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On a decomposition for pairs of commuting contractions

by

Zbigniew Burdak (Kraków)

Abstract. A new decomposition of a pair of commuting, but not necessarily doubly
commuting contractions is proposed. In the case of power partial isometries a more detailed
decomposition is given.

1. Introduction. Let H be a complex Hilbert space. Let H0 be a sub-
space of H. Then PH0 is the orthogonal projection on H0. Denote by L(H)
the algebra of all bounded linear operators on H. An operator T is called
completely nonunitary if there is no nontrivial subspace reducing T to a
unitary operator. The following decomposition of a contraction with respect
to unitarity was given in [7, 11].

Theorem 1.1. Let T ∈ L(H) be a contraction. There is a unique de-

composition

H = Hu ⊕ H¬u,

where Hu, H¬u are maximal subspaces reducing T such that :

• T |Hu
is a unitary operator ,

• T |H¬u
is a completely nonunitary operator.

The completely nonunitary part of an operator can be characterized
more precisely for certain classes of operators. A well known example is the
decomposition of an isometry (Wold [12]), where the completely nonunitary
part turns out to be a unilateral shift (of any multiplicity). A larger class of
operators with a well characterized completely nonunitary part are power
partial isometries. Recall that an operator T ∈ L(H) is called a partial

isometry if T |(ker T )⊥ is an isometry. We call T a power partial isometry

when every power Tn for n ≥ 1 is a partial isometry. Recall also that a
truncated shift of index k is an operator T on a Hilbert space H ⊕ · · · ⊕ H
(k times) given by T (x1, . . . , xk) = (0, x1, . . . , xk−1) for k ∈ Z+. Halmos and
Wallen [5] found the decomposition of a power partial isometry.
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Theorem 1.2. Let T ∈ L(H) be a power partial isometry. There is a

unique decomposition

H = Hu ⊕ Hs ⊕ Hb ⊕
⊕

k≥1

Hk,

where Hu, Hs, Hb and Hk, k ≥ 1, are subspaces reducing the operator T such

that :

• T |Hu
is a unitary operator ,

• T |Hs
is a unilateral shift ,

• T |Hb
is a backward shift ,

• T |Hk
is a truncated shift of index k.

The decompositions given in Theorems 1.1 and 1.2 have a natural gen-
eralizations for a pair of doubly commuting operators (i.e., not only do the
operators commute, but also each of them commutes with the adjoint of the
other). The case of unitary decomposition is given in [9, Proposition 1]:

Theorem 1.3. Let T1, T2 ∈ L(H) be doubly commuting contractions.

There is a unique decomposition

H = Huu ⊕ Hu¬u ⊕ H¬uu ⊕ H¬u¬u,

where Huu, Hu¬u, H¬uu, H¬u¬u are subspaces reducing T1, T2 such that :

• T1|Huu
, T2|Huu

are unitary ,
• T1|Hu¬u

is unitary , T2|Hu¬u
is completely nonunitary ,

• T1|H¬uu
is completely nonunitary operator , T2|H¬uu

is unitary ,
• T1|H¬u¬u

, T2|H¬u¬u
are completely nonunitary.

The case of doubly commuting power partial isometries was described
in [3].

Theorem 1.4. Let T1, T2 ∈ L(H) be doubly commuting power partial

isometries. There is a unique decomposition

H =
⊕

α,β∈{u,s,b}∪Z+

Hαβ,

where the Hαβ are maximal subspaces reducing T1, T2 such that T1|Hαβ
be-

longs to class α and T2|Hαβ
to class β for α, β ∈ {u, s, b} ∪ Z+. The classes

are: class u—unitary operators, class s—unilateral shifts, class b—backward

shifts, class k—truncated shifts of index k for k ∈ Z+.

A more universal result generalizing a decomposition of a single operator
with respect to any property which is inherited by restrictions to reducing
subspaces can be found in [2].
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2. Decomposition of a pair of contractions. The decompositions
given in Theorems 1.3 and 1.4 are entire, but under a strong double com-
mutativity assumption. A natural example of a commuting, but not doubly
commuting pair of isometries is T, T 2, where T ∈ L(H) is a unilateral shift.
For more examples see [1].

For a pair of commuting contractions one can find maximal subspaces
Huu, Hu¬u, H¬uu where the operators are as in Theorem 1.3. However, the
orthogonal complement of Huu ⊕ Hu¬u ⊕ H¬uu need not reduce the con-
tractions to completely nonunitary operators. Following the definition of a
completely nonunitary semigroup of isometries in [10], we say that com-
muting contractions are a completely nonunitary pair if no proper subspace
reduces both operators to unitary operators. Any two operators restricted
to H⊖(Huu⊕Hu¬u⊕H¬uu) are a completely nonunitary pair. However, the
restrictions to Hu¬u or H¬uu are also completely nonunitary pairs. Therefore
we need a more precise definition. We call commuting contractions T1, T2

a strongly completely nonunitary pair if there is no proper subspace reduc-
ing T1, T2 and at least one of them to a unitary operator. It turns out that
H ⊖ (Huu ⊕Hu¬u ⊕H¬uu) is a maximal subspace reducing the contractions
T1, T2 to a strongly completely nonunitary pair. Precisely, the following de-
composition holds.

Theorem 2.1. Let T1, T2 ∈ L(H) be commuting contractions. There is

a unique decomposition

H = Huu ⊕ Hu¬u ⊕ H¬uu ⊕ H¬(uu),

where the subspaces Huu, Hu¬u, H¬uu, H¬(uu) are maximal with respect to the

following :

• T1|Huu
, T2|Huu

are unitary ,
• T1|Hu¬u

is unitary , T2|Hu¬u
is completely nonunitary ,

• T1|H¬uu
is completely nonunitary , T2|H¬uu

is unitary ,
• T1|H¬(uu)

, T2|H¬(uu)
is a strongly completely nonunitary pair of contrac-

tions.

Proof. Let H :=
{

H0 ⊂ ker(T1T
∗
2 −T ∗

2 T1) : PH0Ti = TiPH0 for i = 1, 2
}

.
Recall that a subspace H0 reduces an operator if and only if the orthogonal
projection PH0 commutes with the operator. Thus Hdc = Span{H0 ∈ H} is
a maximal subspace reducing the contractions T1, T2 to a doubly commuting
pair. By Theorem 1.3 applied to T1|Hdc , T2|Hdc , we obtain the decomposi-
tion Hdc = Hdc

uu ⊕ Hdc
u¬u ⊕ Hdc

¬uu ⊕ Hdc
¬u¬u. On the other hand, by a simple

calculation, or by the Fuglede–Putnam theorem, if one of commuting op-
erators is unitary, they doubly commute. Therefore, Hdc

uu, Hdc
u¬u and Hdc

¬uu

are maximal subspaces of the entire H reducing T1, T2 to operators of the
respective types. Thus Huu = Hdc

uu, Hu¬u = Hdc
u¬u, H¬uu = Hdc

¬uu. Set
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H¬(uu) = H ⊖ (Huu ⊕Hu¬u ⊕H¬uu). By the maximality of Huu, Hu¬u, H¬uu

the restrictions T1|H¬(uu)
, T2|H¬(uu)

are a strongly completely nonunitary pair
of contractions.

To show maximality of H¬(uu), assume that a subspace H0 reduces
the contractions to a strongly completely nonunitary pair. We may de-
compose H ⊖ H0 = H ′

uu ⊕ H ′
¬uu ⊕ H ′

u¬u ⊕ H ′
¬(uu), where T1|H′

uu⊕H′
u¬u

,

T2|H′
uu⊕H′

¬uu
are unitary, T1|H′

¬uu
, T2|H′

u¬u
are completely nonunitary and

T1|H′
¬(uu)

, T2|H′
¬(uu)

is a strongly completely nonunitary pair of contractions.

The subspace H0 ⊕ H ′
¬(uu) also reduces T1, T2 to a strongly completely

nonunitary pair of contractions. Thus we can assume for convenience that
H ⊖H0 = H ′

uu ⊕H ′
¬uu ⊕H ′

u¬u. The maximality of Huu, H¬uu, Hu¬u implies
H ′

uu ⊂ Huu, H ′
¬uu ⊂ H¬uu, H ′

u¬u ⊂ Hu¬u. Consequently,

(Huu ⊖ H ′
uu) ⊕ (Hu¬u ⊖ H ′

u¬u) ⊕ (H¬uu ⊖ H ′
¬uu)

⊂ H ⊖ (H ′
uu ⊕ H ′

¬uu ⊕ H ′
u¬u) = H0.

By the definition of a strongly completely nonunitary pair, we deduce that
Huu ⊖ H ′

uu = Hu¬u ⊖ H ′
u¬u = H¬uu ⊖ H ′

¬uu = {0}. The decomposition is
unique.

Recall from [8] that a pair of commuting isometries V1, V2 is called a weak

bi-shift when V1|⋂
i≥0 ker V ∗

2 V i
1
, V2|⋂

i≥0 ker V ∗
1 V i

2
and V1V2 are shifts. Theorem

2.1 is a generalization of a result for pairs of isometries given in [8], in
particular, a strongly completely nonunitary pair of commuting isometries
is a weak bi-shift.

3. Power partial isometries—preliminaries. The following prop-
erty of partial isometries can be found in [4].

Theorem 3.1. Let T ∈ L(H). The following conditions are equivalent :

(1) T is a partial isometry , (4) TT ∗ = P(ker T ∗)⊥ ,

(2) T ∗is a partial isometry , (5) T ∗TT ∗ = T ∗,

(3) T ∗T = P(ker T )⊥ , (6) TT ∗T = T.

Note also a trivial but useful property.

Lemma 3.2. Let T ∈ L(H). If a subspace H0 ⊂ H reduces T, then

Pker T (H0) = PH0(kerT ) = kerT ∩ H0,

Pker T (H⊥
0 ) = PH⊥

0
(kerT ) = ker T ∩ H⊥

0 .

Proof. Since H0 reduces T, we have PH0T = TPH0 and PH⊥
0

T = TPH⊥
0

.

Thus PH0(kerT ) ⊂ kerT and PH⊥
0

(kerT ) ⊂ kerT . For each y ∈ H0, since
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PH⊥
0

y = 0, it follows thatPH⊥
0

(Pker T y) = −PH⊥
0

(Pker T⊥y). Therefore

‖PH⊥
0

(Pker T y)‖2 = (PH⊥
0

(Pker T y),−Pker T⊥y) = 0.

Thus Pker T (H0) ⊂ H0 and Pker T (H⊥
0 ) ⊂ H⊥

0 .

The subspaces in Theorem 1.2 may be described by the following
formulas.

Theorem 3.3. Let T ∈ L(H) be a power partial isometry and

H = Hu ⊕ Hs ⊕ Hb ⊕ Ht

be the decomposition given in Theorem 1.2, where Ht =
⊕

k≥1 Hk. Then

(i) Hb ⊕ Ht =
⊕

n≥0 T ∗n(kerT ),
(ii) Hu ⊕ Hb =

⋂

n≥0 TnH,
(iii) Hs ⊕ Ht =

⊕

n≥0 Tn(kerT ∗),
(iv) Hu ⊕ Hs =

⋂

n≥0 T ∗nH.

Proof. By Theorem 3.1, the operator T ∗ is a power partial isometry.
Note that (iii) for T is equivalent to (i) for T ∗. The same relation holds
between (iv) and (ii). Therefore it is enough to show (i) and (ii).

For (i) note that since T |Hu⊕Hs
is an isometry, Hu ⊕Hs is orthogonal to

kerT . Therefore, by Lemma 3.2, for H0 = Hb and H⊥
0 = Ht, we obtain

(1) kerT = PHb
(kerT ) ⊕ PHt

(kerT ) = (kerT ∩ Hb) ⊕ (kerT ∩ Ht).

By the geometric structure of the unilateral shift T ∗|Hb
we have

(2) Hb =
⊕

n≥0

T ∗n(kerT ∩ Hb).

Since T ∗|Hk
is a truncated shift of index k,

(3) Hk =
k−1
⊕

n=0

T ∗n(kerT ∩ Hk) =
⊕

n≥0

T ∗n(kerT ∩ Hk)

for k ≥ 1. By Lemma 3.2, for H0 = Hk and H⊥
0 = Ht ⊖ Hk, we obtain

PHk
(kerT ∩ Ht) = kerT ∩ Hk for all k ≥ 1, which implies

(4) kerT ∩ Ht =
⊕

k≥1

(kerT ∩ Hk).

Now from (3) and (4) it follows that

Ht =
⊕

k≥1

Hk
(3)
=

⊕

k≥1

⊕

n≥0

T ∗n(kerT ∩ Hk)

=
⊕

n≥0

T ∗n
(

⊕

k≥1

(kerT ∩ Hk)
)

(4)
=

⊕

n≥0

T ∗n(kerT ∩ Ht)
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and finally

Hb ⊕ Ht =
⊕

n≥0

T ∗n(kerT ∩ Hb) ⊕
⊕

n≥0

T ∗n(kerT ∩ Ht)

=
⊕

n≥0

T ∗n
(

(kerT ∩ Hb) ⊕ (kerT ∩ Ht)
) (1)

=
⊕

n≥0

T ∗n(kerT ).

For (ii) recall that by [5, Lemmas 4 and 5] the subspace
⋂

n≥0 TnT ∗nH
reduces T ∗ to an isometry. Thus

⋂

n≥0 TnH =
⋂

n≥0 TnT ∗nH ⊂ Hu ⊕ Hb.
Conversely, since T ∗n|Hu⊕Hb

is an isometry, Hu⊕Hb is orthogonal to ker T ∗n

for any n ≥ 1. Thus Hu ⊕ Hb ⊂ TnH for any n ≥ 0.

The theorem implies the following formulas:

Hu =
⋂

n≥0

TnH ∩
⋂

n≥0

T ∗nH,(5)

Hs =
⋂

n≥0

T ∗nH ∩
⊕

n≥0

Tn(kerT ∗),(6)

Hb =
⋂

n≥0

TnH ∩
⊕

n≥0

T ∗n(kerT ),(7)

Ht =
⊕

n≥0

Tn(kerT ∗) ∩
⊕

n≥0

T ∗n(kerT ).(8)

4. Decomposition of pairs of power partial isometries. The class
of power partial isometries is not closed under multiplication.

Example 4.1. Let {ek, fk+1, gk+1}∞k=0 be a set of orthonormal vectors in
some complex Hilbert space H. Define a new Hilbert space H =

⊕∞
k=0(Cek⊕

Cfk+1 ⊕ Cgk+1), and operators (see Fig. 1):

T1(ek) = T2(ek) = ek+1 for k ≥ 1,

T1(e0) = (
√

2/2)e1 + (
√

2/2)f1,

T2(e0) = (
√

2/2)e1 + (
√

2/2)g1,

T1(fk) = fk+1, T2(fk) = 0 for k ≥ 1,

T1(gk) = 0, T2(gk) = gk+1 for k ≥ 1.

One can check that T1, T2 commute and are power partial isometries.
Since

kerT2 =
∞

⊕

k=1

Cfk, ker T1 =
∞

⊕

k=1

Cgk,

and T1T2(
∑∞

i=0 αiei) = (
√

2/2)α0e2 +
∑∞

i=1 αiei+2 for all {αi}i≥0 ⊂ C, we
have kerT1T2 = kerT1 ⊕ ker T2. Thus e0 ⊥ kerT1T2. Since ‖T1T2e0‖ =√

2/2 6= ‖e0‖ the product T1T2 is not a partial isometry.
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Fig. 1

Recall the result of Halmos and Wallen [5].

Lemma 4.2. If T1 and T2 are partial isometries, then a necessary and

sufficient condition for T1T2 to be a partial isometry is that T ∗
1 T1 and T2T

∗
2

commute.

It follows that the product of doubly commuting power partial isometries
is a power partial isometry. When power partial isometries only commute,
the following holds:

Theorem 4.3. Let T1, T2 ∈ L(H) be commuting power partial isome-

tries. Then

Hp = Span
{

H0 ⊂
⋂

n≥1

ker(Tn∗
2 Tn

2 Tn
1 T ∗n

1 − Tn
1 T ∗n

1 T ∗n
2 Tn

2 ) :

PH0Ti = TiPH0 for i = 1, 2
}

is the maximal subspace reducing T1, T2 to a pair such that T1T2|Hp
is a

power partial isometry.

Proof. By Lemma 4.2 the subspace Hp reduces T1, T2 to a desired pair,
being a closed linear span of such subspaces. The maximality is obvious.

Recall that a co-isometry is an operator whose adjoint operator is an
isometry. Note the following property.

Lemma 4.4. Let L ⊂ H be a subspace reducing commuting power partial

isometries T1, T2 ∈ L(H). If at least one of T1|L, T2|L is an isometry or a

co-isometry , then T1T2|L is a power partial isometry.

Proof. Assume T1|L is an isometry. Since L reduces T2, we have ‖Tn
1 Tn

2 ‖
= ‖Tn

2 x‖ for any positive integer n and any x ∈ L. On the other hand,

‖Tn
2 x‖ = ‖x‖ for any x ∈ (kerTn

1 Tn
2 )⊥ . Thus Tn

1 Tn
2 |(ker T n

1 T n
2 )⊥ is an isometry
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for n ≥ 0. By Theorem 3.1 the case of co-isometry can be deduced from the
case of isometry for the adjoint operator.

It follows that any subspace satisfying the conditions of Lemma 4.4 is a
subspace of the space Hp of Theorem 4.3.

Proposition 4.5. Let T1, T2 ∈ L(H) be commuting power partial isome-

tries. Let Hp be the subspace defined in Theorem 4.3. The maximal subspace

which reduces T1, T2 to a pair of isometries is

HIz2 =
⋂

n≥0

T ∗n
1 T ∗n

2 Hp.

The maximal subspace which reduces T1, T2 to a pair of co-isometries is

HCoIz2 =
⋂

n≥0

Tn
1 Tn

2 Hp.

Proof. We will show that HCoIz2 is T ∗
1 -invariant. The remaining parts of

the proof that HCoIz2 and HIz2 reduce T1, T2 are either similar or trivial. Let
y ∈ HCoIz2 and let n ≥ 0 be an integer. By Lemma 3.2, Pker T n

1 T n
2
(Hp) ⊂ Hp

and P(ker T n
1 T n

2 )⊥(Hp) = (I − Pker T n
1 T n

2
)(Hp) ⊂ Hp. Thus, there is a vector

x ∈ Hp ∩ (kerTn
1 Tn

2 )⊥ such that y = Tn
1 Tn

2 x. Hence ‖y‖ = ‖Tn
1 Tn

2 x‖ = ‖x‖.
Thus,

‖x‖ ≥ ‖Tn−1
1 Tn

2 x‖ ≥ ‖Tn
1 Tn

2 x‖ ≥ ‖T ∗
1 T1T

n−1
1 Tn

2 x‖

≥ ‖T1T
∗
1 T1T

n−1
1 Tn

2 x‖ 3.1(6)
= ‖Tn

1 Tn
2 x‖ = ‖y‖ = ‖x‖.

By Theorem 3.1(3), from ‖T ∗
1 T1(T

n−1
1 Tn

2 x)‖ = ‖Tn−1
1 Tn

2 x‖, we infer that
T ∗

1 T1(T
n−1
1 Tn

2 x) = Tn−1
1 Tn

2 x.

It follows that

T ∗
1 y = T ∗

1 Tn
1 Tn

2 x = Tn−1
1 Tn

2 x = Tn−1
1 Tn−1

2 (T2x) ∈ Tn−1
1 Tn−1

2 Hp.

We obtain the inclusions T ∗
1 (Tn

1 Tn
2 Hp) ⊂ Tn−1

1 Tn−1
2 Hp for n ≥ 1, while for

n = 0 we have T ∗
1 Hp ⊂ Hp. Finally,

T ∗
1

(

⋂

n≥0

Tn
1 Tn

2 Hp

)

⊂
⋂

n≥0

Tn
1 Tn

2 Hp.

Now, by Theorem 3.3(iii) and the inclusion
⋂

n≥0

T ∗n
1 T ∗n

2 Hp ⊂
⋂

n≥0

T ∗n
1 H ∩

⋂

n≥0

T ∗n
2 H

the operators T1|⋂
n≥0 T ∗n

1 T ∗n
2 Hp

, T2|⋂
n≥0 T ∗n

1 T ∗n
2 Hp

are isometries. To show the

maximality, assume that a subspace L ⊂ H reduces T1, T2 to isometries.
Then Tn

1 Tn
2 |L is an isometry for any positive integer n. It follows that L ⊂ Hp
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and L ⊥ kerTn
1 Tn

2 for all n. Thus

L ⊂
⋂

n≥0

T ∗n
1 T ∗n

2 Hp.

Similarly one can show that
⋂

n≥0 Tn
1 Tn

2 Hp is a maximal subspace reducing
T1, T2 to co-isometries.

We needed to know that the product T1T2|Hp
is a power partial isometry

to prove that
⋂

n≥0 T ∗n
1 T ∗n

2 Hp reduces the power partial isometries T1, T2.
In Example 4.1, where the product is not a power partial isometry, a similar
subspace

⋂

n≥0 T ∗n
1 T ∗n

2 H does not reduce power partial isometries.

Theorem 4.6. Let T1, T2 ∈ L(H) be commuting power partial isome-

tries, and let Hp be the maximal subspace reducing T1, T2 such that T1T2|Hp

is a power partial isometry. Then the maximal subspace reducing T1, T2 to

a pair of unitary operators is

Huu =
⋂

n≥0

Tn
1 Tn

2 Hp ∩
⋂

n≥0

T ∗n
1 T ∗n

2 Hp.

Proof. By Proposition 4.5, Huu reduces T1, T2, and the restrictions T1|Huu
,

T2|Huu
, T ∗

1 |Huu
, T ∗

2 |Huu
are isometries. Therefore T1|Huu

, T2|Huu
are unitary.

The maximality of Huu is obvious by Proposition 4.5, because a unitary
operator is an isometry and a co-isometry.

Recall [6] that a pair of commuting contractions T1, T2 ∈ L(H) is said
to belong to K0· when limn→∞ ‖Tn

1 Tn
2 x‖ = 0 for every x ∈ H. A pair T1, T2

is said to belong to K·0 if the pair T ∗
1 , T ∗

2 belongs to K0·. The intersection
of K0· and K·0 is called K00.

Proposition 4.7. Let T1, T2 ∈ L(H) be commuting power partial isome-

tries and Hp be the subspace defined in Theorem 4.3. Then

Hpt = Hp ⊖ Span
{

⋂

n≥0

T ∗n
1 T ∗n

2 Hp,
⋂

n≥0

Tn
1 Tn

2 Hp

}

is a maximal subspace reducing T1, T2 such that T1T2|Hpt
is an orthogonal

sum of truncated shifts of some indices.

Proof. From Theorem 4.3, we infer that T1T2|Hp
is a power partial isom-

etry. By Theorem 3.1(3), {T ∗n
1 T ∗n

2 Tn
1 Tn

2 |Hp
}n∈Z+ is a decreasing sequence of

orthogonal projections ontoR(T ∗n
1 T ∗n

2 |Hp
).Therefore,{T ∗n

1 T ∗n
2 Tn

1 Tn
2 |Hp

}n∈Z+

converges in the strong operator topology in L(Hp) to the orthogonal projec-
tion onto

⋂

n≥0 T ∗n
1 T ∗n

2 Hp. By Proposition 4.5, the latter space is a maximal

subspace of Hp reducing T1, T2 to isometries. By definition, Hpt is orthogonal
to

⋂

n≥0 T ∗n
1 T ∗n

2 Hp and is a subspace of Hp. Thus T ∗n
1 T ∗n

2 Tn
1 Tn

2 x converges
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to zero for any x ∈ Hpt. Since T1, T2 are contractions, we have

lim
n→∞

‖Tn
1 Tn

2 x‖ 3.1(6)
= lim

n→∞
‖Tn

1 Tn
2 T ∗n

1 T ∗n
2 Tn

1 Tn
2 x‖(9)

≤ lim
n→∞

‖T ∗n
1 T ∗n

2 Tn
1 Tn

2 x‖=‖ lim
n→∞

T ∗n
1 T ∗n

2 Tn
1 Tn

2 x‖=0.

In the same way one can show that

(10) lim
n→∞

‖T ∗n
1 T ∗n

2 x‖ = 0.

Thus the pair T1|Hpt
, T2|Hpt

belongs to the class K00. Theorem 1.2 can be
applied to the product T1T2|Hpt

. Note that since T1|Hpt
, T2|Hpt

is in K00,
there is no nontrivial subspace reducing T1T2|Hpt

to an isometry or a co-
isometry. Therefore, T1T2|Hpt

is an orthogonal sum of truncated shifts of
some indices. To show the maximality, consider a subspace L ⊂ H reducing
T1, T2 to a pair such that T1T2|L is an orthogonal sum of truncated shifts
of some indices. Then T1T2|L is a power partial isometry and L ⊂ Hp.
Since T1T2|L is a sum of truncated shifts, L is orthogonal to the subspaces
⋂

n≥0 T ∗n
1 T ∗n

2 Hp and
⋂

n≥0 Tn
1 Tn

2 Hp which reduce T1T2 to an isometry and
a co-isometry, respectively. Thus L ⊂ Hpt, which finishes the proof.

We can now state the main decomposition theorem.

Theorem 4.8. Let T1, T2 ∈ L(H) be commuting power partial isome-

tries. There is a unique decomposition

H = Huu ⊕ Hus ⊕ Hub ⊕
⊕

k≥1

Huk

⊕ Hsu ⊕ Hbu ⊕
⊕

k≥1

Hku ⊕ Hiz2 ⊕ Hcoiz2 ⊕ HK00 ⊕ H¬p,

where Huu, Hus, Hub, Hsu, Hbu, Hiz2 , Hcoiz2 , HK00 , H¬p and Huk, Hku for

k ≥ 1 are maximal subspaces reducing , respectively :

• Huu — T1, T2 to unitary operators,
• Hus — T1 to a unitary operator , T2 to a unilateral shift ,
• Hub — T1 to a unitary operator , T2 to a backward shift ,
• Huk — T1 to a unitary operator , T2 to a truncated shift of index k,
• Hsu — T1 to a unilateral shift , T2 to a unitary operator ,
• Hbu — T1 to a backward shift , T2 to a unitary operator ,
• Hku — T1 to a truncated shift of index k, T2 to a unitary operator ,
• Hiz2 — T1, T2 to a strongly completely nonunitary pair of isometries

which is a weak bi-shift ,
• Hcoiz2 — T1, T2 to a strongly completely nonunitary pair of co-iso-

metries,
• HK00 — T1, T2 to a strongly completely nonunitary pair of contractions

such that T1T2 is an orthogonal sum of truncated shifts of some indices,
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• H¬p is a maximal subspace not containing a proper subspace reducing

T1, T2 to a pair such that the product is a power partial isometry.

Proof. By Theorem 2.1, we obtain the decomposition H = Huu⊕Hu¬u⊕
H¬uu ⊕ H¬(uu). It can be shown as in Theorem 2.1 that if one of the
commuting operators is unitary, they doubly commute. Therefore, each
of the pairs T1|H¬uu

, T2|H¬uu
and T1|Hu¬u

, T2|Hu¬u
doubly commutes and

Theorem 1.4 can be applied. This way we obtain a more detailed result:
H = Huu ⊕Hus ⊕Hub ⊕

⊕

k≥1 Huk ⊕Hsu ⊕Hbu ⊕
⊕

k≥1 Hku ⊕H¬(uu). Fol-
lowing Theorem 4.3, denote by Hp a maximal subspace reducing T1, T2 such
that T1T2|Hp

is a power partial isometry. Now, set H¬p = H⊖Hp, which, by
Lemma 4.4, is a subspace of H¬(uu). By Proposition 4.5, there are maximal
subspaces reducing T1, T2 to a pair of isometries (denoted HIz2) and a pair
of co-isometries (denoted HCoIz2). Now set

Hiz2 = PH¬(uu)
HIz2 = HIz2 ⊖ (Huu ⊕ Hus ⊕ Hsu),

Hcoiz2 = PH¬(uu)
HCoIz2 = HCoIz2 ⊖ (Huu ⊕ Hub ⊕ Hbu),

HK00 = H¬(uu) ⊖ (H¬p ⊕ Hiz2 ⊕ Hcoiz2)

= H¬(uu) ∩
(

Hp ⊖ Span{HIz2 , HCoIz2}
)

.

By Propositions 4.5, 4.7 and Theorem 2.1, HK00 is a maximal subspace
reducing T1, T2 to a strongly completely nonunitary pair such that T1T2|HK00

is an orthogonal sum of truncated shifts of some indices. The subspace HK00

has been obtained as the orthogonal complement of all previous subspaces.
The decomposition is complete.

The decomposition in Theorem 4.8 can easily be made more detailed
to yield, in the case of doubly commuting power partial isometries, the
same decomposition as in Theorem 1.4. Instead of doing this, which would
unreasonably increase the number of decomposing subspaces, we compare
these two decompositions.

Remark 4.9. Let T1, T2 ∈ L(H) be power partial isometries. Consider
the decomposition defined in Theorem 4.8, using the same notation. Denote
by Hdc a maximal subspace reducing T1, T2 to a doubly commuting pair.
Such a subspace can be found as in Theorem 2.1. The pair T1|Hdc , T2|Hdc

can be decomposed using Theorem 1.4. We use the same notation for sub-
spaces as in Theorem 1.4 with an additional upper index dc (e.g. Hdc

us). Recall
that if one of the operators T1, T2 is unitary, they doubly commute. It fol-
lows that Hdc

uα = Huα, Hdc
αu = Hαu for α = u, s, b, 1, 2, . . . . The subspaces

Hdc
bs , Hdc

sb , Hdc
ks, H

dc
kb , H

dc
bl , Hdc

sl , Hdc
kl are contained in HK00 for any k, l ∈ Z+.

To the operators T1|Hiz2
, T2|Hiz2

and adjoint operators T ∗
1 |Hcoiz2

, T ∗
2 |Hcoiz2

,
we can apply the decomposition for a pair of commuting isometries
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([8, Theorem 3.10] or more detailed [1, Theorem 3.13]). We obtain Hdc
ss = Hss

and Hdc
bb = Hbb, where Hss is a subspace of Hiz2 reducing T1, T2 to doubly

commuting unilateral shifts. Similarly, Hbb is a subspace of Hcoiz2 reducing
T ∗

1 , T ∗
2 to doubly commuting unilateral shifts.

An example of an HK00-type pair of power partial isometries can be
easily obtained by taking a truncated shift of some index and any other
suitable operator. More interesting is the following example, where none
of the operators has a truncated shift part, but their product is a sum of
truncated shifts of some indices.

Example 4.10. Let H =
⊕

(i,j)∈J Cei,j be a Hilbert space where J =

{(i, j) ∈ Z
2 : (i ≥ 0 or j ≥ 0) and (i ≤ 5 or j ≤ 5)} and {e(i,j)}(i,j)∈J are

orthonormal vectors. Define operators T1, T2 ∈ L(H) as follows:

T1(e5,j) = 0 for j > 5,

T1(ei,j) = ei+1,j for the remaining (i, j) ∈ J,

T2(ei,5) = 0 for i > 5,

T2(ei,j) = ei,j+1 for the remaining (i, j) ∈ J.

One can check that the operators commute and both are orthogonal
sums of a unilateral shift, a backward shift and a bilateral shift.

e

e

e

e
5,5

0,0 1,0

T

T

TT

1

1

0,1

2

2

e
2,2

Thus, they are power partial isometries. We have T1T2(e5,j) = 0 for every
j ≥ 5, T1T2(ei,5) = 0 for every i ≥ 5, and T1T2(ei,j) = ei+1,j+1 if i ≤ 4 or
j ≤ 4. Fix k ∈ Z− ∪ {0}. Then

Ek = 〈ek,0; ek+1,1; . . . ; e5,5−k; e0,k; e1,k+1; . . . ; e5−k,5〉
is a maximal subspace reducing T1T2 to a truncated shift of index 5 − k.
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Since H =
⊕

k≤0 Ek, the product T1T2 is an orthogonal sum of truncated
shifts with all indices at least 5.
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[9] M. S lociński, Models for doubly commuting contractions, Ann. Polon. Math. 45

(1985), 23–42.
[10] I. Suciu, On the semi-groups of isometries, Studia Math. 30 (1968), 101–110.
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