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A complete characterization of

R-sets in the theory of differentiation of integrals

by

G. A. Karagulyan (Yerevan)

Abstract. Let Rs be the family of open rectangles in the plane R
2 with a side of

angle s to the x-axis. We say that a set S of directions is an R-set if there exists a
function f ∈ L1(R2) such that the basis Rs differentiates the integral of f if s 6∈ S, and
Dsf(x) = lim supdiam(R)→0, x∈R∈Rs

|R|−1
T

R
f = ∞ almost everywhere if s ∈ S. If the

condition Dsf(x) = ∞ holds on a set of positive measure (instead of a.e.) we say that
S is a WR-set. It is proved that S is an R-set (resp. a WR-set) if and only if it is a Gδ

(resp. a Gδσ).

1. Introduction. For any s ∈ [0, π/2) we define Rs to be the family of
all open rectangles R in R

2 that have a side at angle s to the x-axis. We say
that the basis Rs differentiates the integral of the function f ∈ L1(R2) if

(1.1) lim
diam(R)→0, x∈R∈Rs

1

|R|
\
R

f = f(x)

almost everywhere in R
2, where d(R) is the diameter of R. According to the

well-known theorem of Jessen–Marcinkiewicz–Zygmund [3], Rs differenti-
ates

T
f for any f ∈ L logL(R2). On the other hand, S. Saks [12] constructed

an f ∈ L1(R2) such that

Dsf(x) = lim sup
diam(R)→0, x∈R∈Rs

1

|R|
\
R

f = ∞ everywhere.

In view of this A. Zygmund posed the following problem (see [2]): for a given
f ∈ L1(R2), is it possible to find a direction s such that Rs differentiatesT
f? J. Marstrand in [7] gave a negative answer to this question, proving

Theorem (J. Marstrand). There exists a function f ∈ L1(R2) such that
Dsf(x) = ∞ almost everywhere for any s.
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Different generalizations of this result have been obtained by J. El He-
lou [1], A. M. Stokolos [13], B. López Melero [6] and G. G. Oniani [9].
A. M. Stokolos [13] extended Marstrand’s theorem to higher dimensions. In
[6] and [9] the same problem is considered for general translation invariant
differentiation bases.

We say that a set S ⊂ [0, π/2) is an R-set if there exists a function
f ∈L1(R2) such that the basis Rs differentiates

T
f whenever s∈ [0, π/2)\S,

and Dsf(x) = ∞ almost everywhere if s ∈ S. If Dsf(x) = ∞ on a set
of positive measure (instead of a.e.), we call S a WR-set (weak R-set).
In this terminology, Marstrand’s theorem asserts that [0, π/2) is an R-set.
A. M. Stokolos [14] proved the existence of an everywhere dense WR-set
which is not the whole [0, π/2). G. Lepsveridze [4], [5] proved that any finite
set is an R-set and any countable set is contained in someWR-set of measure
zero. G. G. Oniani [9], generalizing this result, proved that any countable
set is contained in some R-set of measure zero.

The definition of R-sets first appeared in the paper [8] by G. G. Oniani,
who posed the problem of characterization of all R-sets. In particular, he
asked if there exists an R-set of positive measure and whether any interval is
an R-set. In the same paper Oniani shows that any R-set is a Gδ in [0, π/2),
i.e.

G =
( ∞⋂

k=1

Gk

)
∩ [0, π/2)

where Gn are open sets, and conversely, if a Gδ-set is countable, then it
is an R-set. These results characterize the countable R-sets. We note that
any countable Gδ-set is nowhere dense. So in [8] Oniani also constructed an
R-set of second category. These problems are also stated in Oniani’s mono-
graph [9], and the higher dimensional case of the problem is investigated in
[10] and [11].

The following theorems give a complete characterization of general R-sets
and WR-sets.

Theorem 1. A set S ⊂ [0, π/2) is an R-set if and only if it is a Gδ.

Theorem 2. A set S ⊂ [0, π/2) is a WR-set if and only if it is a Gδσ.

The necessity of Theorem 1 is proved by Oniani in [8]. We briefly sketch
that proof. If S is an R-set, then there exists f ∈ L1 such that (1.1) holds
if s ∈ [0, π/2) \ S, and Dsf(x) = ∞ a.e. if s ∈ S. For any n ∈ N define

Un = {s ∈ [0, π/2) : |{x ∈ B(n) : Msf(x) > n}| > |B(n)| − 2−n},
where B(n) = {x ∈ R

2 : ‖x‖ ≤ n} and the maximal function Msf is defined
in Section 2. It is easy to check that Un = Gn ∩ [0, π/2), where Gn are open



A complete characterization of R-sets 19

sets and

{s ∈ [0, π/2) : Dsf(x) = ∞ a.e.} =
⋂

n

Un =
(⋂

n

Gn

)
∩ [0, π/2),

i.e. it is a Gδ-set in [0, π/2), which proves one direction of Theorem 1.

To prove the necessity of Theorem 2 it is enough to prove that for any
f ∈ L1(R2) the set

Gf = {s ∈ [0, π/2) : |{x ∈ R
2 : Dsf(x) = ∞}| > 0}

is a Gδσ. Define

Unm = {s ∈ [0, π/2) : |{x ∈ B(n) : Msf(x) > m}| > 0}, n,m = 1, 2, . . . ,

where B(n) and Msf are defined in Section 2. It is clear that the Unm are
open sets in [0, π/2) and

Gf =
⋃

n

⋂

m

Unm.

To show the last equality it suffices to check the following relations:

s ∈ Gf ⇔ |{x ∈ R
2 : Dsf(x) = ∞}| > α > 0

⇔ ∃n such that |{x ∈ Bn : Dsf(x) = ∞}| > α

⇔ ∃n such that s ∈
⋂

m

Un,m ⇔ s ∈
⋃

n

⋂

m

Un,m.

Hence the set Gf is a Gδσ.
We shall prove the sufficiency of both theorems invoking the probabilistic

independence of sets similarly to the original approach of J. Marstrand [7].
This idea is applied in Lemma 1. Of course, we use also Bohr’s construc-
tion displayed in Saks’s classical counterexample. It is important that the
function constructed in the proof is not nonnegative, in contrast to all the
results stated above. This argument gives more freedom in the construc-
tion to ensure differentiability of the integral along some directions. So our
method differs from the others, because we essentially use interference of
positive and negative values of a function in integrals, which is displayed in
Lemmas 2 and 3.

2. Notations and lemmas. The basis Rs can be defined for any s ∈
[0, 2π]. We note that Rs = Rt if s = t mod π/2. In fact

⋃
s∈[0,π/2) Rs is the

family of all rectangles in the plane.
If n ∈ N and c = (c1, c2), then for any set A ⊂ R

2 we define

dilnA = {x = (x1, x2) ∈ R
2 : nx = (nx1, nx2) ∈ A},

c+A = {x ∈ R
2 : x = c+ a, a ∈ A}.

We let Q0 = [−1/2, 1/2)× [−1/2, 1/2) and for any n ∈ N, k = (k1, k2) ∈ Z
2

define Qn
k = diln(k + Q0). For a fixed n the family {Qn

k : k ∈ Z
2} is a
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partition of the plane into squares with side lengths 1/n. Occasionally we
write simply Qk for Q1

k.
We denote by rotsA the rotation of the set A ⊂ R

2 about (0, 0) by
angle s. Let

B(ε) = {x ∈ R
2 : ‖x‖ =

√
x2

1 + x2
2 ≤ ε},

Γs(ε) = rots{x = (x1, x2) : |x2| < ε}.
The notation s⊥ stands for the direction s + π/2. For any direction s

define messA to be the linear Lebesgue measure of the projection of A on
the line parallel to s⊥.

For any measurable set A ⊂ R
2 we define

mes∗A = sup
k∈Z2

|A ∩Qk|, mes∗A = inf
k∈Z2

|A ∩Qk|.

For 0 < δ < µ ≤ ∞ we define R[δ,µ)
s to be the family of rectangles R =

R1 ×R2 ∈ Rs with δ ≤ |R1|, |R2| < µ and we let Rδ
s be the rectangles from

Rs with |R1| = |R2| = δ. Define

M [δ,µ)
s f(x) = sup

R∈R
[δ,µ)
s

1

|R|

∣∣∣∣
\
R

f(x) dx

∣∣∣∣.

If δ = 0 and µ = ∞ we write simply Msf(x). We say that A ⊂ R
2 is a δ-set

if it is a union of mutually disjoint rectangles from R[δ,∞)
s . The following

lemma contains the main idea of the proof of Marstrand’s theorem.

Lemma 1. Let 0 < δt < 1, t = 1, . . . , T, and let At ⊂ R
2 be δt-sets with

mes∗At > 12δt, t = 1, . . . , T . Then for any sequence {nt} of integers with
n1 = 1, nt+1 > 4nt/δt, we have

(2.1) mes∗

( T⋃

t=1

dilnt At

)
> 1 −

(
1 − mes∗At

32

)T

.

Proof. First we prove that if B is a δ-set with mes∗B > 12δ, m,n ∈ N

and n > (4/δ)m, then there exists a set B̃ such that

(1) B̃ ⊂ dilmB,

(2) for any k ∈ Z
2 the set B̃ ∩Qm

k is a union of squares Qn
j ,

(3) the values |B̃ ∩Qm
k | are equal for different k ∈ Z

2,

(4) mes∗ B̃ > 1
32 mes∗B.

We note that any rectangle R ∈ R[δ,∞)
s is a union of rectangles from Rδ

s.

So we have dilmB =
⋃

iRi where Ri ∈ Rδ/m
s . Set

B′ =
⋃

Ri⊂Qm
k

for some k∈Z2

Ri ⊂ dilmB.
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We have diamRi = δ
√

2/m. So if Ri 6⊂ Qm
k for some k ∈ Z

2, then Ri ∩ Q̃m
k

is empty, where Q̃m
k is the square concentric with Qm

k with side lengths

(1 − 2δ
√

2)/m. Hence we get

|B′ ∩Qm
k | > |dilmB ∩Qm

k | − |Qm
k \ Q̃m

k |(2.2)

= |dilmB ∩Qm
k | − 1

m2
(4δ

√
2 − 8δ2)

> |dilmB ∩Qm
k | − 6δ

m2
=

1

m2
|B ∩Q1

k| −
6δ

m2

≥ 1

m2
(mes∗B − 6δ) >

mes∗B

2m2
.

Using the Besicovitch theorem on covering by squares (see [2, p. 10]), we
may choose a subfamily {R′

i} of {Ri} such that the R′
i are pairwise disjoint

and

(2.3)
∣∣∣

⋃

R′
i⊂Qm

k

R′
i

∣∣∣ ≥ 1

4

∣∣∣
⋃

Ri⊂Qm
k

Ri

∣∣∣ for any k ∈ Z
2.

Therefore, setting

B′′ =
⋃
R′

i ⊂ B′ ⊂ dilmB,

by (2.2) and (2.3) we have

(2.4) |B′′ ∩Qm
k | > mes∗B

8m2
, k ∈ Z

2.

Using simple geometry, one can easily check that if R ∈ Rδ/m
s and n > 4m/δ,

then ∣∣∣
⋃

Qn
j ⊂R

Qn
j

∣∣∣ >
1

4
|R|.

So, by (2.4), for n > 4m/δ we have
∣∣∣

⋃

Qn
j ⊂B′′∩Qm

k

Qn
j

∣∣∣ >
1

4
|B′′ ∩Qm

k | > mes∗B

32m2
.

Removing some squares Qn
j from the left union we can get a set B̃ ⊂ B′′

which is again a union of squares Qn
j and in addition all the sets B̃ ∩ Qm

k
consist of the same number of squares Qn

j and

|B̃ ∩Qm
k | ≥ mes∗B

32m2
, k ∈ Z

2.

Clearly, B̃ satisfies conditions (1)–(4) above.

Taking n = nt+1, m = nt, B = Ant , t = 1, . . . , T, we get sets Ãt,
t = 1, . . . , T, such that

(1) Ãt ⊂ dilnt At,
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(2) Ãt ∩Qnt

k is a union of squares Q
nt+1

j for any k ∈ Z
2,

(3) the values |Ãt ∩Qnt

k | are equal for different k ∈ Z
2,

(4) mes∗ Ãt > mes∗At/32.

From conditions (2), (3) it follows that for fixed k ∈ Z
2 the sets Ãt ∩ Qk,

t = 1, . . . , T, are probabilistically independent. Then by (1) and (4),

mes∗

( T⋃

t=1

dilnt At

)
≥ mes∗

( T⋃

t=1

Ãt

)
=

∣∣∣
T⋃

t=1

(Ãt ∩Qk)
∣∣∣

= 1 − (1 − mes∗ Ãt)
T > 1 −

(
1 − mes∗At

32

)T

.

For any line l ⊂ R
2 we denote by arg l the positive value of the minimal

angle between l and the x-axis. For two points θ, θ′ ∈ R
2 we denote by

θθ′ the line passing through θ and θ′, and by [θ, θ′] the line segment with
endpoints θ and θ′.

Lemma 2. Let 0 < ε < 1, 0 < γ < π/12 and set

(2.5) θk = (ε/2k, sign(k) · tan γ · ε/2k), k = ±1,±2, . . . .

Then for any rectangle R ∈ Rs with 3γ < |s| < π/2 − 3γ, we have

(2.6)
∣∣∣

∑

0<|k|≤m, θk∈R

sign(k)
∣∣∣ ≤ 2, m = 1, 2, . . . .

Proof. First we note that if l is a line on the plane, then

(2.7) l ∩ [θk, θ−k] 6= ∅, l ∩ [θk+1, θ−(k+1)] 6= ∅
implies

arg l < 3γ.

(((((((((((((((
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�
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q

q

q

q

q

q

q

θk

θ−k

θk+1

θ−(k+1)

0

l

Indeed, using simple geometry, one can check that arg(θ−kθk+1) < 3γ. Hence
arg l ≤ arg(θ−kθk+1) < 3γ. Now consider a rectangle

(2.8) R ∈ Rs, 3γ < |s| < π/2 − 3γ.
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Let us show that

(2.9) if θn, θn+1, θn+2 ∈ R, then θ−(n+1) ∈ R.

Suppose θ−(n+1) 6∈ R. Then we find a line l containing a side of R and
separating the points θn, θn+1, θn+2 from θ−(n+1). Obviously,

l ∩ [θn+1, θ−(n+1)] 6= ∅,
and either l ∩ [θn, θ−n] 6= ∅, or l ∩ [θn+2, θ−(n+2)] 6= ∅. So we have (2.7) for
k = n or n+ 1 and therefore arg l < 3γ, which contradicts (2.8). Similarly

(2.10) if θ−n, θ−(n+1), θ−(n+2) ∈ R, then θn+1 ∈ R.

Now let p and q be the numbers of elements of the sets {1 ≤ k ≤ m : θk ∈ R}
and {−m ≤ k ≤ −1 : θk ∈ R} respectively. From (2.9) and (2.10) we
conclude |p− q| ≤ 2, which implies (2.6).

Lemma 3. For any 0 < ε < 1 and 0 < γ ≤ π/12 there exists a bounded
function φ on R

2 such that

suppφ ⊂ B(ε),
\

R2

φ(x) dx = 0,
\

R2

|φ(x)| dx ≤ 1,(2.11) \
rots([0,x1]×[0,x2])

φ(x) dx ≥ 1/4 if x1, x2 ≥ ε, |s| ≤ γ,(2.12)

Msφ(x) < ε if x 6∈ Γs(2ε) ∪ Γs⊥(2ε), 3γ < |s| < π/2 − 3γ.(2.13)

Proof. Let θ = θ+ ∪ θ− where

(2.14)
θ+ = {θk : k = 1, 2, . . . , N},
θ− = {θk : k = −1,−2, . . . ,−N}, N = [10ε−3] + 1,

and the θk are defined in (2.5). We have

θk ∈ B(ε/
√

2) ⊂ B(ε), θk ∈ {x : x2 = tan γ · x1}, k = ±1,±2, . . . .

Define

bk = {x ∈ R
2 : |x− θk| < r}, k = ±1, . . . ,±N.

For r > 0 small, the following conditions are satisfied:

(1) bk ⊂ B(ε) and they are mutually disjoint,
(2) if k > 0, then bk is in the upper half-plane, and if k < 0, in the lower,
(3) any line l with |arg l| ≥ 3γ intersects at most two bk.

We define

φ(x) =
1

2πNr2

N∑

k=1

(Ibk
(x) + Ib−k

(x)),
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where Ibk
is the characteristic function of bk. The conditions (2.11) are clear.

To show (2.12) we shall use (1) and (2). Fix x1, x2 > ε. If 0 ≤ s < γ, then

rots([0, x1] × [0, x1]) ∩ bk = ∅ if −N ≤ k < 0,

|rots([0, x1] × [0, x2]) ∩ bk| > |bk|/2 = πr2/2 if 0 < k ≤ N.

Therefore \
rots([0,x1]×[0,x2])

φ(x) dx =
1

2πNr2

N∑

k=1

\
rots([0,x1]×[0,x2])

Ibk
(x) dx ≥ 1

4
.

If −γ < s ≤ 0, then

bk ⊂ rots([0, x1] × [0, x2]), k > 0,

|rots([0, x1] × [0, x2]) ∩ bk| ≤ |bk|/2 = πr2/2, k < 0,

and then similarly we obtain (2.12). Now we prove that if

(2.15) R ∈ Rs, 3γ < |s| < π/2 − 3γ,

then

(2.16)
∣∣∣
\
R

φ(x) dx
∣∣∣ ≤ 10

N
< ε3.

We have

(2.17)
\
R

φ(x) dx =
1

2πNr2

∑

bk∩R 6=∅

\
R

Ibk
(x) dx

=
1

2πNr2

∑

θk∈R

\
R

Ibk
(x) dx+

1

2πNr2

∑

θk 6∈R, bk∩R 6=∅

\
R

Ibk
(x) dx.

The conditions θk 6∈ R, bk ∩R 6= ∅ mean that bk intersects a side of R. Also
if a line l contains a side of R then |arg l| > 3γ. On the other hand, by (3)
any line with |arg l| > 3γ can intersect not more than two balls bk. So the
number of terms in the second sum does not exceed 8. Therefore

(2.18)

∣∣∣∣
1

2πNr2

∑

θk 6∈R, bk∩R 6=∅

\
R

Ibk
(x) dx

∣∣∣∣ ≤
4

N
.

For the same reason the equality\
R

Ibk
(x) dx =

\
R2

Ibk
(x) dx

fails for not more than eight different k’s. Therefore
∣∣∣∣

1

2πNr2

∑

θk∈R

\
R

Ibk
(x) dx− 1

2πNr2

∑

θk∈R

\
R2

Ibk
(x) dx

∣∣∣∣ ≤
4

N
.
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Hence we obtain
∣∣∣∣

1

2πNr2

∑

θk∈R

\
R

Ibk
(x) dx

∣∣∣∣ ≤
∣∣∣∣

1

2πNr2

∑

θk∈R

\
R2

Ibk
(x) dx

∣∣∣∣ +
4

N
(2.19)

=

∣∣∣∣
1

2N

∑

θk∈R

sign(k)

∣∣∣∣ +
4

N
≤ 5

N
,

where the last inequality follows from Lemma 2. Combining (2.17)–(2.19)
we get (2.16). Fix s with 3γ < |s| ≤ π/4 and take a point x ∈ R

2 such that

x 6∈ Γs(2ε) ∪ Γs⊥(2ε), x ∈ R ∈ Rs, 3γ < |s| < π/2 − 3γ.

We need to prove

(2.20)
1

|R|
\
R

φ(t) dt ≤ ε.

Assume the lengths of the sides of R are a and b. If R contains no θk then
(2.20) is trivial. So suppose at least one θk is in R. Hence R intersects B(ε)
and (Γs(2ε) ∪ Γs⊥(2ε))c. As R ∈ Rs, we get a, b > ε. Hence (2.16) yields

1

|R|
\
R

φ(t) dt ≤ ε3

ab
≤ ε.

Lemma 4. For any 0 < ε, δ < 1/10, and any interval S = [α−γ, α+γ] ⊂
[0, π/2) with 0 < γ ≤ π/12, there exist a bounded function φ and numbers
ν, ν ′ with 0 < ν < ν ′ such that

sup
k∈Z2

\
Qk

|φ(x)| dx ≤ 1,(2.21)

mes∗{x ∈ R
2 : Msφ(x) > ε} < ε, 3γ < |s− α| < π/2 − 3γ,(2.22)

mes∗{x ∈ R
2 : M [0,ν)

s φ(x) > ε} < ε, s ∈ [0, 2π),(2.23)

M [ν′,∞)
s φ(x) < ε, x ∈ R

2, s ∈ [0, 2π),(2.24)

mes∗{M [ν,ν′]
s φ(x) > 1/δ} > δ

4
ln

1

12δ
, s ∈ S.(2.25)

Proof. Without loss of generality we may assume α = 0, i.e. S = [−γ, γ].
We take λ = min{ε/100, δ} and consider a double sequence εk = εk1,k2 =

λ2−(|k1|+|k2|), k ∈ Z
2. Using Lemma 3 we can find functions φk satisfying

the following conditions:

(2.26) suppφk ⊂ B(εk) ⊂ B(ε),

(2.27)
\

Q0

φk(x) dx = 0,
\

Q0

|φk(x)| dx ≤ 1,
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(2.28)
\

rots Rx

φk(x) dx > 1/4, Rx = [0, x1] × [0, x2],

x1, x2 ≥ δ ≥ εk, |s| < γ,

(2.29) Msφk(x) < εk if x 6∈ Γs(2εk) ∪ Γs⊥(2εk), 3γ < |s| ≤ π/2 − 3γ,

where k = (k1, k2). Define

φ(x) =
∑

k∈Z2

φk(x+ k),(2.30)

Es =
⋃

k∈Z2

(k + (Γs(2εk) ∪ Γs⊥(2εk))).(2.31)

We obviously have (2.21) and

suppφ ⊂
⋃

k∈Z2

(k +B(ε)),(2.32) \
Qk

φ(x) dx = 0, k ∈ Z
2.(2.33)

Proof of (2.22): For any square Qj , j ∈ Z
2, we have

|Qj ∩ (k + Γs(2εk))| ≤ diamQj × mess(k + Γs(2εk)) = 4εk

√
2,

|Qj ∩ (k + Γs⊥(2εk))| ≤ 4εk

√
2.

Hence we obtain

(2.34) mes∗Es ≤
∑

k

8
√

2 εk = 32
√

2λ ≤ ε.

From (2.29) it follows that

Msφk(x+k) ≤ εk, x 6∈ Es ⊃ k+(Γs(2εk)∪Γs⊥(2εk)), 3γ < |s| ≤ π/2−3γ.

Then according to (2.30) and (2.31) we get

Msφ(x) ≤
∑

k

Msφk(x+ k) ≤
∑

k

εk ≤ ε, x 6∈ Es, 3γ < |s| ≤ π/2 − 3γ,

and combining this with (2.34) we obtain (2.22).

Proof of (2.23): From (2.32) it follows that

lim
ν→0

M [0,ν)
s φ(x) = 0 if x 6∈

⋃

k∈Z2

(k +B(ε)), s ∈ [0, 2π),

therefore for small ν < δ we have (2.23), since

mes∗
( ⋃

k∈Z2

(k +B(ε))
)

= |B(ε)| = πε2 ≤ ε.
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Proof of (2.24): From (2.33) we obtain

lim
ν′→∞

\
R

φ(ν ′x) dx = 0

for any rectangle R, and the convergence is uniform in R ∈ R[1,∞)
s , s ∈

[0, 2π). So for large ν ′ > 1/4 we have

M [1,∞)
s φ(ν ′x) < ε, x ∈ R

2, s ∈ [0, 2π).

By dilation we get

M [ν′,∞)
s φ(x) = M [1,∞)

s φ(ν ′x) < ε, x ∈ R
2, s ∈ [0, 2π),

which gives (2.24).

Proof of (2.25): Consider the set

(2.35) A = {x = (x1, x2) : x1x2 ≤ δ/4, δ ≤ x1, x2 ≤ 1/4}.
We have

rotsA ⊂ B(1/2), s ∈ [−π/4, π/4),(2.36)

|A| =

1/4\
δ

δ

4t
dt− δ(1/4 − δ) >

δ

4
ln

1

12δ
.(2.37)

If x = (x1, x2) ∈ A, then

(2.38) 1/4 ≥ x1, x2 ≥ δ > εk, |Rx| ≤ δ/4

So by (2.28),\
k+rots Rx

φk(k + t) dt =
\

rots Rx

φk(t) dt > 1/4 if x ∈ A, |s| < γ,

and therefore from (2.26) we get

(2.39)
\

k+rots Rx

φ(t) dt =
\

k+rots Rx

φk(k + t) dt > 1/4 if x ∈ A, |s| < γ.

As ν < δ, ν ′ > 1/4 we have Rx ∈ R[δ,1/4]
0 ⊂ R[ν,ν′]

0 . Since |Rx| ≤ δ/4, from
(2.39) and (2.38) we conclude that

(2.40) M [ν,ν′]
s φ(x) >

1

4|Rx|
>

1

δ
, x ∈ Gs =

⋃

k

(k + rotsA), |s| < γ.

In addition, by (2.35)–(2.37), for any m ∈ Z
2 we get

|(m+Q0) ∩Gs| = |m+ rotsA| = |A| > δ

4
ln

1

12δ
,

which implies

mes∗Gs >
δ

4
ln

1

12δ
.

Combining this with (2.40) we obtain (2.25).
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3. Proofs of theorems

Proof of Theorem 1. Let G be an arbitrary Gδ-set in [0, π/2). So

G =
( ∞⋂

k=1

Gk

)
∩ [0, π/2),

where Gk ⊂ R are open sets and G1 ⊇ · · · ⊇ Gn ⊇ · · · . Each Gk is a union
Gk =

⋃
j I

k
j of mutually disjoint intervals.

We note that an arbitrary interval I = (α, β) ⊂ R can be split into
disjoint intervals Ii = [αi, βi) such that

|Ii| ≤ π/12, 3Ii ⊂ I,
∑

i

I3Ii
(x) ≤ 8.

For I = (−1, 1) such a partition is

[1 − (9/10)k, 1 − (9/10)k+1), k = 0, 1, 2, . . . ,

[(9/10)k+1 − 1, (9/10)k − 1), k = 0, 1, 2, . . . .

We do a similar splitting for any Ik
j . Let Jt, t = 1, 2, . . . , be an enumeration of

those splitting intervals J for which J∩[0, π/2) 6= ∅. We set lt = Jt∩[0, π/2).
It is easy to check the following:

(1) if x ∈ G, then x belongs to an infinite number of lt’s,
(2) if x 6∈ G then x belongs only to a finite number of 3lt’s.

We choose integers 0 = m0 < m1 < m2 < · · · satisfying

(3.1)

mt+1∏

k=mt+1

(
1 − 1

k ln k

)
<

1

2t
, t = 1, 2, . . . .

We define

(3.2) Sk = lt if mt < k ≤ mt+1.

Using Lemma 4 for S = Sk, ε = 1/2k, δ = 1/(k ln2 k), we may define
functions φk and numbers 0 < νk < ν ′k satisfying (2.21)–(2.25). We set

Us,k = {x ∈ R
2 : Msφk(x) ≤ 1/2k},(3.3)

V ′
s,k = {x ∈ R

2 : M [0,νk)
s φk(x) ≤ 1/2k},(3.4)

V ′′
s,k = {x ∈ R

2 : M
[νk,ν′

k]
s φk(x) > k ln2 k}.(3.5)

By (2.22), (2.23), (2.25) we have

mes∗ Us,k > 1 − 1/2k, s ∈ [0, π/2) \ 3Sk(3.6)

(we may replace the condition 3γ < |s − α| < π/2 − 3γ in (2.22) by s ∈
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[0, π/2) \ 3S because the latter implies the former) and

mes∗ V
′
s,k > 1 − 1/2k, s ∈ [0, π/2),(3.7)

mes∗ V
′′
s,k >

1

4k ln2 k
ln
k ln2 k

12
>

c

k ln k
, s ∈ Sk (k ≥ 3).(3.8)

From (2.24) we get

(3.9) M
[ν′

k,∞)
s φk(x) < 1/2k, x ∈ R

2, s ∈ [0, π/2).

We define integers 1 = n0 < n1 < n2 < · · · so that

(3.10)
nk

nk−1
> max

(
4

νk−1
,
ν ′k
νk−1

)
, k = 1, 2, . . . ,

and set µk = νk/nk. It is clear that

µk−1 > ν ′k/nk > µk, k = 2, 3, . . . .

Consider the functions

(3.11) ψk(x) = φk(nkx), x ∈ Q0.

According to (3.3)–(3.5) and (3.11), we obviously have

(3.12) Msψk(x) ≤ 1/2k, x ∈ dilnk
Us,k, s ∈ [0, π/2) \ 3Sk,

(3.13) M [0,µk)
s ψk(x) = M [0,νk/nk)

s ψk(x) ≤ 1/2k,

x ∈ dilnk
V ′

s,k, s ∈ [0, π/2),

(3.14) M
[µk,µk−1]
s ψk(x) > M

[νk/nk,ν′
k
/nk]

s ψk(x) > k ln2 k,

x ∈ dilnk
V ′′

s,k, s ∈ Sk,

(3.15) M
[µk−1,∞)
s ψk(x) ≤M

[ν′
k/nk,∞)

s ψk(x) ≤ 1/2k, x ∈ R
2, s ∈ [0, π/2).

The desired function is

(3.16) f(x) =

∞∑

k=1

ψk(x)

k ln3/2 k
, x ∈ Q0.

Set

(3.17) Us = lim sup
k→∞

((dilnk
Us,k) ∩Q0),

where lim supk→∞Ak means
⋃

n

⋂
k≥nAk. If s 6∈ G, then (2) implies s ∈

[0, π/2) \ 3Sk for k > k(s). Therefore, by (3.6) we have |dilnk
Us,k ∩ Q0| ≥

mes∗ Us,k > 1 − 1/2k, k > k(s), and so we get

(3.18) |Us| = 1 if s 6∈ G.

From (3.12) and (3.17) we infer that for any x ∈ Us,

Msψk(x) ≤ 1/2k, k > k(x).
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Hence, if ε > 0, then for an appropriate N > k(x) we get

(3.19) Ms

( ∞∑

k=N+1

ψk(x)

k ln3/2 k

)
≤

∞∑

k=N+1

Msψk(x)

k ln3/2 k
≤

∞∑

k=N+1

1

k2k ln3/2 k
< ε.

On the other hand, since
N∑

k=1

ψk(x)

k ln3/2 k

is a bounded function, the basis Rs differentiates its integral. So, by (3.19)
and (3.16), Rs differentiates

T
f if s ∈ [0, π/2) \G.

Now let s ∈ G. Then s ∈ lti , i = 1, 2, . . . . Hence s ∈ Sk if mti < k ≤
mti+1, i = 1, 2, . . . . We notice that each V ′′

s,k defined in (3.5) is a νk-set, and
by (3.10), nk+1 > 4nk/νk. Therefore, using (3.1), from Lemma 1 we obtain

(3.20)
∣∣∣

mti+1⋃

k=mti
+1

dilnk
V ′′

s,k ∩Q0

∣∣∣ ≥ 1 −
mti+1∏

k=mti
+1

(
1 − 1

k ln k

)
> 1 − 1

2t
.

Defining

Vs = (lim sup
k→∞

dilnk
V ′

s,k) ∩
(

lim sup
i→∞

mti+1⋃

k=mti
+1

dilnk
V ′′

s,k

)
∩Q0,

from (3.20) and (3.7) we get

(3.21) |Vs| = 1, s ∈ G.

On the other hand, if x ∈ Vs, then

x ∈ dilnki
V ′′

s,ki
, i = 1, 2, . . . ,

x ∈ dilnk
V ′

s,k, k > k(x),

where ki → ∞, and therefore, by (3.13) and (3.15) we have

M
[µki

,µki−1]
s ψj(x) ≤ 1/2ki if j 6= ki.

The case j > ki follows from (3.15), and j < ki from (3.13). From (3.14) we
get

M
[µki

,µki−1]
s ψki

(x) > ki ln
2 ki.

So if ki > k(x), then

Msf(x) ≥M
[µki

,µki−1]
s f(x)

≥ M
[µki

,µki−1]
s ψki

(x)

ki ln
3/2 ki

−
∑

j 6=ki

M
[µki

,µki−1]
s ψj(x)

j ln3/2 j
≥ c

√
ln ki −

∑

j 6=ki

1

j2j ln3/2 j
,

and so Dsf(x) = ∞ whenever x ∈ Vs and s ∈ G. Since |Vs| = 1 by (3.21),
the theorem is completely proved.
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Proof of Theorem 2. The necessity is shown in the introduction. To prove
the sufficiency we let V ⊂ [0, π/2) be an arbitrary Gδσ-set,

V =
⋃

n

Vn

where each Vn is a Gδ. According to Theorem 1 for each Vn there exists a
function fn ∈ L1(R2) such that its integral is differentiated by Rs if s 6∈ Vn,
and Dsfn(x) = ∞ a.e. if s ∈ Vn. Set gn(x) = IQn(x)fn(x), where Qn is
a family of arbitrary pairwise disjoint unit open squares, and consider the
function

g(x) =
∞∑

n=1

gn(x).

Since the supports of the functions gn are disjoint, for any x ∈ Qn and any
s we have

Dsg(x) = Dsgn(x) = Dsfn(x).

If s ∈ V then s ∈ Vn for some n. So we get Dsg(x) = Dsfn(x) = ∞
almost everywhere on the square Qn. Using disjointness of the supports of
the functions gn once again we conclude that if s 6∈ V then

lim
diam(R)→0, x∈R∈Rs

1

|R|
\
R

g = g(x) a.e.

Finally, we conclude that V is a WR-set and Theorem 2 is proved.
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