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Sobolev-type spa
es from generalized Poin
aré inequalitiesbyToni Heikkinen, Pekka Koskela and Heli Tuominen (Jyväskylä)Abstra
t. We de�ne a Sobolev spa
e by means of a generalized Poin
aré inequalityand relate it to a 
orresponding spa
e based on upper gradients.1. Introdu
tion. This paper addresses the properties of a Sobolev-typespa
e obtained by means of a generalized Poin
aré inequality. Unless other-wise stated, X = (X, d, µ) is a metri
 measure spa
e with µ doubling.Re
all that the 
lassi
al Poin
aré inequality states that the estimate(1) <
B

|u − uB| dx ≤ CrB

( <
B

gp dx
)1/p

,where 4B v = |B|−1
T
B v, uB =

4
B u, rB is the radius of the ball B and

g = |∇u|, holds for ea
h ball B and all fun
tions u ∈ W 1,p(B), 1 ≤ p < ∞.In a sense, this single inequality 
aptures the essentials of the theory of the�rst order Sobolev spa
es W 1,p 
onsisting of those p-integrable fun
tions thathave a p-integrable weak gradient ∇u. Indeed, u ∈ W 1,p(Rn) if and only if
u ∈ Lp(Rn) and there is a non-negative fun
tion g ∈ Lp(Rn) so that (1)holds. A suitable form of this statement extends to many general settings,in
luding those of Heisenberg groups, R

n equipped with an Ap-weight andgeneral doubling metri
 measure spa
es that support a Poin
aré inequalityfor Lips
hitz fun
tions and their pointwise Lips
hitz 
onstants. For all thissee [14℄, [7℄, [11℄, and [12℄. Moreover, (1) is known to yield versions of theusual Sobolev�Poin
aré and Trudinger inequalities and other inequalities ofthis kind [15℄, [14℄.It is then natural to inquire if (1) 
ould be repla
ed with some other,more general inequality. Su
h an inequality is given by(2) <
B

|u − uB| dµ ≤ a(τB),
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2 T. Heikkinen et al.where τ ≥ 1 is �xed, and a : B → [0,∞) is a fun
tional that satis�es a 
ertaindis
rete summability 
ondition. Here B is a 
olle
tion of balls and τB(x, r) =
B(x, τr). Inequalities of this type were introdu
ed in [8℄ and further studiedin [21℄, [22℄, and [9℄. In these papers, versions of the Sobolev�Poin
aré andTrudinger inequalities were established relying on (2), generalizing the earlierwork in [15℄, [14℄. One of the points here is that (2) 
ould well hold for, say,all Lips
hitz fun
tions even if there is no usual Poin
aré inequality (1) forLips
hitz fun
tions and their pointwise Lips
hitz 
onstants. It seems to usthat our examples in Se
tion 6 are the �rst of this kind.We are then led to 
onsider a Bana
h spa
e of fun
tions satisfying (2)and to relate this spa
e to some natural Sobolev spa
e. Noti
e that thenthe Sobolev�Poin
aré and Trudinger inequalities should be automati
allysatis�ed for the fun
tions in our spa
e. To this end, let Ω ⊂ X be open,
0 ≤ α < ∞, and 0 < p ≤ ∞. Write BΩ for the 
olle
tion of all balls in Ω.Denote by Aα,p

τ (Ω) the set of all lo
ally integrable fun
tions u that satisfy(2) in all balls B for whi
h τB ⊂ Ω with a fun
tional a of the form(3) a(B) = rα

(

ν(B)

µ(B)

)1/p

,where ν : B → [0,∞) satis�es
∑

i

ν(Bi) < ∞whenever the balls Bi ∈ BΩ are disjoint. Then u ∈ Aα,p
τ (Ω) if and only if(4) ‖u‖Aα,p

τ (Ω) = sup
B∈Bτ (Ω)

∥

∥

∥

∑

B∈B

(

r−α
B

<
B

|u − uB| dµ
)

χB

∥

∥

∥

Lp(Ω)
,where

Bτ (Ω) = {{Bi} : balls τBi are disjoint and 
ontained in Ω},is �nite. If p ≥ 1, then the spa
e Lp(Ω) ∩ Aα,p
τ (Ω) equipped with the norm

‖ · ‖Lp(Ω) + ‖ · ‖Aα,p
τ (Ω) be
omes a Bana
h spa
e. Noti
e that (3) is the 
anon-i
al example of a fun
tional a 
onsidered in [8℄, [9℄, [21℄, and [22℄. In theborderline 
ase α = 0, p = ∞, τ = 1 our spa
e redu
es to BMO, the spa
eof fun
tions of bounded mean os
illation.Our substitute for the usual Sobolev 
lass W 1,p will be given in terms ofa Sobolev spa
e based on upper gradients (
f. [17℄, [27℄). For the 
onne
tionwith the spa
es based on pointwise inequalities (
f. [10℄), see Se
tion 3 be-low. In the metri
 setting, we 
annot talk about partial derivatives but the
on
ept of an upper gradient has turned out to be a ni
e substitute for thelength of the gradient. We 
all a Borel fun
tion g : X → [0,∞] an uppergradient of a fun
tion u : X → R if(5) |u(γ(0)) − u(γ(l))| ≤

\
γ

g ds



Sobolev-type spa
es 3for all re
ti�able 
urves γ : [0, l] → X. Further, g as above is 
alled a p-weakupper gradient if (5) holds for all 
urves γ ex
ept for a family of p-moduluszero. For the de�nition of the p-modulus in metri
 spa
es, see [17℄. Thisweaker de�nition is 
onvenient for te
hni
al reasons; ea
h p-integrable p-weakupper gradient 
an be approximated from above in Lp by upper gradients(
f. [19℄). We use the Sobolev spa
e N1,p(X) that 
onsists of all fun
tions in
Lp(X) having a (p-weak) upper gradient that belongs to Lp(X) (see Se
tion2.2).Our �rst result shows that if p > 1, then the fun
tions in Lp(Ω)∩A1,p

τ (Ω)have p-integrable p-weak upper gradients, and that fun
tions in A1,1
τ (Ω)belong to the spa
e of fun
tions of bounded variation as de�ned in Se
tion2.4 below. De�ne

Bτ,r(Ω) = {{Bi} ∈ Bτ (Ω) : rBi ≤ r for all i}and
‖u‖Aα,p

τ,0 (Ω) = lim
r→0

sup
B∈Bτ,r(Ω)

∥

∥

∥

∑

B∈B

(

r−α
B

<
B

|u − uB| dµ
)

χB

∥

∥

∥

Lp(Ω)
.1.1. Theorem. Let Ω ⊂ X be an open set.(1) If u ∈ A1,1

τ (Ω), then u ∈ BV(Ω) and
‖Du‖(Ω) ≤ C(Cd, τ)‖u‖

A1,1
τ,0(Ω)

.(2) If p > 1 and u ∈ A1,p
τ (Ω) ∩ Lp(Ω), then a representative of u has a

p-weak upper gradient g with
‖g‖Lp(Ω) ≤ C(Cd, τ)‖u‖

A1,p
τ,0(Ω)

.The �rst part of Theorem 1.1 is proven by Miranda in [25, Theorem 3.8℄.We added it for the sake of 
ompleteness be
ause our proof applies for all
p ≥ 1. One way to view the se
ond part is that A1,p

τ (Ω) ∩ Lp(Ω) is thesubspa
e of N1,p(Ω) 
onsisting of fun
tions that satisfy an abstra
t formof a Poin
aré inequality (and 
onsequently Sobolev�Poin
aré and Trudingerinequalities).If α < β and ‖u‖
Aβ,p

τ,0 (Ω)
< ∞, then 
learly ‖u‖Aα,p

τ,0 (Ω) = 0. Therefore wehave the following 
orollary.1.2. Corollary. Let u ∈ Aα,p
τ (Ω) ∩ Lp(Ω).(1) If p ≥ 1 and α > 1, then ‖Du‖(Ω) = 0.(2) If p > 1 and α > 1, then the fun
tion g ≡ 0 is a p-weak uppergradient of a representative of u.Our next result shows that A1,p
τ (Ω) ∩ Lp(Ω) 
oin
ides with the Sobolev
lass N1,p(Ω) or with BV(Ω) under a Poin
aré inequality assumption. Noti
e



4 T. Heikkinen et al.that, in general, A1,p
τ (Ω) ∩ Lp(Ω) 
an be larger than the 
lass of fun
tionsthat allow for a Poin
aré inequality of the type (1). For this, see Se
tion 6.1.3. Corollary. Assume that X supports a (1, p)-Poin
aré inequalitywith 
onstants CP and τ .(1) If p = 1, then A1,1

τ (X) = BV(X).(2) If 1 < p < ∞, then A1,p
τ (X) ∩ Lp(X) = N1,p(X).(3) If 1 ≤ p < ∞ and α > 1, then Aα,p

τ (X) = {
onstants}.Re
all from the beginning of the introdu
tion that, in the Eu
lideansetting, the Poin
aré inequality (1) with p = 1 
hara
terizes W 1,1(Rn), not
BV(Rn). Questions relating to (1) and (2) in R

n are studied in [4℄ and [3℄.For integral 
onditions under whi
h a fun
tion is 
onstant in R
n, see [4℄, andin Ahlfors regular spa
es [2℄. If p > 1, then in the Eu
lidean 
ase (3) followsfrom [4℄.We 
lose this introdu
tion by brie�y 
ommenting on the missing valuesof the exponent p above. We have only 
onsidered the 
ase p ≥ 1. For theremaining values of p we have the following result.1.4. Corollary. Let u ∈ Aα,p

τ (Ω), 0 < p < 1.(1) If α = 1/p and u is bounded , then u ∈ BV(Ω).(2) If α = 1/p and u is uniformly 
ontinuous, then ‖Du‖(Ω) = 0.(3) If α > 1/p, then ‖Du‖(Ω) = 0.Note that the fun
tion χ
[0,∞) belongs to A

1/p,p
τ (R) for all 0 < p < 1 and

‖Du‖(R) = δ0(R) = 1. Corollary 1.4 still leaves open the 
ase 0 < p < 1and α < 1/p. In this 
ase, one 
an 
onstru
t examples of nontrivial Hölder
ontinuous fun
tions even when Ω is the interval [0, 1], equipped with theLebesgue measure.The paper is organized as follows. We introdu
e the ne
essary notationand terminology in Se
tion 2. Se
tion 3 deals with pointwise inequalities.In Se
tion 4, we give Sobolev�Poin
aré and Trudinger type inequalities forfun
tions in Aα,p
τ (Ω). Se
tion 5 is devoted to the proofs of Theorem 1.1,Corollary 1.3, and Corollary 1.4. Finally, in Se
tion 6, we present examplesthat illustrate the previous results.2. Notation and preliminaries2.1. Metri
 measure spa
es. Throughout this paper X = (X, d, µ) is ametri
 spa
e equipped with a doubling measure µ. By a measure we meana Borel regular outer measure satisfying 0 < µ(U) < ∞ whenever U is openand bounded. An open ball of radius r 
entered at x will be denoted by

B(x, r). Sometimes we denote the radius of a ball B by rB . For λ > 0, wede�ne λB(x, r) := B(x, λr) and λ{Bi} := {λBi}.



Sobolev-type spa
es 5A measure µ is doubling if there is a 
onstant Cd ≥ 1 su
h that
µ(2B) ≤ Cdµ(B)for all balls B ⊂ X. An iteration of the above inequality shows that thereare 
onstants C and s depending only on Cd su
h that

µ(B(x, r)) ≥ C

(

r

R

)s

µ(B(y, R))whenever x ∈ B(y, R) and 0 < r ≤ R ≤ 2 diam(X).In general, C will denote a positive 
onstant whose value is not ne
essarilythe same at ea
h o

urren
e. By writing C = C(K, λ) we indi
ate that the
onstant depends only on K and λ.2.2. Sobolev spa
es on metri
 measure spa
es. As usual, if A ⊂ X is µ-measurable, then Lp(A) is the spa
e of µ-measurable fun
tions u for whi
h
‖u‖Lp(A) = (

T
A |u|p dµ)1/p < ∞ for 0 < p < ∞ and ‖u‖L∞(A) = ess supA |u|

< ∞. A measurable fun
tion u is in the weak Lp-spa
e if
‖u‖Lp

w(A) = sup
λ>0

λµ({x ∈ A : |u(x)| > λ})1/p

is �nite. If µ(A) < ∞ and 1 ≤ q < p, then Lq
w(A) ⊂ Lp(A) (
f. [20, Theorem2.18.8℄).The Sobolev spa
e N1,p(X), de�ned by Shanmugalingam in [27℄, 
onsistsof the fun
tions u ∈ Lp(X) having a p-weak upper gradient g ∈ Lp(X). Thespa
e N1,p(X) is a Bana
h spa
e with the norm

‖u‖N1,p(X) = ‖u‖Lp(X) + inf ‖g‖Lp(X),where the in�mum is taken over p-weak upper gradients g ∈ Lp(X) of u.2.3. Lips
hitz fun
tions and Poin
aré inequalities. A fun
tion u : X → Ris L-Lips
hitz if |u(x) − u(y)| ≤ Ld(x, y) for all x, y ∈ X. The lower andupper pointwise Lips
hitz 
onstants of a lo
ally Lips
hitz fun
tion u are
lipu(x) = lim inf

r→0

L(u, x, r)

r
and Lipu(x) = lim sup

r→0

L(u, x, r)

r
,where

L(u, x, r) = sup
d(x,y)≤r

|u(x) − u(y)|.The lower Lips
hitz 
onstant lipu, and hen
e also Lipu, is an upper gradientof a lo
ally Lips
hitz fun
tion u (
f. [5℄).A pair of u ∈ L1lo
(X) and a measurable fun
tion g ≥ 0 satis�es a (1, p)-Poin
aré inequality if there are 
onstants CP > 0 and τ ≥ 1 su
h that(6) <
B

|u − uB| dµ ≤ CP rB

( <
τB

gp dµ
)1/p



6 T. Heikkinen et al.for all balls B ⊂ X. If inequality (6) holds for all measurable fun
tions andtheir upper gradients with �xed 
onstants, then X supports a (1, p)-Poin
aréinequality.2.4. Fun
tions of bounded variation. Following [1℄, [25℄ we de�ne BV-fun
tions on a doubling metri
 measure spa
e X by a relaxation pro
edurestarting from Lips
hitz fun
tions. The total variation of a lo
ally integrablefun
tion u on an open set Ω is(7) ‖Du‖(Ω) = inf
{

lim inf
i→∞

\
Ω

lipui dµ
}

,

where the in�mum is taken over all sequen
es (ui) of lo
ally Lips
hitz fun
-tions that 
onverge to u in L1lo
(Ω). The set fun
tion ‖Du‖ extends to ameasure on X ([25, Theorem 3.4℄). A fun
tion u ∈ L1lo
(Ω) is in BV(Ω) if
‖Du‖(Ω) is �nite, and in the lo
al spa
e BVlo
(Ω) if ‖Du‖(A) is �nite forevery bounded open set A ⊂ Ω. The spa
e BV(Ω) equipped with (7) is aseminormed spa
e. If X supports a (1, 1)-Poin
aré inequality with 
onstants
CP and τ , then(8) <

B

|u − uB | dµ ≤ CP r
‖Du‖(τB)

µ(τB)for ea
h u ∈ BVlo
(X) and for all balls B ⊂ X (
f. [9℄).
3. Pointwise estimates. Let α > 0 and Ω ⊂ X be an open set. Thenon
entered fra
tional sharp maximal fun
tion of a fun
tion u ∈ L1lo
(Ω) isde�ned by(9) M#

α,Ωu(x) = sup
x∈B⊂Ω

r−α
<
B

|u − uB| dµ.

We begin with the following pointwise estimate; the 
orresponding resultfor the 
entered version of (9) is proved in [13℄. For the 
onvenien
e of thereader, we in
lude a proof.3.1. Proposition. Let B be a ball , u ∈ L1(2B) and α > 0. Then(10) |u(x) − u(y)| ≤ C(Cd, α) d(x, y)α(M#
α,2Bu(x) + M#

α,2Bu(y))for almost all x, y ∈ B.Proof. Sin
e u is integrable in B and µ is doubling, almost all points of Bare Lebesgue points of u (see [15, Theorem 14.15℄). Let x, y ∈ B be Lebesguepoints of u, and let r = d(x, y)/2. For ea
h i ∈ N, set Bi = B(x, 2−ir). Then
uBi → u(x) as i → ∞. Sin
e µ is doubling, we have



Sobolev-type spa
es 7
|u(x) − uB(x,r))| ≤

∞
∑

i=0

|uBi − uBi+1
| ≤ C(Cd)

∞
∑

i=0

<
Bi

|u − uBi | dµ

≤ C(Cd)

∞
∑

i=0

rα
Bi

M#
α,2Bu(x) ≤ C(Cd, α) d(x, y)αM#

α,2Bu(x).If d(x, y) ≤ rB/2, then B(z, r) ⊂ B(x, 2 d(x, y)) ⊂ 2B, and
|uB(z,r) − uB(x,2 d(x,y))| ≤ C(Cd, α) d(x, y)αM#

α,2Bu(x)for z = x, y. Otherwise
|uB(z,r) − u2B| ≤ C(Cd, α) d(x, y)αM#

α,2Bu(x).The triangle inequality gives the 
laim.3.2. Remark. For α > 0, denote by C0,α(Ω) the set of α-Hölder 
on-tinuous fun
tions on Ω. Then 
learly C0,α(Ω) ⊂ Aα,∞
τ (Ω). On the otherhand, sin
e ‖M#

α,Bu‖L∞(B) ≤ ‖u‖Aα,∞
τ (τB), the inequality (10) implies that

Aα,∞
τ (2τB) ⊂ C0,α(B).We 
ontinue by showing that M#

α,Bu 
an be 
ontrolled in terms of ‖u‖Aα,p
τ

.3.3. Proposition. Let 0 < p < ∞. Then
‖M#

α,Bu‖Lp
w(B) ≤ C(Cd, τ, p)‖u‖Aα,p

τ (τB).Proof. Let x ∈ B be su
h that M#
α,Bu(x) > λ. By the de�nition of

M#
α,Bu, there is a ball Bx ⊂ B 
ontaining x su
h that

r−α
x

<
Bx

|u − uBx | dµ > λ.

This implies that(11) µ(Bx) ≤ λ−p
(

r−α
x

<
Bx

|u − uBx | dµ
)p

µ(Bx).

By the standard 5r-
overing lemma (
f. [16℄), we 
an 
over the set {x ∈ B :

M#
α,B(x) > λ} by balls 5τBi su
h that the balls τBi are disjoint and thatea
h Bi is 
ontained in B and satis�es (11). Sin
e µ is doubling, and theballs τBi are pairwise disjoint, (11) and de�nition (4) imply that
µ({x ∈ B : M#

α,Bu(x) > λ}) ≤
∑

i

µ(5τBi) ≤ C
∑

i

µ(Bi)

≤ Cλ−p
∑

i

(

r−α
i

<
Bi

|u − uBi | dµ
)p

µ(Bi)
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= Cλ−p

\
τB

(

∑

i

r−α
i

<
Bi

|u − uBi | dµ χBi

)p

≤ Cλ−p‖u‖p
Aα,p

τ (τB)
,where C = C(Cd, τ). The 
laim follows by the de�nition of ‖ · ‖Lp

w
.For a measurable fun
tion u, denote by Dα(u) the set of measurablefun
tions g ≥ 0 that satisfy(12) |u(x) − u(y)| ≤ d(x, y)α(g(x) + g(y))for almost every x, y ∈ Ω. For 0 < α, p < ∞, de�ne, following Hajªasz [10℄,

Mα,p(Ω) = {u ∈ L1lo
(Ω) : Dα(u) ∩ Lp(Ω) 6= ∅},

Mα,p
w (Ω) = {u ∈ L1lo
(Ω) : Dα(u) ∩ Lp

w(Ω) 6= ∅}.From Propositions 3.1 and 3.3 we obtain the following 
orollary.3.4. Corollary. Let B ⊂ X be a ball. Then Aα,p
τ (2τB) ⊂ Mα,p

w (B).Denote by Pα,p
τ (Ω) the set of fun
tions u ∈ L1lo
(Ω) for whi
h there existsa fun
tion 0 ≤ g ∈ Lp(Ω) su
h that<

B

|u − uB | dµ ≤ rα
( <

τB

gp dµ
)1/p

for all balls τB ⊂ Ω. Noti
e that, trivially, Pα,p
τ (Ω) ⊂ Aα,p

τ (Ω). Thus theprevious 
orollary and the following result almost identify the spa
es Aα,p
τ (Ω)and Mα,p(Ω). However, Aα,p

τ (Ω) may be stri
tly larger than Pα,p
τ (Ω) (seeExample 6.2).3.5. Theorem. Let Ω ⊂ X be an open set with µ(Ω) < ∞, and let

1 ≤ q < p. Then Mα,p
w (Ω) ⊂ Pα,q

1 (Ω). Moreover , Aα,p
τ (2τB) ⊂ Pα,q

1 (B)whenever 2τB ⊂ Ω.Proof. By the previous 
orollary, it su�
es to prove the �rst 
laim. Let
u ∈ Mα,p

w (Ω) and g ∈ Lp
w(Ω) ∩ Dα(u). Sin
e µ(Ω) < ∞ and q < p, thefun
tion g is in Lq(Ω). For ea
h ball B ⊂ Ω we see by integrating (12) andusing Jensen's inequality that<

B

|u(x) − uB | dµ(x) ≤
<
B

<
B

|u(x) − u(y)| dµ(y) dµ(y)

≤ C(α)rα
<
B

g dµ ≤ C(α)rα
( <

B

gq dµ
)1/q

.Noti
e the following 
onsequen
e of the previous result. Our abstra
t ver-sion of the Poin
aré inequality results in a usual inequality provided we relaxthe integrability requirement on the right-hand side. This relaxation is in-deed 
ru
ial by an example in Se
tion 6. In fa
t, one 
annot even require that
ν in (3) be an absolute 
ontinuous measure. We 
lose this se
tion by pointing



Sobolev-type spa
es 9out that 
ertain 
hoi
es of α and p only allow for 
onstant fun
tions. Forintegral 
onditions with p ≥ 1 implying that the fun
tion is 
onstant, see [4℄.3.6. Theorem. If 0<p< 1 and α>1/p, then Mα,p(Rn)={
onstants}.Proof. If u ∈ Mα,p(Rn), it follows from Fubini's theorem that u ∈
Mα,p(l) for almost every line l parallel to 
oordinate axes. Therefore it suf-�
es to prove the theorem in the 
ase n = 1. Let u ∈ Mα,p(R), and let ε > 0.By de�nition there is g ∈ Lp(R) and a set E ⊂ R of measure zero su
h that

|u(x) − u(y)| ≤ |x − y|α(g(x) + g(y)) < ∞whenever x, y ∈ R \ E. Fix x, y ∈ R \ E and divide the interval [x, y] intodisjoint intervals I1, . . . , Ik with ε/2 ≤ l(Ii) ≤ ε for all i. For ea
h i, let
xi ∈ Ii \ E be su
h that

g(xi) ≤ 2 ess inf{g(z) : z ∈ Ii}.Set x0 = x and xk+1 = y. Then, by the assumptions on p and α,
|u(x) − u(y)| ≤

k
∑

i=0

|u(xi) − u(xi+1)| ≤ Cεα
k

∑

i=0

(g(xi) + g(xi+1))

= Cεα
k

∑

i=1

g(xi) + εα(g(x) + g(y))

≤ Cεα−1/p
(

k
∑

i=1

εg(xi)
p
)1/p

+ εα(g(x) + g(y))

≤ Cεα−1/p‖g‖Lp(R) + εα(g(x) + g(y)),and the 
laim follows by letting ε → 0.4. Imbeddings into Lebesgue and Hölder spa
es. In [21℄ Ma
-Manus and Pérez showed that if the fun
tional a satis�es a dis
rete summa-bility 
ondition(13) ∑

i

a(Bi)
rµ(Bi) ≤ Ca(B)rµ(B)whenever the balls Bi are disjoint and 
ontained in the ball B, then thePoin
aré type inequality (2) improves to(14) sup

λ>0
λ

(

µ({x ∈ B : |u(x) − uB | > λ})

µ(B)

)1/r

≤ C ′a(2τB).In [22℄, they proved that if X is 
onne
ted and a satis�es a stronger 
ondition(15) ∑

a(Bi)
r ≤ Ca(B)r,then ea
h fun
tion u whi
h satis�es inequality (2), is in the Orli
z spa
e

LΦ(B), where Φ(t) = exp(tr
′

) − 1, and 1/r + 1/r′ = 1. Moreover,



10 T. Heikkinen et al.(16) ‖u − uB‖LΦ(B) ≤ Ca(2τB),where ‖ · ‖LΦ(B) is the Luxemburg norm in LΦ(B). For Orli
z spa
es onmetri
 spa
es, see [26℄. Without the 
onne
tedness assumption, one onlyobtains (16) with Φ(t) = exp(t).The following result 
olle
ts the known Sobolev-type imbeddings of Aα,p
τ .4.1. Theorem. Let B ⊂ X be a ball , τ ≥ 1, 0 < p < ∞, and assumethat there is s ≥ 1 su
h that µ(B(x, r)) ≥ Cµrs whenever B(x, r) ⊂ 2τB.(a) If αp < s, then Aα,p

τ (2τB) ⊂ Lq
w(B), where q = sp/(s − αp).(b) If αp = s, then Aα,p

τ (2τB) ⊂ LΦ(B), where Φ(t) = exp(t). If X is
onne
ted , the above holds with Φ(t) = exp(tp/(p−1)).(
) If αp > s, then Aα,p
τ (2τB) ⊂ C0,α−s/p(B).Proof. (a) Re
all that A0,τ

τ (2τB) 
onsists of fun
tions that satisfy (2)with a(B) = (ν(B)/µ(B))1/p. Su
h an a satis�es the 
ondition (13), andhen
e, by (14), it su�
es to show that
Aα,p

τ (2τB) ⊂ A
0, sp

s−αp
τ (2τB).If u ∈ Aα,p

τ (2τB) and B ∈ Bτ (2τB), the assumption 0 < (s − αp)/s < 1implies
∑

B

( <
B

|u − uB | dµ
)sp/(s−αp)

µ(B)

≤
(

∑

B

( <
B

|u − uB | dµ
)p

µ(B)(s−αp)/s
)s/(s−αp)

≤ C
(

∑

B

(

r−α
B

<
B

|u − uB | dµ
)p

µ(B)
)s/(s−αp)

≤ C‖u‖
sp/(s−αp)

Aα,p
τ (2τB)

,where C = C(Cµ, s, α, p), and the 
laim follows.(b) If αp = s, then u ∈ Aα,p
τ (2τB) satis�es<

B′

|u − uB′ | dµ ≤ rα
B′µ(B′)−1/p‖u‖Aα,p

τ (τB′) ≤ C(Cµ, p)‖u‖Aα,p
τ (τB′)for τB′ ⊂ 2τB. Sin
e b(B) = ‖u‖Aα,p

τ (B) satis�es (15), both 
laims followfrom [22℄.(
) If αp > s, then Aα,p
τ (2τB) ⊂ A

α−s/p,∞
τ (2τB) and the 
laim followsfrom Remark 3.2.5. Proof of Theorem 1.1. For the proof of Theorem 1.1, whi
h is basedon approximation by dis
rete 
onvolutions, we need a 
ouple of lemmas.Lemma 5.1 follows from a Whitney-type 
overing result for doubling metri
measure spa
es (see [6, Theorem III.1.3℄, [23, Lemma 2.9℄). For the proof ofLemma 5.2, we refer to [23, Lemma 2.16℄.



Sobolev-type spa
es 115.1. Lemma. Let Ω ⊂ X be open. Given ε > 0, λ ≥ 1, there is a 
over
{Bi = B(xi, ri)} of Ω with the following properties :(1) ri ≤ ε for all i,(2) λBi ⊂ Ω for all i,(3) if λBi meets λBj , then ri ≤ 2rj ,(4) ea
h ball λBi meets at most C = C(Cd, λ) balls λBj.A 
olle
tion {Bi} as above is 
alled an (ε, λ)-
over of Ω. Note that an
(ε, λ)-
over is an (ε′, λ′)-
over provided ε′ ≥ ε and λ′ ≤ λ.5.2. Lemma. Let Ω ⊂ X be open, and let B = {Bi = B(xi, ri)} be an
(∞, 2)-
over of Ω. Then there is a 
olle
tion {ϕi} of fun
tions Ω → R su
hthat(1) ea
h ϕi is C(Cd)r

−1
i -Lips
hitz ,(2) 0 ≤ ϕi ≤ 1 for all i,(3) ϕi(x) = 0 for x ∈ X \ 2Bi for all i,(4) ∑

i ϕi(x) = 1 for all x ∈ Ω.A 
olle
tion {ϕi} as above is 
alled a partition of unity with respe
t to B.Let B = {Bi} be as in the lemma above, and let {ϕi} be a partition ofunity with respe
t to B. For a lo
ally integrable fun
tion u on Ω, de�ne(17) uB(x) =
∑

i

uBiϕi(x).The following lemma des
ribes the most important properties of uB.5.3. Lemma.(1) The fun
tion uB is lo
ally Lips
hitz. Moreover , for ea
h x ∈ Bi,
LipuB(x) ≤ C(Cd)r

−1
Bi

<
5Bi

|u − u5Bi | dµ.(2) Let u ∈ Lp(Ω), p ≥ 1. If Bk is an (εk, 2)-
over of Ω and εk → 0 as
k → ∞, then uBk

→ u in Lp(Ω).Proof. (1) Let x, y ∈ Bi, and let J = {j : 2Bj ∩ 2Bi 6= ∅}. Then #J ≤
C(Cd) and Bj ⊂ 5Bi for ea
h j ∈ J . Using the properties of the fun
tions
ϕi, we infer that

|uB(x) − uB(y)| =
∣

∣

∣

∑

j∈J

(uBj − uBi)(ϕj(x) − ϕj(y))
∣

∣

∣

≤ C(Cd)r
−1
Bi

d(x, y) max
j∈J

|uBj − uBi |

≤ C(Cd)r
−1
Bi

d(x, y)
<

5Bi

|u − u5Bi | dµ,and the �rst 
laim follows.



12 T. Heikkinen et al.(2) First we need an estimate for the Lp-norm of uB on Ω. By Jensen'sinequality, |uB|
p ≤ (|u|p)B. Hen
e, by the properties of the fun
tions ϕi,\

Ω

|uB|
p dµ ≤

\
Ω

(|u|p)B dµ ≤
∑

i

\
Ω

(|u|p)Biϕi dµ(18)
≤ C(Cd)

∑

i

\
2Bi

|u|p dµ ≤ C(Cd)
\
Ω

|u|p dµ.

Let u ∈ Lp(Ω) and ε > 0. Choose a bounded 
ontinuous fun
tion v withbounded support su
h that ‖u− v‖Lp(Ω) < ε (
f. [15, Theorem 14.2℄). Then,estimating as in (18), we obtain
‖uB − vB‖Lp(Ω) = ‖(u − v)B‖Lp(Ω) ≤ C(Cd, p)‖u − v‖Lp(Ω) < C(Cd, p)ε,and so

‖uB − u‖Lp(Ω) ≤ ‖uB − vB‖Lp(Ω) + ‖vB − v‖Lp(Ω) + ‖v − u‖Lp(Ω)

< ‖vB − v‖Lp(Ω) + C(Cd, p)ε.Therefore it su�
es to show that ‖vB−v‖Lp(Ω) → 0 as εk → 0. Now |vB−v| ≤
2 sup |v|, and for all x we have

|vB(x) − v(x)| ≤
∑

2Bi∋x

<
Bi

|v(y) − v(x)| dµ(y)

≤ C(Cd)
<

B(x,5εk)

|v(y) − v(x)| dµ(y),

whi
h 
onverges to 0 as εk → 0 by the 
ontinuity of v. The 
laim followsfrom the dominated 
onvergen
e theorem.Proof of Theorem 1.1. Let u ∈ A1,p
τ (Ω). For j ∈ N, let Bj be a (j−1, 5τ)-
over (and hen
e also a (j−1, 2)-
over) of Ω. Then, by Lemma 5.3(2), uj :=

uBj → u in Lp(Ω). Let us show that
lim sup

j→∞

‖Lipuj‖Lp(Ω) ≤ C(Cd, τ)‖u‖
A1,p

τ,0(Ω)
.By Lemma 5.3(1),

Lipuj ≤ C(Cd)
∑

B∈Bj

r−1
B

<
5B

|u − u5B| dµ χB.

We leave it to the reader to show that sin
e Bj is a (j−1, 5τ)-
over and µ isdoubling, the 
over 
an be divided into k=C(Cd, τ) subfamilies Bj,1, . . . ,Bj,kso that ea
h of the families 5τBj,l 
onsists of disjoint balls. Sin
e the families
5Bj,1, . . . , 5Bj,k belong to Bτ,5j−1(Ω), we have
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‖Lipuj‖Lp(Ω) ≤ C(Cd)

k
∑

l=1

∥

∥

∥

∑

B∈Bj,l

r−1
B

<
5B

|u − u5B| dµ χB

∥

∥

∥

Lp(Ω)
(19)

≤ C(Cd, τ) sup
∥

∥

∥

∑

B∈B

r−1
B

<
B

|u − uB | dµ χB

∥

∥

∥

Lp(Ω)
,where the supremum is taken over balls B ∈ Bτ,5j−1(Ω). Sin
e lipu(x) ≤

Lipu(x), the above estimate for p = 1 implies that u ∈ BV(Ω), and that
‖Du‖(Ω) ≤ C(Cd, τ)‖u‖

A1,1
τ,0(Ω)

.If p > 1, then Lp(Ω) is re�exive. Thus the sequen
e (Lipuj) of uppergradients, whi
h by (19) is bounded in Lp(Ω), has a subsequen
e, also de-noted by (Lipuj), that 
onverges weakly to some g ∈ Lp(Ω). By [18, Lemma3.1℄, g is a p-weak upper gradient of a representative of u. The se
ond partof the theorem follows be
ause the weak limit g satis�es
‖g‖Lp(Ω) ≤ lim inf

j→∞
‖Lipuj‖Lp(Ω) ≤ C(Cd, τ)‖u‖

A1,p
τ,0(Ω)

.Proof of Corollary 1.3. Assume that X supports a (1, p)-Poin
aré in-equality, 1 ≤ p < ∞. By the validity of a (1, p)-Poin
aré inequality, X is
onne
ted.If p = 1, then the 
laim follows from Theorem 1.1 and the Poin
aréinequality (8) for BV-fun
tions.If 1 < p < ∞, then ea
h fun
tion of A1,p
τ (X) ∩ Lp(X) is in N1,p(X) byTheorem 1.1. The assumption that X supports the (1, p)-Poin
aré inequalitygives the in
lusion N1,p(X) ⊂ A1,p

τ (X) ∩ Lp(X).Let then 1 ≤ p < ∞, α > 1, and u ∈ Aα,p
τ (X). If p = 1, then the Poin
aréinequality (8) for BV-fun
tions together with Corollary 1.2(1) shows that uis 
onstant in ea
h ball of X. For p > 1, we noti
e from Theorem 4.1 that

u ∈ Lp(B) for ea
h ball B. Then Corollary 1.2(2) and the (1, p)-Poin
aréinequality imply that u|B is a 
onstant for ea
h ball B. In both 
ases above,the 
laim follows by the 
onne
tedness of X. All 
onstant fun
tions aretrivially in Aα,p
τ (X).Proof of Corollary 1.4. For the �rst 
laim, let u ∈ A

1/p,p
τ (Ω), 0 < p < 1,and B ∈ Bτ,r(Ω). If there is a 
onstant M ≥ 0 su
h that |u| ≤ M in Ω, then

∑

B∈B

(

r−1
B

<
B

|u − uB| dµ
)

µ(B) ≤ (2M)1−p
∑

B∈B

(

r
−1/p
B

<
B

|u − uB| dµ
)p

µ(B).If u is uniformly 
ontinuous, and ω is the modulus of 
ontinuity of u, then
∑

B∈B

(

r−1
B

<
B

|u − uB | dµ
)

µ(B) ≤ ω(2r)1−p
∑

B∈B

(

r
−1/p
B

<
B

|u − uB| dµ
)p

µ(B).By taking supremum over Bτ,r(Ω) and letting r tend to zero,we 
on
lude
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A1,1

τ,0
(Ω) ≤ (2M)1−p‖u‖p

A
1/p,p
τ,0

(Ω) in the former, and ‖u‖
A1,1

τ,0
(Ω) = 0in the latter 
ase. In both 
ases, the 
laim follows from Theorem 1.1.Let then u ∈ Aα,p

τ (Ω), where α > 1/p. By the remark after Theorem 1.1,we know that ‖u‖
A

1/p,p
τ,0 (Ω)

= 0. For k ∈ N, de�ne uk = min{k, max{u,−k}}.Then ea
h uk is bounded and, by the �rst part of the proof,
‖uk‖A1,1

τ,0(Ω)
≤ Ck‖uk‖A

1/p,p
τ,0 (Ω)

≤ 2Ck‖u‖A
1/p,p
τ,0 (Ω)

= 0,whi
h implies that ‖u‖
A1,1

τ,0(Ω)
≤ lim infk→∞ ‖uk‖A1,1

τ,0(Ω)
= 0.

6. Examples. In our �rst example we exhibit a spa
e X that does notsupport any (1, q)-Poin
aré inequality, but in whi
h every u ∈ N1,p(X) sat-is�es (6) with a 
ertain g ∈ Lp(X).6.1. Example. Let B1 and B2 be balls in R
n su
h that d(B1, B2) > 0.Equip X = B1 ∪ B2 with the Eu
lidean metri
 of R

n, and let µ be therestri
tion of the Lebesgue measure to X. By 
onsidering the fun
tion u =
χB1

, whi
h has g ≡ 0 as a weak upper gradient, we see that X 
annot supportany (1, q)-Poin
aré inequality.Let 1 ≤ p < ∞, and let u ∈ N1,p(X) with an upper gradient g ∈ Lp(X).We will show that the inequality(20) <
B

|u − uB| dµ ≤ CrB

( <
B

(g + |u|)p dµ
)1/p

holds for ea
h ball B ⊂ X.Fix a ball B ⊂ X. If B interse
ts only one of the balls B1, B2, then(20) holds by the equivalen
e N1,p(Ω) = W 1,p(Ω) for domains in R
n ([27,Theorem 4.5℄), and the usual (1, p)-Poin
aré inequality. Assume that theinterse
tion of B with both B1 and B2 is nonempty. Then 2rB ≥ d(B1, B2),and by the Hölder inequality, we have<

B

|u − uB| dµ ≤ 2
<
B

|u| dµ ≤ 2
( <

B

|u|p dµ
)1/p

≤
4rB

d(B1, B2)

( <
B

|u|p dµ
)1/p

,whi
h is at most a 
onstant times the right-hand side of (20).In the next example, the spa
e A1,p
τ (X) is stri
tly larger than P 1,p

τ (X).6.2. Example. Let X = {x = (x1, x2) ∈ R
2 : |x1| ≤ |x2|} be equippedwith the Eu
lidean metri
 of R

2, and let µ be the restri
tion of the Lebesguemeasure to X. The fun
tion u = χX+
, where X+ = {x ∈ X : x1 ≥ 0},
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annot satisfy the inequality<
B

|u − uB| dµ ≤ Cr

(

ν(τB)

µ(B)

)1/2

with any measure ν absolutely 
ontinuous with respe
t to µ be
ause we have4
B |u − uB| dµ = 1/2 for ea
h ball B(0, r). However, the above inequalityholds with

ν(B) = δ0(B) =

{

1 if 0 ∈ B,
0 otherwise.Our �nal example shows that, given 0 < p < 1 and 1 ≤ α < 1/p, thereare Hölder-
ontinuous non
onstant fun
tions in Mα,p([0, 1]).6.3. Example. Fix 0 < p < 1 and 1 ≤ α < 1/p. Let 0 < s < 1 and let

C ⊂ [0, 1] be the standard Cantor set with Hs(C) = 1 (see for example [24,p. 60℄). Then the Cantor fun
tion u(x) = Hs(C∩ [0, x]) is Hölder-
ontinuouswith exponent s. A 
al
ulation shows that
|u(x) − u(y)| ≤ d(x, y)s ≤ d(x, y)α(d(x, C)s−α + d(y, C)s−α)for all x, y ∈ [0, 1], and that g(x) = d(x, C)s−α is in Lp([0, 1]) provided

0 < s < (1 − αp)/(1 − p).A
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