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Sobolev-type spaces from generalized Poincaré inequalities
by

ToONI HEIKKINEN, PEKKA KOSKELA and HELI TUOMINEN (Jyviskyl4)

Abstract. We define a Sobolev space by means of a generalized Poincaré inequality
and relate it to a corresponding space based on upper gradients.

1. Introduction. This paper addresses the properties of a Sobolev-type
space obtained by means of a generalized Poincaré inequality. Unless other-
wise stated, X = (X, d, p) is a metric measure space with x doubling.

Recall that the classical Poincaré inequality states that the estimate

(1) §u—uslde < Crg( §g7de) ",
B B

where §,v = |B|7'{,v, up = §zu, rp is the radius of the ball B and
g = |Vul, holds for each ball B and all functions u € W?(B), 1 < p < oo.
In a sense, this single inequality captures the essentials of the theory of the
first order Sobolev spaces WP consisting of those p-integrable functions that
have a p-integrable weak gradient Vu. Indeed, v € WYP(R") if and only if
u € LP(R™) and there is a non-negative function g € LP(R™) so that (1)
holds. A suitable form of this statement extends to many general settings,
including those of Heisenberg groups, R" equipped with an A,-weight and
general doubling metric measure spaces that support a Poincaré inequality
for Lipschitz functions and their pointwise Lipschitz constants. For all this
see [14], [7], [11], and [12]. Moreover, (1) is known to yield versions of the
usual Sobolev—Poincaré and Trudinger inequalities and other inequalities of
this kind [15], [14].

It is then natural to inquire if (1) could be replaced with some other,
more general inequality. Such an inequality is given by

(2) § lu—upldy < a(rB),
B
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where 7 > 11is fixed, and a : B — [0, 00) is a functional that satisfies a certain
discrete summability condition. Here B is a collection of balls and 7B(z,r) =
B(z,1r). Inequalities of this type were introduced in [8] and further studied
in [21], [22], and [9]. In these papers, versions of the Sobolev—Poincaré and
Trudinger inequalities were established relying on (2), generalizing the earlier
work in [15], [14]. One of the points here is that (2) could well hold for, say,
all Lipschitz functions even if there is no usual Poincaré inequality (1) for
Lipschitz functions and their pointwise Lipschitz constants. It seems to us
that our examples in Section 6 are the first of this kind.

We are then led to consider a Banach space of functions satisfying (2)
and to relate this space to some natural Sobolev space. Notice that then
the Sobolev—Poincaré and Trudinger inequalities should be automatically
satisfied for the functions in our space. To this end, let 2 C X be open,
0<a<oo,and 0 < p < oco. Write By, for the collection of all balls in (2.
Denote by A7"(£2) the set of all locally integrable functions u that satisfy
(2) in all balls B for which 7B C {2 with a functional a of the form

o= (55)

where v : B — [0, 00) satisfies

Z v(B;) < 00

i

whenever the balls B; € By, are disjoint. Then u € AZ*(£2) if and only if
@) lulagoy = s || 3 (75" § lu—usldu)xa|
soup, |12 (57

where

)

LP(£2)

B:(£2) = {{B;} : balls 7B; are disjoint and contained in {2},

is finite. If p > 1, then the space LP(2) N AFP(£2) equipped with the norm
I llze(2y + || - | a2-7(2) becomes a Banach space. Notice that (3) is the canon-
ical example of a functional a considered in [8], [9], [21], and [22]. In the
borderline case @ = 0, p = 0o, 7 = 1 our space reduces to BMO, the space
of functions of bounded mean oscillation.

Our substitute for the usual Sobolev class WP will be given in terms of
a Sobolev space based on upper gradients (cf. [17], [27]). For the connection
with the spaces based on pointwise inequalities (cf. [10]), see Section 3 be-
low. In the metric setting, we cannot talk about partial derivatives but the
concept of an upper gradient has turned out to be a nice substitute for the
length of the gradient. We call a Borel function g : X — [0, 00| an upper
gradient of a function v : X — R if

(5) [u((0)) = u(r(1))| < g ds
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for all rectifiable curves v : [0,{] — X. Further, g as above is called a p-weak
upper gradient if (5) holds for all curves 7 except for a family of p-modulus
zero. For the definition of the p-modulus in metric spaces, see [17]. This
weaker definition is convenient for technical reasons; each p-integrable p-weak
upper gradient can be approximated from above in LP by upper gradients
(cf. [19]). We use the Sobolev space N17(X) that consists of all functions in
LP(X) having a (p-weak) upper gradient that belongs to LP(X) (see Section
2.2).

Our first result shows that if p > 1, then the functions in LP(2)NAFP(£2)
have p-integrable p-weak upper gradients, and that functions in A.lr’l(Q)
belong to the space of functions of bounded variation as defined in Section
2.4 below. Define

B:(2) ={{Bi} € B;(£2) : rp, <r for all i}

and

T —« o
lullazpioy =tim sup |37 (™ §lu—usld) s
BeB B

BeB: »(£2)

1.1. THEOREM. Let {2 C X be an open set.
(1) If ue AX' (), then v € BV(R2) and
1Dul[() < C(Ca )l 10

(2) If p>1 and u € AYP(2) N LP(£2), then a representative of u has a
p-weak upper gradient g with

lgllze (@) < C(Cas T[]l g1 0y

The first part of Theorem 1.1 is proven by Miranda in |25, Theorem 3.8].
We added it for the sake of completeness because our proof applies for all
p > 1. One way to view the second part is that AP (£2) N LP(£2) is the
subspace of N'P(f2) consisting of functions that satisfy an abstract form
of a Poincaré inequality (and consequently Sobolev—Poincaré and Trudinger
inequalities).

If o« < 3 and Hu”AE:@(Q) < 00, then clearly HuHAin = 0. Therefore we

have the following corollary.

1.2. COROLLARY. Letu € A7*(2)N LP(12).

(1) If p>1 and o > 1, then ||Dul|(£2) = 0.
(2) If p > 1 and o > 1, then the function g = 0 is a p-weak upper
gradient of a representative of u.

Our next result shows that AX?(£2) N LP(£2) coincides with the Sobolev
class N1P(£2) or with BV(2) under a Poincaré inequality assumption. Notice
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that, in general, A¥”(£2) N LP(£2) can be larger than the class of functions
that allow for a Poincaré inequality of the type (1). For this, see Section 6.

1.3. COROLLARY. Assume that X supports a (1,p)-Poincaré inequality
with constants Cp and 7.

(1) If p=1, then A7'(X) = BV(X).
(2) If 1 <p < oo, then AFP(X) N LP(X) = N'P(X).
(3) If 1<p<ooanda > 1, then AP"(X) = {constants}.

Recall from the beginning of the introduction that, in the Euclidean
setting, the Poincaré inequality (1) with p = 1 characterizes W' (R™), not
BV(R"). Questions relating to (1) and (2) in R™ are studied in [4] and [3].
For integral conditions under which a function is constant in R", see [4], and
in Ahlfors regular spaces [2]. If p > 1, then in the Euclidean case (3) follows
from [4].

We close this introduction by briefly commenting on the missing values
of the exponent p above. We have only considered the case p > 1. For the
remaining values of p we have the following result.

1.4. COROLLARY. Letu € A7P(£2),0<p< 1.

(1) If a=1/p and u is bounded, then u € BV({2).
(2) If a=1/p and u is uniformly continuous, then ||Dul/(£2) = 0.
(3) If a > 1/p, then ||Du|(£2) = 0.

Note that the function X[y ) belongs to Ai/p’p(R) forall 0 <p < 1and
|Dul|(R) = dp(R) = 1. Corollary 1.4 still leaves open the case 0 < p < 1
and o < 1/p. In this case, one can construct examples of nontrivial Holder
continuous functions even when {2 is the interval [0, 1], equipped with the
Lebesgue measure.

The paper is organized as follows. We introduce the necessary notation
and terminology in Section 2. Section 3 deals with pointwise inequalities.
In Section 4, we give Sobolev—Poincaré and Trudinger type inequalities for
functions in AP (£2). Section 5 is devoted to the proofs of Theorem 1.1,
Corollary 1.3, and Corollary 1.4. Finally, in Section 6, we present examples
that illustrate the previous results.

2. Notation and preliminaries

2.1. Metric measure spaces. Throughout this paper X = (X,d, ) is a
metric space equipped with a doubling measure p. By a measure we mean
a Borel regular outer measure satisfying 0 < u(U) < oo whenever U is open
and bounded. An open ball of radius r centered at x will be denoted by
B(z,r). Sometimes we denote the radius of a ball B by rp. For A > 0, we
define AB(z,r) := B(z, Ar) and M{B;} := {\B;}.
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A measure p is doubling if there is a constant Cy > 1 such that
n(2B) < Cap(B)

for all balls B C X. An iteration of the above inequality shows that there
are constants C' and s depending only on Cy such that
S
r
(B = () wlB )
whenever x € B(y, R) and 0 < r < R < 2diam(X).
In general, C will denote a positive constant whose value is not necessarily

the same at each occurrence. By writing C' = C(K, \) we indicate that the
constant depends only on K and .

2.2. Sobolev spaces on metric measure spaces. As usual, if A C X is u-
measurable, then LP(A) is the space of u-measurable functions u for which
lullray = (§ 4 Jul? du)*/P < oo for 0 < p < oo and |l oo (a) = esssupy |ul
< 00. A measurable function u is in the weak LP-space if

[ullz,a) = ig%)\u({x € A:fu(z)| > ApV?

is finite. If u(A) < oo and 1 < ¢ < p, then L{,(A) C LP(A) (cf. |20, Theorem
2.18.8]).

The Sobolev space N'P(X), defined by Shanmugalingam in [27], consists
of the functions v € LP(X) having a p-weak upper gradient g € LP(X). The
space N1P(X) is a Banach space with the norm

||UHNLP(X) = HUHLP(X) + inf ”gHLP(X)a
where the infimum is taken over p-weak upper gradients g € LP(X) of u.

2.3. Lipschitz functions and Poincaré inequalities. A function u : X — R
is L-Lipschitz if |u(z) — u(y)| < Ld(z,y) for all z,y € X. The lower and
upper pointwise Lipschitz constants of a locally Lipschitz function u are

L L
lipu(z) = liminf M and Lipu(z) = limsup M,
r—0 r r—0 r
where
L(u,z,r) = sup |u(z)—u(y)|.
d(z,y)<r
The lower Lipschitz constant lip v, and hence also Lip u, is an upper gradient
of a locally Lipschitz function u (cf. [5]).
A pair of u € L. _(X) and a measurable function g > 0 satisfies a (1, p)-

loc
Poincaré inequality if there are constants C'p > 0 and 7 > 1 such that

(6) S lu —up|dp < C’prB< S g d,u)l/p
B B
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for all balls B C X. If inequality (6) holds for all measurable functions and
their upper gradients with fixed constants, then X supports a (1, p)-Poincaré
inequality.

2.4. Functions of bounded variation. Following [1], [25] we define BV-
functions on a doubling metric measure space X by a relaxation procedure
starting from Lipschitz functions. The total variation of a locally integrable
function u on an open set {2 is

(7) |Dul|(£2) = inf { liminf | lip u; dp},
(9]

where the infimum is taken over all sequences (u;) of locally Lipschitz func-
tions that converge to u in L] (£2). The set function ||Dul| extends to a

measure on X ([25, Theorem 3.4]). A function u € L (£2) is in BV(£2) if
||Dul|(£2) is finite, and in the local space BVioc(£2) if || Du|/(A) is finite for
every bounded open set A C (2. The space BV({2) equipped with (7) is a
seminormed space. If X supports a (1, 1)-Poincaré inequality with constants

Cp and 7, then

| Dul|(rB)
(8) i|u—uB|d,u§Cer

for each u € BVj.(X) and for all balls B € X (cf. [9]).

3. Pointwise estimates. Let o > 0 and {2 C X be an open set. The
noncentered fractional sharp mazximal function of a function u € Llloc(Q) is
defined by

9) M;%Qu(x) = sup r ¢ § |lu —upg|du.
xeBCs? B

We begin with the following pointwise estimate; the corresponding result
for the centered version of (9) is proved in [13]. For the convenience of the
reader, we include a proof.

3.1. PROPOSITION. Let B be a ball, uw € L'(2B) and o > 0. Then
(10)  Ju(z) — u(y)| < C(Ca, ) d(z, y)* (M ypulw) + M pu(y))
for almost all x,y € B.

Proof. Since w is integrable in B and p is doubling, almost all points of B
are Lebesgue points of u (see [15, Theorem 14.15]). Let z,y € B be Lebesgue
points of u, and let r = d(=, y)/2. For each i € N, set B; = B(z,27'r). Then
up, — u(x) as i — oo. Since p is doubling, we have
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8

”LL(SL‘) - uB(.Z’,’I‘))| < Z ”LLB uBz+1| <C Cd Z S |u - uBi| dp
= =0 B;

< C(Ca) Y rE M7 pu(x) < C(Cy,a) d(@,y)* M7, gu().
=0

If d(x,y) < rp/2, then B(z,r) C B(x,2d(x,y)) C 2B, and

UB(r) — UB@2d(y)| < C(Ca ) d(@,y)* MT, pu(x)
for z = x,y. Otherwise
lup(s) — u2p| < C(Cyy o) d(z,y)* M7 pu(z).
The triangle inequality gives the claim. =

3.2. REMARK. For a > 0, denote by C%%(£2) the set of a-Hélder con-
tinuous functions on 2. Then clearly C%(£2) C A?°(£2). On the other

hand, since ||M Bu||Loo (B) < |lull g2 (7 gy, the inequality (10) implies that
AT™(21B) C COO‘( )

We continue by showing that M#Bu can be controlled in terms of [|u|| 4o
3.3. PROPOSITION. Let 0 < p < oco. Then
1M pull g, () < C(Ca 7, p)|[ull azr - 3)-

Proof. Let x € B be such that MfBu(x) > A. By the definition of
M#Bu, there is a ball B, C B containing x such that

«,
2 & lu—up,|duw > .
B,
This implies that
p
(11) p(By) < AP (170 § u— up, | dp) u(By).
By

By the standard 5r-covering lemma (cf. [16]), we can cover the set {z € B :
MfB(x) > A} by balls 57B; such that the balls 7B; are disjoint and that
each B, is contained in B and satisfies (11). Since p is doubling, and the
balls 7B; are pairwise disjoint, (11) and definition (4) imply that

p{w € B2 M7 pulw) > \}) <D p(57B;) < CZM(Bz)

<ox pz( S!u—umdu) u(By)
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=C\P S (Zr;a S |u—uBi|d,uXBi)p
B ) B;

- P
S CA pHuHAfvP(TB)v
where C' = C(Cy, 7). The claim follows by the definition of || - ||z . =

For a measurable function wu, denote by D%(u) the set of measurable
functions g > 0 that satisfy

(12) lu(z) — uly)] < d(z,y)*(g9(x) + 9(y))

for almost every x,y € £2. For 0 < «, p < 00, define, following Hajtasz [10],
MP(2) = {u € Lie(£2) : D*(u) N LP(£2) # 0},
MEP(2) = {u € Lo () : D*(u) 1 LE,(2) # 0},

From Propositions 3.1 and 3.3 we obtain the following corollary.

3.4. COROLLARY. Let B C X be a ball. Then A?*(21B) C My"(B).

Denote by PrP(£2) the set of functions u € L _(2) for which there exists
a function 0 < g € LP({2) such that

S ]u—uB|d,u < ra( S gpdﬂ)l/P

B B
for all balls 7B C 2. Notice that, trivially, P/ (2) c A??(£2). Thus the
previous corollary and the following result almost identify the spaces A7*(£2)
and M*P(02). However, A7’ (§2) may be strictly larger than PrP(£2) (see
Example 6.2).

3.5. THEOREM. Let 2 C X be an open set with u(§2) < oo, and let
1< q < p. Then MZP(2) € P™(Q2). Moreover, ASP(2rB) ¢ P™(B)
whenever 2T B C {2.

Proof. By the previous corollary, it suffices to prove the first claim. Let
u € My?(2) and g € LE,(2) N D%(u). Since p(f2) < oo and ¢ < p, the
function ¢ is in L9(f2). For each ball B C {2 we see by integrating (12) and
using Jensen’s inequality that

{lu@) — up|dp(z) < § 4 Ju(z) — uly)] du(y) duly)
B BB

< Cla)r® S gdp < C(a)ro‘( S g7 d,u) 1/q. .
B B

Notice the following consequence of the previous result. Our abstract ver-
sion of the Poincaré inequality results in a usual inequality provided we relax
the integrability requirement on the right-hand side. This relaxation is in-
deed crucial by an example in Section 6. In fact, one cannot even require that
v in (3) be an absolute continuous measure. We close this section by pointing
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out that certain choices of o and p only allow for constant functions. For
integral conditions with p > 1 implying that the function is constant, see [4].

3.6. THEOREM. If 0<p< 1land a>1/p, then M*P(R™)={constants}.

Proof. If w € M*P(R"™), it follows from Fubini’s theorem that u €
M*P(l) for almost every line [ parallel to coordinate axes. Therefore it suf-
fices to prove the theorem in the case n = 1. Let u € M*P(R), and let ¢ > 0.
By definition there is g € LP(R) and a set £ C R of measure zero such that

u(z) —u(y)| < |z —y|*(9(z) + g(y)) < oo
whenever z,y € R\ E. Fix z,y € R\ E and divide the interval [z,y] into

disjoint intervals Iy,...,I; with £/2 < I(I;) < ¢ for all i. For each i, let
x; € I; \ E be such that

g(z;) < 2essinf{g(z): z € I;}.
Set 9 = x and zp4+1 = y. Then, by the assumptions on p and «,
k

Ju(@i) = u(zisn)| < O Y (g(ws) + g(xin))
1=0

k
Ce* Y g(wi) +(9(x) + g(y))
i=1

-

Il
=)

u(z) —u(y)| <

2

k
< o (Y eglw?) " + e (o(a) + 9(9)
=1

< Ce* Vgl oy + €% (9(2) + 9(v)),
and the claim follows by letting € — 0. =

4. Imbeddings into Lebesgue and Hélder spaces. In [21] Mac-
Manus and Pérez showed that if the functional a satisfies a discrete summa-
bility condition
(13) > a(Bi) u(Bi) < Ca(B) u(B)

i
whenever the balls B; are disjoint and contained in the ball B, then the
Poincaré type inequality (2) improves to

B: — A r
R A(u({ff € B Julw) — up| > })) < Cla(2rB)
A>0 n(B)
In [22], they proved that if X is connected and a satisfies a stronger condition

(15) > _a(B)" < Ca(B)',
then each function u which satisfies inequality (2), is in the Orlicz space
L?(B), where &(t) = exp(t"') — 1, and 1/r 4+ 1/r’ = 1. Moreover,
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(16) ||u—uB||L<p ) < Ca(27B),

where || - ||p2(p) is the Luxemburg norm in L?(B). For Orlicz spaces on
metric spaces, see [26]. Without the connectedness assumption, one only
obtains (16) with @(t) = exp(t).
The following result collects the known Sobolev-type imbeddings of A7,
4.1. THEOREM. Let B C X be a ball, T > 1, 0 < p < 00, and assume
that there is s > 1 such that u(B(z,r)) > C,r® whenever B(x,r) C 27B.

(a) If ap < s, then AZP(27B) C Li,(B), where ¢ = sp/(s — ap).

(b) If ap = s, then AYP(27B) C L?(B), where &(t) = exp(t). If X is
connected, the above holds with &(t) = exp(t?/P=1).

(c) If ap > s, then A2P(2rB) c CY*~s/P(B).

Proof. (a) Recall that A?7(27B) consists of functions that satisfy (2)
with a(B) = (v(B)/u(B))Y/?. Such an a satisfies the condition (13), and
hence, by (14), it suffices to show that

0,2
AXP(2TB) C A; " °"(27B).
If u e A?P(27B) and B € B;(27B), the assumption 0 < (s —ap)/s < 1
implies

Z ( S ’U - UB‘ du) sp/(s_ap)M(B)
B B
(Z( S lu — upl| dp,)pu(B)(S—oap)/s> s/(s—ap)

B B
s/(s—ap) o/ (5—an
sc(g(r;airu—ugwdu)puw)) "< Clul S,

where C'= C(Cy, s, o, p), and the claim follows.
(b) If ap = s, then u € A7?(27B) satisfies

IN

b = wpl dps < 1 (B') Yl onory < C(Co )l oo
B/
for 7B’ C 27B. Since b(B) = |[ul| g2»(p) satisfies (15), both claims follow
from [22].
(c) If ap > s, then ATP(27B) C A?fﬁs/p’oo@TB) and the claim follows
from Remark 3.2. m

5. Proof of Theorem 1.1. For the proof of Theorem 1.1, which is based
on approximation by discrete convolutions, we need a couple of lemmas.
Lemma 5.1 follows from a Whitney-type covering result for doubling metric
measure spaces (see |6, Theorem II1.1.3], 23, Lemma 2.9]). For the proof of
Lemma 5.2, we refer to |23, Lemma 2.16].
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5.1. LEMMA. Let 2 C X be open. Given € > 0, A > 1, there is a cover
{B; = B(zj,r;)} of £2 with the following properties:
1) ri <e for all i,
2) AB; C 2 for all i,
3) if AB; meets ABj, then r; < 2r;,
4) each ball A\B; meets at most C' = C(Cy, \) balls A\B;.

A collection {B;} as above is called an (g, \)-cover of 2. Note that an
(g, \)-cover is an (¢/, \')-cover provided &’ > ¢ and X < \.

5.2. LEMMA. Let {2 C X be open, and let B = {B; = B(z;,7i)} be an
(00, 2)-cover of £2. Then there is a collection {p;} of functions 2 — R such
that
(1) each ¢; is C(Cy)r; *-Lipschitz,

(2) 0<¢; <1 foralli,

(3) wi(z) =0 for x € X\ 2B; for all i,

(4) > pi(x) =1 for all x € £2.

A collection {¢;} as above is called a partition of unity with respect to B.

Let B = {B;} be as in the lemma above, and let {¢;} be a partition of
unity with respect to B. For a locally integrable function u on {2, define

(17) us(x) = 3 s pi(a).

(
(
(
(

The following lemma describes the most important properties of ug.
5.3. LEMMA.

(1) The function up is locally Lipschitz. Moreover, for each x € B;,
Lipug(x) < C(Cd)rgil S |lu — usp, | du.
5B;
(2) Let w € LP(82), p > 1. If By, is an (g, 2)-cover of 2 and €, — 0 as
k — oo, then ug, — u in LP(£2).

Proof. (1) Let z,y € B;, and let J = {j : 2B; N 2B; # 0}. Then #J <
C(Cyq) and Bj C 5B; for each j € J. Using the properties of the functions
;, we infer that

[us(@) — us) = | Y (us, - us)(@;(@) — 9i(w))
Jje€J
< C(Cy)rp! d(z,y) max|up; — up,|
jeJ
< C(Cd)’rézl d(z,y) S lu — usp,| du,

5B;
and the first claim follows.



12 T. Heikkinen et al.

(2) First we need an estimate for the LP-norm of up on {2. By Jensen’s
inequality, |ug|? < (|u|P)g. Hence, by the properties of the functions ¢;,

(18) { luslP dp < {(jul)s dp <> §(ulP) e du
2 02 i 2
<C(Cy)Y | lulPdu < C(Ca) | ul? dp.
i 2B; 2

Let w € LP(£2) and € > 0. Choose a bounded continuous function v with
bounded support such that [[u —v| z»() < € (cf. [15, Theorem 14.2]). Then,
estimating as in (18), we obtain

lus — vBllLe2) = (u —v)5llLr(2) < C(Ca,p)llu — vl 1r0) < C(Ca,p)e,
and so
lus — ullLr(2) < llus = vsllLr2) + v — vllLr(2) + v — ullLr(0)
< |lvg = vl Lr(0) + C(Cy, p)e.

Therefore it suffices to show that ||[vg—v||rr(0) — 0asex — 0. Now |vg—v| <
2sup |v], and for all x we have

os(x) —v(@)[ < D § u(y) — v(@)] du(y)

2B7, ox Bi

<o) § ) - v@)duty),
B(z,5¢ek)

which converges to 0 as €, — 0 by the continuity of v. The claim follows
from the dominated convergence theorem. m

Proof of Theorem 1.1. Let u € A}-’p(Q). For j € N, let B;j be a (571, 57)-
cover (and hence also a (j~!,2)-cover) of 2. Then, by Lemma 5.3(2), u; :=
up; — u in LP(§2). Let us show that

tim sup [Lip 5| o) < C(Cas ™)l 10
j—>OO 7,0

By Lemma 5.3(1),

Lipu; < C(Cy) Z gt S |lu —usg|du xp.
BeB; 5B

We leave it to the reader to show that since B; is a (j !, 57)-cover and y is
doubling, the cover can be divided into k=C(Cy, 7) subfamilies Bj 1, ..., Bj
so that each of the families 578;; consists of disjoint balls. Since the families
5Bj1,--.,5B; belong to B, 5;-1(§2), we have
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(19) [ Lipuj]zoe) < C(Ca) i\) > g § lu—usslduxs|,,

I=1 BeB;, 5B
< c(cy, H —1{ y— upld ‘ :
< C(Ca)sup || rp' § lu—uplduxs @)
BeB B

where the supremum is taken over balls B € B, 5;-1(2). Since lipu(z) <
Lipu(z), the above estimate for p = 1 implies that v € BV({2), and that
1Dull(@2) < C(Ca Pl 130

If p > 1, then LP({2) is reflexive. Thus the sequence (Lipu;) of upper
gradients, which by (19) is bounded in LP({2), has a subsequence, also de-
noted by (Lipwu;), that converges weakly to some g € LP({2). By [18, Lemma
3.1], g is a p-weak upper gradient of a representative of u. The second part
of the theorem follows because the weak limit g satisfies

lglzs(ey < liminf [Lip s 12s) < C(Ca )l g0

Proof of Corollary 1.3. Assume that X supports a (1,p)-Poincaré in-
equality, 1 < p < oo. By the validity of a (1,p)-Poincaré inequality, X is
connected.

If p = 1, then the claim follows from Theorem 1.1 and the Poincaré
inequality (8) for BV-functions.

If 1 < p < oo, then each function of AMP(X) N LP(X) is in N'?(X) by
Theorem 1.1. The assumption that X supports the (1, p)-Poincaré inequality
gives the inclusion N'P(X) C AFP(X) N LP(X).

Let then 1 <p < oo, @« > 1,and u € A?P(X). If p = 1, then the Poincaré
inequality (8) for BV-functions together with Corollary 1.2(1) shows that u
is constant in each ball of X. For p > 1, we notice from Theorem 4.1 that
u € LP(B) for each ball B. Then Corollary 1.2(2) and the (1, p)-Poincaré
inequality imply that u|p is a constant for each ball B. In both cases above,
the claim follows by the connectedness of X. All constant functions are
trivially in A7P(X).

Proof of Corollary 1.4. For the first claim, let u € Ai/p’p(ﬂ), 0<p<l,
and B € B, ({2). If there is a constant M > 0 such that |u| < M in (2, then

_ -1
S (vt § lu— usldp)u(B) < 200 3" (1 “”& ju—upldu)’ p(B).
BeB B BeB
If w is uniformly continuous, and w is the modulus of continuity of u, then
_ P
Z(rglhu—uBldu) (B) <w2r1p2( 1/p§u—UB|dﬂ) w(B).
BeB B BeB

By taking supremum over B;,(2) and letting r tend to zero,we conclude
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that ||u||A1 1( ) < 2M)P||ul? (£2) in the former, and Hu||A1 1((2) =0

l/p P
in the latter case. In both cases, the claim follows from Theorem 1 1.

Let then u € A?P(2), where a > 1/p. By the remark after Theorem 1.1,
we know that ||ul| AP () = 0. For k € N, define uj, = min{k, max{u, —k}}.

Then each uy, is bounded and, by the first part of the proof,
kel a2y < Crllurll yp o) < 2Ckllull 410 () =0,

which implies that HuHAiié(Q) <liminfg HukHAiié(Q) =0.

6. Examples. In our first example we exhibit a space X that does not
support any (1, ¢)-Poincaré inequality, but in which every u € N'P(X) sat-
isfies (6) with a certain g € LP(X).

6.1. EXAMPLE. Let By and By be balls in R™ such that d(Bj, B2) > 0.
Equip X = B; U By with the Euclidean metric of R", and let u be the
restriction of the Lebesgue measure to X. By considering the function u =
Xp,, which has g = 0 as a weak upper gradient, we see that X cannot support
any (1, q)-Poincaré inequality.

Let 1 < p < oo, and let u € NP(X) with an upper gradient g € LP(X).
We will show that the inequality

1/p
(20) § lu—wpl di < Cri(§(g+ ful)? dn)
B B
holds for each ball B C X.

Fix a ball B C X. If B intersects only one of the balls By, By, then
(20) holds by the equivalence N'P(£2) = W1P(§2) for domains in R™ (|27,
Theorem 4.5]), and the usual (1, p)-Poincaré inequality. Assume that the
intersection of B with both B; and Bj is nonempty. Then 2rp > d(Bj, Bs),
and by the Holder inequality, we have

§ u— sl dp < 2§ ol die < 2 § ol )"
B B

B
4rp 1/p
= A(B1, By) Q} ul dye)

which is at most a constant times the right-hand side of (20).
In the next example, the space AF*(X) is strictly larger than P (X).

6.2. EXAMPLE. Let X = {x = (71,22) € R? : |21| < |z2|} be equipped
with the Euclidean metric of R?, and let i be the restriction of the Lebesgue
measure to X. The function u = Xx,, where X = {z € X : 2y > 0},
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cannot satisfy the inequality

B v(TB) 1/2
§l wlin < or(%gy)

with any measure v absolutely continuous with respect to u because we have

§5lu —up|dp = 1/2 for each ball B(0,r). However, the above inequality
holds with

{ 1 if0e B,
0 otherwise.

Our final example shows that, given 0 < p < 1 and 1 < a < 1/p, there
are Holder-continuous nonconstant functions in M*P(]0, 1]).

6.3. EXAMPLE. Fix 0 <p<land 1 <a < 1/p. Let 0 < s <1 and let
C C [0, 1] be the standard Cantor set with H*(C') =1 (see for example |24,
p. 60]). Then the Cantor function u(z) = H*(C'N[0, z]) is Holder-continuous
with exponent s. A calculation shows that

u(z) —u(y)| < d(z,y)* < d(z,y)*(d(z, )" +d(y, C)*™)
for all z,y € [0,1], and that g(z) = d(z,C)*~® is in LP([0,1]) provided
0<s<(1—ap)/(l—p).

Acknowledgments. We wish to thank the referee for valuable com-
ments.
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