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Stohasti Banah priniple in operator algebrasbyGenady Ya. Grabarnik (Hawthorne, NY)and Laura Shwartz (Pretoria)
Abstrat. The lassial Banah priniple is an essential tool for the investigation ofergodi properties of Cesàro subsequenes. The aim of this work is to extend the Banahpriniple to the ase of stohasti onvergene in operator algebras. We start by establish-ing a su�ient ondition for stohasti onvergene (stohasti Banah priniple). Thenwe prove stohasti onvergene for bounded Besiovith sequenes, and as a onsequenefor uniform subsequenes.1. Introdution and preliminaries. In this paper we establish a sto-hasti Banah priniple. The Banah priniple, one of the most useful toolsin �lassial� pointwise ergodi theory, was used to give an alternative proofof the Birkho��Khinhin individual ergodi theorem. Typial appliationsof the priniple are Sato's theorem for uniform subsequenes [17℄ and theindividual ergodi theorem for Besiovith bounded sequenes [16℄. Non-ommutative analogues for the (bilateral) almost everywhere onvergenean be found in [9℄, [2℄.In this paper we establish the Banah priniple for onvergene in mea-sure (stohasti Banah priniple) in Theorem 2.3, whih is then reformu-lated in a form onvenient for appliations (Theorem 2.4). We apply it to givea simpli�ed proof of the stohasti ergodi theorem (f. [10℄). We also estab-lish stohasti onvergene for Sato's uniform subsequenes (Theorem 3.6)and a stohasti ergodi theorem for Besiovith bounded sequenes (Theo-rem 3.5).Note that the stohasti Banah priniple is new even in the ommutativease. Indeed, it is well known (see for example [13℄) that there are Cesàro2000 Mathematis Subjet Classi�ation: Primary 46L51; Seondary 37A30.Key words and phrases: Banah priniple, von Neumann algebras, non-ommutativeergodi theorems, stohasti onvergene.The seond author is grateful to her Mentor, Dr. Louis E. Labushagne (UNISA,South Afria) for onstant support and areful reading of the paper.The authors are grateful to the referee for useful suggestions.[255℄ © Instytut Matematyzny PAN, 2007



256 G. Ya. Grabarnik and L. Shwartzaverages onstruted for automorphisms that onverge in measure and donot onverge almost everywhere. This implies that although the ondition ofTheorem 2.3 is satis�ed in this ase, the pointwise Banah priniple onditionis not.Throughout the paper we denote by M a von Neumann algebra with asemi-�nite normal faithful trae τ ating on a Hilbert spae H, and by P (M)the set of all orthogonal projetions in M .Reall the following de�nitions (taken from the papers by Segal [18℄,Nelson [15℄, Yeadon [21℄, Fak and Kosaki [6℄):Definition 1.1. A densely de�ned losed operator x a�liated with avon Neumann algebra M is alled (τ)-measurable if for every ε > 0 thereexists a projetion e ∈ P (M) with τ(I − e) < ε suh that e(H) ⊂ D(x),where D(x) is the domain of x.The spae of all (τ)-measurable operators a�liated with M is denotedby S(M) or S(M, τ).For onveniene, for a self-adjoint x ∈ S(M) we denote by {x > t} thespetral projetion of x orresponding to the interval (t,∞).Definition 1.2. A sequene {xn}∞n=1 onverges to 0 in measure if forevery ε, δ > 0 there exist an integer N0 and a set of projetions {en}n≥N0
⊂

P (M) suh that ‖xnen‖∞ < ε and τ(I − en) < δ for n ≥ N0.Remark 1.1. We will use the terms onverges in measure and onvergesstohastially interhangeably.Definition 1.3. Let x ∈ S(M) and t > 0. The tth singular number of
x is de�ned as(1) µt(x) = inf{‖xe‖ : e ∈ P (M) with τ(I − e) ≤ t}.Remark 1.2. Note that the measure topology is de�ned in Fak andKosaki [6℄ as the linear topology with the fundamental system of zero neigh-borhoods given by V (ε, δ) = {x ∈ S(M) : there exists e(x, ε, δ) ∈ P (M)with ‖xe‖ < ε and τ(I − e) < δ}. By Nelson's [15℄ result, the set of all τ -measurable operators is a omplete topologial ∗-algebra. Sine the measuretopology has a ountable fundamental system of zero neighborhoods, S(M)is sequentially omplete.Definition 1.4. Denote by λt(x) the distribution funtion of x de�nedas(2) λt(x) = τ(E(t,∞)(|x|)), t ≥ 0,where E(t,∞)(|x|)) is the spetral projetion of x orresponding to the interval
(t,∞).



Stohasti Banah priniple 257Remark 1.3. For x ∈ S(M), we have λt(x) < ∞ for large enough t and
limt→∞ λt(x) = 0. Moreover, the map R ∋ t 7→ λt(x) is non-inreasing andontinuous from the right (sine τ is normal and {|x| > tn} ↑ {|x| > t},hene in the strong operator topology, as tn ↓ t). The distribution λt(x) is anon-ommutative analogue of the distribution funtion in lassial analysis(see [6, p. 272℄, or [19℄).We need the following properties of µt(x) (see for example [21, Proposi-tion 2.4℄, or [6, Lemma 2.5℄):Lemma 1.1. Let x, y ∈ S(M).(i) The map R+ ∋ t 7→ µt(x) is non-inreasing and ontinuous from theright. Moreover , limt↓0 µt(x) = ‖x‖∞ ∈ [0,∞].(ii) µt(x) = µt(|x|) = µt(x

∗) and µt(αx) = |α|µt(x) for α ∈ C, t > 0.(iii) µt(x) ≤ µt(y) for 0 ≤ x ≤ y, t > 0.(iv) µt+s(x + y) ≤ µt(x) + µs(y) for t, s > 0.(v) µt(yxz) ≤ ‖y‖∞‖z‖∞ µt(x) for y, z ∈ M, t > 0.(vi) µt+s(yx) ≤ µt(x)µs(y) for t, s > 0.2. Stohasti Banah priniple. We �rst formulate some onditionsequivalent to stohasti onvergene (f. [6, Lemma 3.1℄).Lemma 2.1. Let M , τ be as before. Consider the following onditions:(i) The sequene {xn}∞n=1 onverges to 0 in measure.(ii) For every ε, δ > 0 there exist 0 < δ′ < δ and an integer N0 suh thatfor n ≥ N0,
µδ′(xn) < ε.(iii) For every ε, δ > 0 and p ∈ P (M) with τ(p) < ∞ there exist aninteger N0 and a sequene {e′n}n≥N0

⊂ P (M) with e′n ≤ p suh that
‖xn e′n‖∞ < ε and τ(p − e′n) < δ for n ≥ N0.Then (i)⇔(ii)⇒(iii). If τ is �nite then (iii)⇒(i).Proof. (ii)⇒(i). The ondition µδ′(xn) < ε yields a sequene {en}∞n=1 ofprojetions with ‖xnen‖ < 2ε and τ(I − en) < δ′.(i)⇒(ii) follows from the de�nition of measure onvergene 1.2.(i)&(ii)⇒(iii) follows from the inequality τ(p − p ∧ q) = τ(p ∨ q − q) ≤

τ(I− q), hene the sequene {e′n = en ∧ p}∞n=1 satis�es (iii) (here the proje-tions en are de�ned in the proof of (ii)⇒(i)).The ase when τ is �nite follows immediately, sine τ(I) < ∞.We need the following tehnial statement, whih is interesting in its ownright:



258 G. Ya. Grabarnik and L. ShwartzLemma 2.2. Let x, y ∈ S(M) be self-adjoint , and t, s positive real. Then(3) λt+s(x + y) ≤ λt(x) + λs(y).Proof. Indeed,
(4) ‖ |(x + y)|(I − {|x| > t}) ∧ (I − {|y| > s})‖

= ‖(x + y)(I − {|x| > t}) ∧ (I − {|y| > s})‖

≤ ‖x(I − {|x| > t}) ∧ (I − {|y| > s})‖

+ ‖y(I − {|x| > t}) ∧ (I − {|y| > s})‖

= ‖ |x| (I − {|x| > t}) ∧ (I − {|y| > s})‖

+ ‖ |y|(I − {|x| > t}) ∧ (I − {|y| > s})‖

≤ ‖ |x|(I − {|x| > t})‖ + ‖ |y|(I − {|y| > s})‖ ≤ t + s.Here the �rst and seond equalities follow from the equality ‖ |z|u∗
zuz|z| ‖ =

‖ |z|2‖ = ‖z∗z‖, where z ∈ Mh, uz is a partial isometry from M suh that
z = uz|z|, and(5) u∗

zuz = l(z), uzu
∗
z = r(z),where l(z) (resp. r(z)) is the left (resp. right) support of z. Inequality (4)means that(6) µλt(x)+λs(y)(x + y) ≤ t + s.Let ξ be a vetor from a Hilbert spae H, and suppose that(7) ξ ∈ {|x + y| > s + t}H ∩ (I − {|x| > t}) ∧ (I − {|y| > s})H.Then(8) ((t+s)‖ξ‖)2 < (|x+y|ξ, |x+y|ξ) = ((x+y)ξ, (x+y)ξ) ≤ ((t+s)‖ξ‖)2.Here the �rst inequality follows from the inlusion ξ ∈ {|x + y| > s + t}H,the equality follows from the spetral deomposition (5), and the seondinequality follows from the inlusion ξ ∈ (I − {|x| > t}) ∧ (I − {|y| > s})H.Inequality (8) implies that ‖ξ‖ = 0 or, in other words,

{|x + y| > s + t} ∧ ((I − {|x| > t}) ∧ (I − {|y| > s})) = 0.Hene,
(9) {|x + y| > t + s} = {|x + y| > t + s}

− {|x + y| > t + s} ∧ ((I − {|x| > t}) ∧ (I − {|y| > s}))

∼ {|x + y| > t + s} ∨ ((I − {|x| > t}) ∧ (I − {|y| > s}))

− ((I − {|x| > t}) ∧ (I − {|y| > s}))

≤ I − ((I − {|x| > t}) ∧ (I − {|y| > s})) = {|x| > t} ∨ {|y| > s}.



Stohasti Banah priniple 259Here ∼ denotes projetion equivalene. Sine the trae τ is invariant onequivalent projetions,
τ({|x + y| > t + s}) ≤ τ({|x| > t} ∨ {|y| > s})(10)

≤ τ({|x| > t}) + τ({|y| > s}).Hene, inequality (3) is valid.Theorem 2.3. Let (B, ‖ · ‖) be a Banah spae and Σ = {An : n ∈ N}a set of linear operators An : B → S(M).(i) Suppose that there exists a funtion C : R+ → R+ with limλ→∞ C(λ)
= 0 and

(11) sup
n∈N

τ({|An(b)| > λ ‖b‖}) ≤ C(λ)for every b ∈ B and λ ∈ R+. Then the subset B̃ of B where An(b)onverges in measure is losed in B.(ii) Conversely , if An is a set of ontinuous-in-measure maps from Binto S(M) and for all b ∈ B and λ ∈ R+,
(12) lim

λ→∞
sup
n∈N

τ({|An(b)| > λ}) = 0,then there exists a funtion C : R+ → R+ with limλ→∞ C(λ) = 0and
(13) sup

n∈N

τ({|An(b)| > λ ‖b‖}) ≤ C(λ).Part (i) means that under the ondition of linear uniform boundedness(11), the set of stohasti onvergene is losed.Part (ii) means that if the set of uniform boundedness is losed, thenlinear uniform boundedness holds on this set.Note that although the ondition in (ii) looks more restritive, it is similarin nature to that in (i), sine everything ould be restrited to the losure ofthe set where uniform boundedness holds (it is also a Banah spae).Proof. (i) We �rst show that ondition (11) implies ontinuity of theoperators in Σ. Let {bk}
∞
k=1 be a sequene in B onverging to b ∈ B. Thenfor λ, ε ∈ R+ satisfying 2λ supk≥n ‖b − bk‖ < ε, as k → ∞ we have

τ({|An(bk) − An(b)| > ε}) ≤ τ({|An(bk − b)| > λ‖bk − b‖})(14)
≤ C(λ‖bk − b‖−1) → 0.Hene An is ontinuous. Note that the inequality follows from the fat thatthe right-hand side of (11) is independent of the norm of b.There exists a subsequene bkj

of bk suh that the sequene xj =
limn→∞ An(bkj

) onverges stohastially (bear in mind that by Remark 1.2



260 G. Ya. Grabarnik and L. Shwartzthe algebra S(M) is sequentially omplete). In order to establish this state-ment, by (11) we �nd a sequene {k′
i}

∞
i=1 suh that

τ({|An(bk′

j
− bk′

j+l
)| > 2−j}) ≤ 2−j for all n,(15)

τ({|An(bk′

j
− b)| > 2−j}) ≤ 2−j for all n.(16)This an be done sine bn → b as n → ∞, and C(λ) → 0 as λ → ∞. It su�esto hoose a sequene {λj}∞j=1 suh that C(λj) < 2−j and ‖bk′

j
−b‖ < λ−1

j 2−2j.Choose nj suh that for N > nj ,(17) τ({|AN (bk′

j
) − xj | > 2−j}) < 2−j .This is possible sine An(bk′

j
) onverges stohastially to xj . Then for j, i ∈ Nand n > ni+j ,

(18) τ({|xj − xj+i| > 3 · 2−j})

= τ({|(xj − An(bk′

j
)) + (An(bk′

j
) − An(bk′

j+i
))

+ (An(bk′

j+i
) − xj+i)| > 3 · 2−j})

≤ τ({|An(bk′

j
) − xj | > 2−j}) + τ({|An(bk′

j
) − An(bk′

j+i
)| > 2−j})

+ τ({|An(bk′

j+i
) − xj+i| > 2−(j+i)})

≤ 3 · 2−j .Here the �rst inequality follows from (3).Denote the stohasti limit of {xj}∞j=1 by x0. Taking a subsequene of
{xj} if neessary, we suppose that(19) τ({|xj − x0| > 2−j}) ≤ 2−j .The sequene {An(b)}∞n=1 onverges to x0 stohastially. Indeed, for n > nj ,
(20) τ({|An(b) − x0| > 3 · 2−j})

= τ({|(An(b) − An(bk′

j
)) + (An(bk′

j
) − xj) + (xj − x0)| > 3 · 2−j})

≤ τ({|An(b) − An(bk′

j
)| > 2−j}) + τ({|An(bk′

j
) − xj | > 2−j})

+ τ({|xj − x0| > 2−j})

≤ 3 · 2−j.Here the �rst inequality follows from (3) and the seond follows by notingthat the �rst part follows from (16), the seond from (17) and the hoieof n, and the third from (19). Part (i) is thus established.(ii) Suppose that for every b ∈ B and λ ∈ R+,(21) sup
n

τ({|An(b)| > λ})
λ→∞
−→ 0.



Stohasti Banah priniple 261For �xed ε > 0 and λ ∈ N, de�ne Bλ = {b ∈ B : supn τ({|An(b)| > λ}) ≤ ε}.Then from (21) it follows that(22) B =
⋃

λ∈N

Bλ.

Let Bλ,k := {b ∈ B : supn≥k τ({|An(b)| > λ}) ≤ ε}. Then(23) Bλ =
⋂

k∈N

Bλ,k.The sets Bλ,k are losed. Indeed, let Bλ,k ⊃ {bj}∞j=1 onverge to b ∈ B. Then
(24) τ({|An(b)| > λ + γ}) = τ({|An(bj) − (An(bj) − An(b))| > λ + γ})

≤ τ({|An(bj)| > λ}) + τ({|(An(bj) − An(b))| > γ}) ≤ ε.Here the �rst inequality follows from (3). The estimate of the �rst termfollows from the de�nition of Bλ,k, while that of the seond term beomesvalid for su�iently large j, and follows from the free hoie of bj and fromthe ontinuity of An in measure.Sine λt(x) is ontinuous from the right due to Remark 1.3, we have(25) τ({|An(b)| > λ}) = lim
m→∞

τ({|An(b)| > λ + γm}) ≤ ε,where γm → 0 as m → ∞. Hene, b ∈ Bλ,k, so Bλ,k is losed. Then Bλ islosed as an intersetion of losed sets.It follows from the Baire ategory priniple that there exists λ suh that
Bλ has a non-empty interior. Let B(b0, r) = {b ∈ B : ‖b − b0‖ ≤ r} ⊂ Bλ.Then(26) τ({|An(b)| > λ}) ≤ ε for every b ∈ B(b0, r).Moreover, for b = b0 − rc ∈ B(b0, r) with c ∈ B, ‖c‖ ≤ 1, we have

τ({|An(rc)| > 2λ}) = τ({|An(rc − b0) + An(b0)| > 2λ})(27)
≤ τ({|An(rc − b0)| > λ}) + τ({|An(b0)| > λ})

≤ 2ε.Let γ ≥ 2λ/r. From (27) it follows that τ({|An(c)| > γ}) ≤ 2ε for every
c ∈ B with ‖c‖ ≤ 1.Let C(γ) = supc∈B, ‖c‖≤1 τ({|An(c)| > γ}) ≤ 2ε. Free hoie of ε impliesthat(28) lim

γ→∞
C(γ) = 0,hene (11) is valid.For appliation of Theorem 2.3, it is onvenient to ombine (i) and (ii).



262 G. Ya. Grabarnik and L. ShwartzTheorem 2.4. Let (B, ‖ · ‖) be a Banah spae, An a set of ontinuous-in-measure linear maps from B into S(M), λ ∈ R+, and suppose that foreah b ∈ B,(29) lim
λ→∞

sup
n∈N

τ({|An(b)| > λ}) = 0.Then the subset B̃ of B where An(b) onverges in measure is losed in B.Proof. Follows immediately by applying onseutively (ii) and (i) of The-orem 2.3.Let e be a projetion in M , and let Me be the von Neumann algebraonsisting of the operators of the form exe, x ∈ M (we denote exe by xe).If τ is a semi�nite normal faithful trae on M , then τe = τ |Me
is a semi�nite(possibly �nite) faithful normal trae on Me. Indeed, the traial property,semi�niteness, normality and faithfulness of τe follow diretly from similarproperties of τ . The spae S(Me, τe) is isomorphi to S(M, τ)e sine bothare losures of (Mτ-finite support)e = (Me)τe-finite support.Proposition 2.5. Let Bn be a sequene of ontinuous-in-measure oper-ators on S(M, τ), and ei ∈ P (M), i = 1, 2, with I = e1 + e2. Suppose that

ei(Bn(x)) = Bn(xei
) = (Bn(x))ei for every n ∈ N and x ∈ S(M, τ), or inother words ei ommutes with Bn. Suppose also that(30) lim

λ→∞
sup
n∈N

τ({|Bn(xei
)| > λ}) = 0 for i = 1, 2 and all x ∈ S(M, τ).Then(31) lim

λ→∞
sup
n∈N

τ({|Bn(x)| > λ}) = 0.Proof. We have(32) τ({|Bn(xei
)| > λ}) = τ(ei{|Bn(x)| > λ}).Indeed, sine for x ∈ Sh(M) (the set of all self-adjoint operators in S(M))we have τ({|x| > λ}) → 0 as λ → ∞, there is a sequene of polynomials

Pj(y) in R onverging to χ{|y|>λ}(y) pointwise suh that Pj(x) onverges to
χ{|x|>λ}(x) stohastially. Then by [6, Proposition 3.2℄,
(33) τ({|Bn(xei

)| > λ}) = lim
j

τ(Pj(Bn(xei
))) = lim

j
τ(Pj(Bn(eixei)))

= lim
j

τ(Pj(eiBn(x)ei)) = lim
j

τ(eiPj(Bn(x))) = τ(ei{|Bn(x)| > λ}).Statement (31) now follows from the fat that (as Bn ommutes with ei and(3) holds)
(34) τ({|Bn(x)| > λ1 + λ2}) = τ({|(e1 + e2)Bn(x)(e1 + e2)| > λ1 + λ2})

= τ({|e1Bn(x)e1 + e2Bn(x)e2| > λ1 + λ2})

≤ τ({|Bn(xe1
)| > λ1}) + τ({|Bn(xe2

)| > λ2}).



Stohasti Banah priniple 263Remark 2.1. We are going to use (29) in the next setion when dealingwith stohasti ergodi theorems, sine it holds in that setting.3. Stohasti ergodi theorems. In this setion we establish stohas-ti onvergene of bounded Besiovith sequenes, and present stohastiergodi theorems for uniform subsequenes.Here we use the following assumptions: M is a von Neumann algebra witha faithful normal traial state τ , and α a ∗-automorphism of the algebra M .Set An(x) = n−1
∑n−1

l=1 αl(x) for x ∈ M . De�ne α′ as a linear map on
L1(M, τ) satisfying τ(x · α(y)) = τ(α′(x)y) for x ∈ L1(M, τ), y ∈ M , and
A′

n(x) = n−1
∑n−1

l=1 (α′)l(x), for x ∈ L1(M, τ).Let us also reall some de�nitions from Grabarnik and Katz [10℄ andfrom Chilin, Litvinov and Skalski [2℄.Definition 3.1. A positive operator h ∈ M+ is alled weakly wanderingif(35) ‖An(h)‖∞
n→∞
−→ 0,The following de�nition omes from [18℄, [22℄ (see also [2℄).Definition 3.2. A sequene {xn}∞n=1 onverges to x0 bilaterally almostuniformly (b.a.u.) in S(M) if for every δ > 0 there exists a projetion e ∈

P (M) suh that ‖(xn − x)e‖∞ → 0 and τ(I − e) < δ.Remark 3.1. Note that b.a.u. onvergene implies stohasti onver-gene.The following de�nition is due to Ryll-Nardzewski [16℄.Definition 3.3. Let C1 denote the unit irle in C. A trigonometripolynomial is a map Pk : N → C, where Pk(n) =
∑k−1

j=0 bjλ
n
j for some

{λj}
k−1
j=0 ⊂ C1 and {bj}

k−1
j=0 ⊂ R.Bounded Besiovith sequenes are bounded sequenes from the l1-aver-age losure of trigonometri polynomials.More preisely,Definition 3.4. A sequene βn of omplex numbers is alled a boundedBesiovith sequene if(i) |βn| ≤ C < ∞ for every n ∈ N,(ii) for every ε > 0, there exists a trigonometri polynomial Pk suh that

(36) lim sup
n

1

n

n−1∑

j=1

|βj − Pk(j)| < ε.Let µ be a normalized Lebesgue measure (Radon measure) on C1 and
M̃ be the von Neumann algebra of all essentially bounded ultra-weakly



264 G. Ya. Grabarnik and L. Shwartzmeasurable funtions f : (C1, µ) → M . The algebra M̃ is isomorphi to
L∞(C1, µ)⊗M , the W ∗ tensor produt of L∞(C1, µ) and M , and a dual tothe spae L1(C1, µ) ⊗ M∗ (for the de�nition of W ∗ tensor produt and theform of its predual spae, see for example Takesaki [20, Theorem IV.7.17℄).The spae L1(C1, µ) ⊗ M∗ an be onsidered as a set of L1 funtions on
(C1, µ) with values in M∗. The algebra M̃ also has a natural trae τ̃(f) =T
C1

τ(f(z)) dµ(z), and M̃∗ is isomorphi to L1(M̃, τ̃).Let σ be an automorphism of (C1, µ) as a Lebesgue spae with measure.We de�ne the automorphism α ⊗ σ of (M̃, τ̃) as the losure of the linearextension of the automorphism ating on (M̃, τ̃) ∋ x(z) as α ⊗ σ(x(z)) =
α(x(σ(z))).Example 3.1. An example of suh an automorphism is α̃λ(x(z)) =
α(x(λz))) for λ ∈ C1. In this ase(37) An(x) =

1

n

n−1∑

l=1

α̃l
λ(x) =

1

n

n−1∑

l=1

αl(x(λlz)).In partiular, if x(z) ≡ zx for x ∈ M then(38) An(xz) = z
1

n

n−1∑

l=1

λlαl(x).The following lemma onnets stohasti onvergene in L1(M̃, τ̃) withpointwise onvergene on C1 and stohasti onvergene in M (f. [2℄).Lemma 3.2.(i) If L1(M̃, τ̃) ∋ xn → x0 ∈ L1(M̃, τ̃) b.a.u. as n → ∞, then xn(z) →
x0(z) stohastially for almost every z ∈ C1.(ii) Suppose that h is a weakly wandering operator with supp(h) = I fora sequene An. Then A′

n(x) onverges to 0 stohastially.(iii) Let N = (M, τ)⊗L∞(X, µ) (X being a separable Hausdor� ompatset , and µ a Lebesgue measure), α an automorphism of M , and σ anautomorphism of L∞(X, µ). Then α ⊗ σ is an automorphism of N .Suppose that h is a weakly wandering operator with supp(h) = Ifor a sequene An orresponding to the automorphism α ⊗ σ. Then
A′

n(x(z)) onverges to 0 stohastially for almost every z ∈ X.Proof. By [2, Lemma 4.1℄, the hypothesis of part (i) implies b.a.u. on-vergene of xn(z) to x0(z) for almost every z in C1. Hene bilateral stohastionvergene holds. This implies the statement of (i), sine bilateral stohas-ti onvergene is equivalent to (one-sided) stohasti onvergene (see [2,Theorem 2.2℄).(ii) Suppose that x ∈ L1(M, τ)+ and A′
n(x) is a sequene satisfying(39) τ(A′

n(x)h) → 0 as n → ∞.



Stohasti Banah priniple 265Then(40) ts · τ({A′
n(x) > t} ∧ {h > s}) ≤ τ(A′

n(x)h).Indeed, for any e1, e2 ∈ P (M), we have e1e2e1 ≥ e1∧e2. To see this, note thatsine e1 ∧ e2 ommutes with e1, e2, we have (I − e1 ∧ e2)e1e2e1(e1 ∧ e2) = 0,hene
e1e2e1 = (I − e1 ∧ e2)e1e2e1(I − e1 ∧ e2) + (e1 ∧ e2)e1e2e1(e1 ∧ e2)

= (I − e1 ∧ e2)e1e2e1(I − e1 ∧ e2) + (e1 ∧ e2).Thus,
(41) ts·τ({A′

n(x) > t}∧{h > s}) ≤ tτ({A′
n(x) > t}s{h > s}{A′

n(x) > t})

≤ tτ({A′
n(x) > t}h{A′

n(x) > t}) = tτ({A′
n(x) > t}h) ≤ τ(A′

n(x)h).Hene, (40) is valid.Furthermore,(42) τ({A′
n(x) > t}) ≤

1

ts
τ(A′

n(x)h) + τ(I − {h > s}).This follows from (40), and from the fat that τ(e1) ≤ τ(e1 ∧ e2)+ τ(I− e2).Indeed,
τ(e1 − e1 ∧ e2) = τ(e1(I − e1 ∧ e2)) = τ(e1(I − e1 ∧ e2)e1)(43)

≤ τ(e1(I − e2)e1) = τ(e1(I − e2)) ≤ τ(I − e2).Hene, (42) is valid.Note that inequality (42) together with the fat that τ(A′
n(x)h) → 0as n → ∞ implies that supn∈N τ({|An(b)| > λ ‖b‖}) ≤ C(λ). Indeed, thesequene {τ(A′

n(x)h)}∞n=1, being onvergent, is bounded by a onstant C0.Choose a dereasing sequene {sj}∞j=1 ⊂ R+ suh that τ(I−{h > sj}) < 2−j,and set tj = 2js−1
j . Then(44) τ({A′

n(x) > tj}) ≤
1

tjsj
C0 + 2−j = (C0 + 1)2−j .Hene Theorem 2.4 implies the stohasti onvergene of A′

n(x). Indeed, fora dense subset in L1(M, τ) of elements of the form x̂ = x − A′
k(x) + x̃(here x ∈ M ∩ L1(M, τ) and x̃ ∈ M is an α′-invariant element, see [13,Theorem 1.5(iii), p. 273℄), A′

n(x̂) onverges in L1, hene stohastially.(iii) The proof is along the same lines as for (ii), with the neessaryadjustments. Let E1 be a onditional expetation with respet to the trae
τ ⊗µ of (M, τ)⊗L∞(X, µ) onto (M, τ)⊗Const(X, µ), and E2 a onditionalexpetation with respet to the trae τ ⊗µ of (M, τ)⊗L∞(X, µ) onto C · I⊗
L∞(X, µ) (for the de�nition of the �rst onditional expetation, see [20℄).Due to the form of α ⊗ σ, both Ej 's ommute with An, for j = 1, 2.



266 G. Ya. Grabarnik and L. ShwartzSine(45) ‖An(h)‖∞ ≥ ‖E1An(h)‖∞ = ‖An(E1h)‖∞,and supp(h) ≤ supp(E1h), it follows that supp(E1h) = I. Indeed, x ≥ 0,
x 6= 0 implies τ(E1x) = τ(x) > 0, hene 0 < τ((E1a)h) = τ(a(E1h)) and
supp(E1h) = I for every a ∈ M .Hene E1(h) is a weakly wandering operator.For positive x(z) ∈ L1(M, τ) ⊗ L1(X, µ) we have(46) ‖x‖1 =

\
X

‖x(z)‖1 dµ(z),hene ‖x(z)‖1 is an L1(X, µ) funtion. Applying the lassial Hopf inequality(see for example [13, Theorem 2.1, p. 8℄), we get(47) µ(sup
n
{‖A′

n(x)(z)‖1 > λ}) ≤
Const

λ

\
X

‖x(z)‖1 dµ(z),so outside a set X0 ⊂ X of small measure the value of ‖A′
n(x)(z)‖1 is uni-formly bounded. Proeeding as in part (ii) applied to every z ∈ X0, we getstohasti onvergene for every z ∈ X0.Theorem 3.3 (Neveu deomposition for speial tensor produts of vonNeumann algebras). Let N = (M, τ) ⊗ L∞(X, µ) (X being a Hausdor�separable ompat set , and µ a Lebesgue measure), α an automorphism of M ,and σ an automorphism of L∞(X, µ). Then α̃ = α ⊗ σ is an automorphismof N . Suppose that , in addition, the automorphism σ is ergodi. Then thereexists an α̃-invariant projetion in N of the form e1 = e11 ⊗ I, with e1(z)

= eM for almost every z ∈ X, suh that , setting e2 = I − e1, we have:(i) There exists a normal state ̺ on N with supp(̺) = e1, and for almosteah z ∈ X, ̺(z) is invariant with respet to α′.(ii) There exists a weakly wandering operator h ∈ N with supp(h) = e2and for almost eah z ∈ X, h(z) is a weakly wandering operatorin M .Proof. Corollary 1.1 of [10℄ implies existene of a projetion ẽ1 in N suhthat (i) there exists an α̃′-invariant normal state ̺ with supp(̺) = ẽ1 and(ii) there exists a weakly wandering operator h ∈ N with support I− ẽ1. Ourgoal is to show that similar statements are valid for almost every z ∈ X.Sine σ is ergodi, for every x ∈ M ⊗Const(X, µ) (here M ⊗Const(X, µ)is the spae of onstant funtions on X with values in M) we have
̺(z)(x(z)) = (α̃′̺(z))(x(z)) = ̺(z)(α(x(σ(z))))(48)

= ̺(z)(α(x(z))) = (α′(̺(z)))(x(z)),that is, ̺(z) is α′-invariant. Suppose that z 7→ ̺(z) is not onstant, so thereexists r0 ∈ R+ and x(z) ≡ x0 ∈ M+ with µ({z ∈ X : ̺(z)(x(z)) ≤ r0}) > 0



Stohasti Banah priniple 267and µ({z ∈ X : ̺(z)(x(z)) < r0}) > 0. Sine σ is ergodi there exists n ∈ Nsuh that(49) µ(σ−n({z ∈ X : ̺(z)(x(z)) ≤ r0}) ∩ {z ∈ X : ̺(z)(x(z)) < r0}) > 0.Hene,
̺(z)(x(z)) = (α̃′n̺(z))(x(z)) = (α)′n(̺(z))(x(σn(z)))(50)

= ̺(z)(x(σn(z))) = ̺(σ−nz)(x((z))),so r0 ≥ ̺(z)(x0) = ̺(σ−nz)(x0) < r0. The ontradition shows that z 7→ ̺(z)is onstant.This implies that supp(̺) = supp(̺(z)) = ẽ1(z) is onstant.The proof of (ii) follows the reasoning for (45).Theorem 3.4. Let N = (M, τ)⊗ L∞(X, µ) (X being a separable Haus-dorf ompat set , and µ a normalized Lebesgue measure), α an automorphismof M , and σ an automorphism of L∞(X, µ). Then α̃ = α⊗σ is an automor-phism of N . Suppose that , in addition, σ is ergodi. Then for almost every
z ∈ X, the averages A′

n(x(z)) onverge stohastially.Proof. This follows diretly by applying Theorems 3.3 and 3.2 to thepart of the partition where there exists a weakly wandering operator, andby applying the regular individual ergodi theorem [22℄ to the part where aninvariant normal state exists (3.3(i)).Now we are in a position to prove stohasti onvergene of boundedBesiovith sequenes.Theorem 3.5 (Stohasti ergodi theorem for bounded Besiovith se-quenes). Let {βj}∞j=1 be a bounded Besiovith sequene, and M a von Neu-mann algebra with a �nite faithful normal traial state τ . Let α be an auto-morphism of M . Then the sequene
Ãn(x) =

1

n

n−1∑

j=0

βj(α
′)

j
(x)onverges stohastially for x ∈ L1(M, τ).Proof. Suppose �rst that {βj} = {Pk(j)} for a trigonometri polynomial

Pk(j). Then the statement of the theorem is valid.Indeed, hoosing α̃ as in Example 3.1, we dedue from Theorem 2.4 andfrom the fat that every irrational rotation on C1 is ergodi (the equidistri-bution Kroneker�Weyl theorem, see e.g. [12, p. 146℄) that(51) An(xz) = z
1

n

n−1∑

l=1

λlαl(x),hene
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1

n

n−1∑

l=1

λl(α′)
l
(x)onverges stohastially for irrational λ.For rational λ, the onvergene follows from the fat that (51) is a �niteombination of averages of (α′)m, where m is the denominator.Taking linear ombinations of terms as in (51) implies the statement fortrigonometri polynomials.Next, the statement of the theorem is valid for x ∈ M ∩ S(M). Indeed,approximating the bounded Besiovith sequene by trigonometri polyno-mials as in (36), we get for An(k, x) = n−1
∑n−1

l=1 Pk(l) · (α
′)l(x),(52) ‖Ãn(x) − An(k, x)‖∞ ≤

1

n

( n−1∑

l=0

|βl − Pk(l)|
)
‖x‖∞,whih gives stohasti onvergene.Note also that for every x ∈ L1(M, τ)(53) ‖Ãn(x) − An(k, x)‖1 ≤

1

n

( n−1∑

l=0

|βl − Pk(l)|
)
‖x‖1.Hene by Remark 2.1 the averages Ãn(x) are uniformly bounded in the senseof (11).The assertion of the theorem follows from the stohasti Banah priniple,Theorem 2.4 and density of M ∩ S(M) in L1(M, τ).The next theorem is a onsequene of the stohasti ergodi theorem forbounded Besiovith sequenes (f. [14℄). (For the de�nitions below see forexample [13, p. 260℄).Let σ be a homeomorphism of a ompat metri spae X with metri ̺suh that all powers of σl are equiontinuous. Assume also that there exists

z ∈ X with dense orbit σl(z) in X. Then there exists a unique (hene ergodi)
σ-invariant measure ν on the σ-algebra of Borel sets B. Eah non-empty openset has a positive ν measure.A sequene uj is alled uniform if there exists a dynamial system
(X, B, ν, σ), a set Y ∈ B with ν(∂Y ) = 0 and ν(Y ) > 0, and a point
y ∈ X suh that uj is the jth entry time of the orbit of y into Y .Theorem 3.6. Let M, τ, α be as in the preeding theorem, and {uj}j≥0a uniform sequene. Then the averages

1

n

n−1∑

j=0

(α′)ujxonverge stohastially for x ∈ L1(M, τ).



Stohasti Banah priniple 269Proof. The proof is along the same lines as for [16℄ or [14, Theorem 4℄, andwe give its outline with the neessary adjustments. For x ∈ L1(M, τ) ∩ Mwe use the preeding theorem to show stohasti onvergene. In passingfrom x ∈ L1(M, τ) ∩ M to x ∈ L1(M, τ), we use the Neveu deomposition3.3 to distinguish between two ases. Appliability of the stohasti Banahpriniple to the part of the partition (3.3(ii)) with weakly wandering opera-tor follows from Lemma 3.2(ii). This implies stohasti onvergene on thispart of the Neveu deomposition. The regular individual ergodi theorem[22℄ applied to the part of the Neveu partition (3.3(i)) where an invariantnormal state exists implies stohasti onvergene on this part of the Neveudeomposition.This ompletes the outline of the proof.Remark 3.2. Similar results hold for the ase where M is a semi�niteJBW algebra with faithful normal trae τ .
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