satisfies the anisotropic doubling condition if
there is a constant c > 0 such that

(57) µ(Bα(γ, 2r)) ≤ cµ(Bα(γ, r)), γ ∈ Γ, 0 < r < 1.
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Let

Dα(x) = distα(x, Γ ) = inf
y∈Γ

|x− y|α

be the anisotropic distance of x ∈ R
n to Γ .

Theorem 5.6. Let Ω be a bounded domain in R
n and let α be an

anisotropy. Moreover , let 0 < p < ∞, σ > σp, and let Γ = ∂Ω be an

anisotropic h-set with

(58) sup
j∈N0

∞∑

k=0

2kσp
(

h(2−j)

h(2−j−k)
2−kn

)
<∞.

Let Bσ,α
p,selfs(R

n) be the space introduced in Definition 5.1. Then

(59) χΩ ∈ Bσ,α
p,selfs(R

n).

Proof. The proof is based upon ideas found in [12, Theorem 3]. It sim-
plifies the argument, and causes no loss of generality, to assume diamΩ < 1.
We define

Ωk = {x ∈ Ω : 2−k−2 ≤ distα(x, Γ ) ≤ 2−k}, k ∈ N0.

Moreover, let

{ϕk,αl : k ∈ N0, l = 1, . . . ,Mk} ⊂ C∞
0 (Ω)

be an anisotropic resolution of unity,

(60)
∑

k∈N0

Mk∑

l=1

ϕk,αl (x) = 1 if x ∈ Ω,

with

suppϕk,αl ⊂ {x : |x− xkl |α ≤ 2−k} ⊂ Ωk

and

|Dγϕk,αl (x)| . 2γαk for γα ≤ K, x ∈ R
n, K ∈ N with K ≥ σ + αn.

It turns out that such an anisotropic resolution of unity exists. See [11,
Section 7.5] for a discussion of this technical point in the isotropic case.
We now estimate the minimal number Mk in (60). Combining the fact that
the measure µ satisfies the doubling condition (57) together with (56) we
arrive at

Mkh(2
−k) . 1, k ∈ N0.

Clearly, (60) can be rewritten in the form

(61) χΩ(x) =
∞∑

k=0

2k(σ−n/p)
Mk∑

l=0

2−k(σ−n/p)ϕk,αl (x), x ∈ R
n,
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where the 2−k(σ−n/p)ϕk,αl are anisotropic (σ, p)K-atoms according to Defini-
tion 2.5. Furthermore, we obtain

(62) ‖χΩ |Bσ,α
p (Rn)‖p ≤

∞∑

k=0

2k(σ−n/p)pMk .

∞∑

k=0

2kσp
(

2−kn

h(2−k)

)
<∞.

This shows that χΩ ∈ Bσ,α
p (Rn). We now prove that χΩ ∈ Bσ,α

p,selfs(R
n). We

consider the non-negative function ψ ∈ C∞(Rn) satisfying (43) and (44).
By the definition of anisotropic selfsimilar spaces, it suffices to consider

χΩ(2−jα ·)ψ,
assuming in addition that 0 ∈ 2jαΓ = {2jαγ = (2jα1γ1, . . . , 2

jαnγn) : γ ∈ Γ},
j ∈ N0. Let µj be the image measure of µ with respect to the dilations
y 7→ 2jαy. Then we obtain

µj(Bα(0,
√
n) ∩ 2jαΓ ) ∼ h(2−j), j ∈ N0.

We apply the same argument as above to Bα(0,
√
n)∩2jαΩ and Bα(0,

√
n)∩

2jαΓ . Hence, we again have

M j
kh(2

−j−k) . h(2−j), j ∈ N0, k ∈ N0,

which completes the proof.

Corollary 5.7. Let Ω be a bounded domain in R
n and let α be an

anisotropy. Moreover , let 0 < p < ∞, σ > σp, and let Γ = ∂Ω be an

anisotropic h-set satisfying (58). Then

χΩ ∈M(Bs,α
p (Rn)) for 1 < p <∞, 0 < s < σ,

and

χΩ ∈M(Bσ,α
p (Rn)) for 0 < p ≤ 1, σ > n(1/p− 1).

Remark 5.8. In the special case of the anisotropic d-sets (cf. [8]), which
corresponds to h(t) ∼ td, the condition (58) means σ < (n− d)/p.
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