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On Schwartz groups

by

L. Außenhofer (Eichstätt), M. J. Chasco (Pamplona),
X. Doḿınguez (Coruña) and V. Tarieladze (Tbilisi)

Abstract. We introduce a notion of a Schwartz group, which turns out to be coherent
with the well known concept of a Schwartz topological vector space. We establish several
basic properties of Schwartz groups and show that free topological Abelian groups, as well
as free locally convex spaces, over hemicompact k-spaces are Schwartz groups. We also
prove that every hemicompact k-space topological group, in particular the Pontryagin
dual of a metrizable topological group, is a Schwartz group.

1. Introduction. The notions of Schwartz and nuclear locally convex
spaces were introduced by A. Grothendieck in [14] and [13], respectively. An
intensive study of these spaces was made in [14, 15, 17, 24, 18, 27], and many
other papers. Some relevant problems in the theory of Schwartz spaces have
been solved only recently: see in this connection [6, 7].

Many important spaces in analysis and its applications are either nu-
clear or Schwartz. Spaces in both classes have some properties of finite-
dimensional spaces (e.g. their bounded subsets are precompact) which gen-
eral Banach spaces do not have.

A group version of the concept of a nuclear space, introduced by W. Ba-
naszczyk in [5], has been proved to be useful in harmonic analysis and topo-
logical group theory. In this paper we define a group counterpart of the
Schwartz space notion. Our definition uses only group-theoretic tools. For
the underlying additive group of a topological vector space, our notion turns
out to be the usual notion of a Schwartz space.

The paper is organized as follows:

In Section 2 we recall some necessary concepts of the theory of topological
Abelian groups.
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We start Section 3 by defining Schwartz groups. Then we obtain per-
manence properties for this class with respect to subgroups, Hausdorff quo-
tients, products and local isomorphisms, and show that bounded subsets of
locally quasi-convex Schwartz groups are precompact. We finish this section
by proving that every Schwartz group can be embedded in a product of
metrizable Schwartz groups.

We establish in Section 4 that the underlying additive group of a topo-
logical vector space E is a Schwartz group according to our definition if and
only if E is a Schwartz space. At this point a rather unexpected result is
obtained: there is a metrizable Schwartz group without nontrivial continu-
ous characters. Such a group is obtained as a quotient group of a metrizable
locally convex Schwartz space. It is known, however ([5, 8.6, 7.4]), that quo-
tient groups of metrizable nuclear locally convex spaces are nuclear groups
and hence their continuous characters separate points. The remaining part of
Section 4 is devoted to proving that all nuclear groups are Schwartz groups.

In the last section we deal with free topological Abelian groups. Here our
main result is proved: if a completely regular Hausdorff topological space X
is a hemicompact k-space, then the free topological Abelian group A(X) is a
locally quasi-convex Schwartz group. Note that for an infinite compact space
X the group A(X) is never nuclear ([3]). This result has also consequences
outside the free group framework. We prove that every hemicompact k-space
topological group is Schwartz. In particular, the Pontryagin dual group of
an arbitrary metrizable topological Abelian group is a Schwartz group.

2. First definitions and results. All groups under consideration will
be Abelian topological groups. The set of neighborhoods of the neutral ele-
ment in the group G will be denoted by N0(G).

We write T+ = {t ∈ T : Re t ≥ 0} where T := {z ∈ C : |z| = 1} is the
compact torus. For an Abelian topological group G, the group of all contin-
uous homomorphisms χ : G → T, usually called continuous characters, with
pointwise multiplication and endowed with the compact-open topology, is
a topological group, denoted by G∧ and called the character group of G.

For U ⊂ G, the set U⊲ := {χ ∈ G∧ : χ(U) ⊆ T+} is named the polar

of U . We will say that U is quasi-convex if U =
⋂

χ∈U⊲ χ−1(T+).

A topological Abelian group is called locally quasi-convex if it has a basis
of neighborhoods of zero formed by quasi-convex sets (see [5]).

For a subset U of an Abelian group G such that 0 ∈ U , and a natural
number n, we set U(n) := {x ∈ G : x ∈ U, 2x ∈ U, . . . , nx ∈ U}, and

U(∞) :=
⋂

n∈N
U(n). For T+ ⊆ T, we have (T+)(n) = {e2πit : |t| ≤ 1/4n} and

(T+)(∞) = {1}.
We list some properties of these notions:
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Lemma 2.1. Let G be an Abelian group, U a subset of G with 0 ∈ U ,
and n ∈ N.

(i) For any Abelian group H and any group homomorphism ϕ : G → H
we have ϕ(U(n)) ⊆ ϕ(U)(n).

(ii) (S ∩ U)(n) = S ∩ U(n) for any subgroup S of G.

(iii) If G is a topological Abelian group and U is quasi-convex , then

U(n) =
⋂

χ∈U⊲

χ−1((T+)(n))

and in particular U(n) + n. . . + U(n) ⊆ U .

If U is a quasi-convex subset of G, then Lemma 2.1(iii) implies that
the family {U(n) : n ∈ N} is a basis of neighborhoods of zero for a locally
quasi-convex group topology TU on G. We write GU for the Hausdorff group
G/U(∞) associated with (G, TU ) and ϕU for the canonical map from G to GU .
The quotient topology induced by ϕU and TU on GU will also be denoted TU .

If U and V are quasi-convex subsets of a topological group G such that
V ⊆ U , the linking homomorphism ϕV U : (GV , TV ) → (GU , TU ), ϕV (x) 7→
ϕU (x) ∈ GU , is well defined and continuous.

Lemma 2.2. Let (Un) be a sequence of quasi-convex neighborhoods of zero

in G which satisfy Un+1 + Un+1 ⊆ Un. Then H :=
⋂

n∈N
Un is a subgroup

of G and the sets (π(Un))n∈N, where π : G → G/H denotes the canonical

projection, form a zero neighborhood basis of a locally quasi-convex group

topology in G/H.

Proof. Since quasi-convex sets are symmetric, it is straightforward to
show that H is a subgroup of G. Every character χ ∈ U⊲

n satisfies χ(H) = {1}
and hence, by the definition of quasi-convexity, H + Un = Un. This implies
that the sets π(Un) are quasi-convex and hence the assertion follows.

3. Schwartz groups

Definition 3.1. Let G be a Hausdorff topological Abelian group. We
say that G is a Schwartz group if for every neighborhood U of zero in G
there exists another neighborhood V of zero in G and a sequence (Fn) of
finite subsets of G such that

V ⊆ Fn + U(n) for every n ∈ N.

Example 3.2. From the definition we see directly that locally precom-
pact groups are Schwartz groups.

Remark 3.3. As we shall see later on (cf. Theorem 4.5), local quasi-
convexity and the notion of a Schwartz group defined in 3.1 are independent.
The concept of a Schwartz group, however, is most fruitful when restricted
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to the class of locally quasi-convex groups. It is easy to prove that a lo-
cally quasi-convex group G is a Schwartz group if and only if for every
quasi-convex neighborhood U of zero in G there exists another quasi-convex
neighborhood V ⊆ U of zero such that the linking homomorphism ϕV U is
precompact (i.e. ϕV U (W ) is precompact in GU for some neighborhood W
of zero in GV ).

Proposition 3.4. Let G and H be topological Abelian groups. Suppose

that H is a Schwartz group and there exist U0 ∈ N0(G) and a map ϕ : U0 →
H such that

(a) ϕ is continuous.

(b) ϕ(x + y) = ϕ(x) + ϕ(y) for all x, y ∈ U0 such that x + y ∈ U0.

(c) For every U ∈ N0(G) with U ⊂ U0 there exists V ∈ N0(H) with

ϕ−1(V(n)) ⊂ U(n) for every n ∈ N.

Then G is a Schwartz group.

Proof. Fix a symmetric U ∈ N0(G) with U +U ⊂ U0. Let V ∈ N0(H) be
such that ϕ−1(V(n)) ⊂ U(n) for every n ∈ N. Finally, let V ′ ∈ N0(H) be such
that V ′ + V ′ ⊂ V. Since H is Schwartz, there exist W ∈ N0(H) (which we
may choose symmetric and contained in V ) and a sequence of finite subsets

F̃n ⊂ H with W ⊂ F̃n+V ′
(n) for every n ∈ N. Put F̃n = {f̃1,n, f̃2,n, . . . , f̃in,n}.

For each n ∈ N, define the (possibly empty) set of indices

In = {i ∈ {1, . . . , in} : ϕ−1((f̃i,n + V ′
(n)) ∩ W ) 6= ∅}.

For each i ∈ In choose fi,n ∈ ϕ−1((f̃i,n + V ′
(n))∩W ), and define Fn = {fi,n :

i ∈ In}.
Let us show that ϕ−1(W ) ⊂ Fn + U(n) for every n ∈ N; since ϕ is

continuous, this will imply that G is a Schwartz group. Fix any x ∈ ϕ−1(W ).

For every n ∈ N, x ∈ ϕ−1(F̃n + V ′
(n)), hence there exists jn ∈ {1, . . . , in}

with x ∈ ϕ−1((f̃jn,n + V ′
(n)) ∩ W ). Clearly jn ∈ In, so we have chosen an

fjn,n ∈ ϕ−1((f̃jn,n + V ′
(n)) ∩ W ) above.

Now both x and fjn,n are elements of ϕ−1(W ) ⊂ ϕ−1(V ) ⊂ U and since
U + U ⊂ U0 it follows from (b) that

ϕ(x − fjn,n) = ϕ(x) − ϕ(fjn,n) = ϕ(x) − f̃jn,n + f̃jn,n − ϕ(fjn,n),

which belongs to V ′
(n) +V ′

(n) ⊂ V(n). We deduce x−fjn,n ∈ ϕ−1(V(n)) ⊂ U(n)

for every n ∈ N, and the proof is complete.

Remark 3.5. From the proof of Proposition 3.4 it follows that if G is
a Schwartz group, then the finite sets Fn and the neighborhood V of zero
appearing in the definition can be chosen in such a way that Fn ⊆ V for
every n ∈ N.
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Proposition 3.6.

(a) The class of Schwartz groups is a Hausdorff variety of topological

Abelian groups, i.e. the following properties hold :

(a.1) Every subgroup of a Schwartz group is a Schwartz group.

(a.2) TheCartesian product of an arbitrary family of Schwartz groups,
equipped with the Tikhonov topology , is a Schwartz group.

(a.3) Every Hausdorff quotient of a Schwartz group is a Schwartz

group.

(b) Let G and H be locally isomorphic topological Abelian groups. Then

G is a Schwartz group if and only if H is a Schwartz group.

Proof. The proof of (a.2) is straightforward, (a.3) is an easy consequence
of Lemma 2.1(i), and (a.1) and (b) are corollaries of Proposition 3.4.

In our next result we will use the following notion of boundedness ([16]):

Definition 3.7. Let G be a topological Abelian group and B a subset
of G. Then B is said to be bounded if for every zero neighborhood U there
exists a finite set F ⊆ G and some n ∈ N such that B ⊆ F + U+ n. . . +U .

Clearly every precompact set is bounded according to this definition.
Note also that in a locally convex vector space, the bounded sets are exactly
those which are absorbed by any neighborhood of zero.

Proposition 3.8. Let G be a locally quasi-convex Schwartz group and

let B be a bounded subset of G. Then B is precompact.

Proof. For a quasi-convex U ∈ N0(G) there exist V ∈ N0(G) and a
sequence (Fn) of finite subsets of G such that V ⊆ Fn + U(n) for every
n ∈ N. On the other hand, by the boundedness of B there exist a finite set
F0 ⊆ G and m ∈ N such that B ⊆ F0 + V + m. . . + V . Hence, by Lemma
2.1(iii),

B ⊆ F0 + V + m. . . + V

⊆ F0 + (Fm + U(m)) + m. . . + (Fm + U(m))

⊆ F0 + (Fm + m. . . + Fm) + (U(m) + m. . . + U(m))

⊆ F0 + (Fm + m. . . + Fm) + U.

The same property was obtained by J. Galindo ([12]) for bounded subsets
of nuclear groups. In the next section we will see that every nuclear group
is a Schwartz group.

Theorem 3.9. Every (locally quasi-convex ) Schwartz group can be em-

bedded into a product of metrizable (locally quasi-convex ) Schwartz groups.

Proof. Let U0 be a neighborhood basis of G. Fix an arbitrary U ∈ U0.
There exists a neighborhood U1 and a sequence (F1,n)n∈N of finite subsets
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of G such that U1 ⊆ F1,n + U(n) for every n ∈ N. We may assume that
U1 is symmetric and satisfies U1 + U1 ⊆ U . Set U0 := U and suppose
that symmetric neighborhoods U1, . . . , Uk and finite sets Fj,n (n ∈ N, j ∈
{1, . . . , k}) have been constructed with the following properties: Uj + Uj ⊆
Uj−1 and Uj ⊆ Fj,n + (Uj−1)(n) for every j ∈ {1, . . . , k} and n ∈ N. By the
definition of a Schwartz group, the construction can be continued.

The sequence (U0, U1, U2, . . .) forms a neighborhood basis for a (not nec-
essarily Hausdorff) group topology on G. The intersection HU :=

⋂
n∈N

Un

is a subgroup of G. Let pU be the canonical projection of G onto G/HU .
The sets (pU (Un))n∈N generate a metrizable group topology on G/HU . By
Lemma 2.1(i) we have

pU (Uj) ⊆ pU (Fj,n) + pU (Uj−1)(n)

for all j, n ∈ N, and thus G/HU is a metrizable (Hausdorff) Schwartz group.
With every U ∈ U0, we associate in the same way a metrizable Schwartz

group topology on the quotient G/HU , and consider the mapping

Φ : G →
∏

U∈U0

G/HU , x 7→ (pU (x))U∈U0
.

It is clear that Φ is a continuous monomorphism. For U ∈ U0, we obtain,
since U1 + HU ⊂ U,

Φ(U) ⊃ im Φ ∩
(
pU (U1) ×

∏

U ′∈U0\{U}

G/HU ′

)
,

which shows that Φ is an embedding.
Now suppose that G is locally quasi-convex. The neighborhood basis

U0, as well as the sequence (U0, U1, U2, . . .) for each U ∈ U0, can be chosen
to contain only quasi-convex sets. According to Lemma 2.2, the quotient
groups G/HU are locally quasi-convex as well.

4. Schwartz groups, Schwartz locally convex vector spaces and

nuclear groups. In this section we will prove that both Schwartz spaces
and nuclear groups are Schwartz groups.

Definition 4.1. A (real or complex) topological vector space E is a
Schwartz space if for every neighborhood U of zero in E, there exists another
neighborhood V such that for every α > 0 the set V can be covered by
finitely many translates of αU.

As in [26] or [21], local convexity is not required in our definition of
Schwartz spaces (in [26, Example 6.4.4] an example of a non-locally convex
Schwartz F-space is given). Since the neighborhoods of zero in a topological
vector space may be assumed to be radial, we can replace α > 0 by 1/n
(where n ∈ N) in Definition 4.1. This easily leads to the following result:
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Proposition 4.2. Let E be a topological vector space. The following are

equivalent :

(a) E is a Schwartz space.

(b) The additive topological Abelian group underlying E is a Schwartz

group.

A locally convex vector group is a real vector space endowed with a Haus-
dorff group topology which has a basis of neighborhoods of zero consisting
of absolutely convex sets. This notion was defined by Răıkov in [25].

Every absolutely convex and closed subset U of a locally convex vector
group E is quasi-convex (see the proof of Lemma (2.4) in [5]), and E(U) =
sp(U)/U(∞), endowed with the topology induced by TU , is a normed space.

Nuclear groups as well as nuclear vector groups were introduced by Ba-
naszczyk in [5]. The class of nuclear groups contains all locally compact
Abelian groups and additive groups underlying nuclear vector groups. More-
over, it is closed with respect to taking subgroups and forming Hausdorff
quotient groups, arbitrary products and countable direct sums. An intensive
study of nuclear groups has been carried out since their introduction, which
has given rise to several important results (see [2] for a survey).

In [10, §8], it is proved that a nuclear vector group is a locally convex
vector group E such that for every absolutely convex closed neighborhood
U of zero in E there exists another absolutely closed convex neighborhood
of zero V ⊆ U such that ϕ̃V U : Ẽ(V ) → Ẽ(U) is a nuclear operator where X̃
stands for the completion of the normed space X, and ϕ̃V U for the continu-
ous extension of the canonical map ϕV U to the completions of both spaces
E(V ) and E(U).

Theorem 4.3. Every nuclear group G is a locally quasi-convex Schwartz

group.

Proof. According to [5, 8.5], every nuclear group is locally quasi-convex.
An important structural result ([5, 9.6]) implies that G is topologically iso-
morphic to H/K where H is a subgroup of a nuclear vector group F and K
is a closed subgroup of H.

By Proposition 3.6, it is sufficient to show that F is a Schwartz group.
As explained above, for every absolutely convex closed neighborhood U

of zero in F there exists an absolutely convex closed neighborhood V such
that V ⊆ U and ϕ̃V U is a nuclear operator. It is well known that every
nuclear operator is precompact (see e.g. (3.1.5) in [24]). An easy argument
shows that F is a locally quasi-convex Schwartz group.

Example 4.4. Let

E =
{

x ∈ R
N : ‖x‖k :=

∑

n

|xn|(n + 1)−1/k < ∞, ∀k ∈ N

}
.
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Then:

(i) The vector space E with the topology τ determined by the sequence
of norms ‖ · ‖k, k = 1, 2, . . . , is a Fréchet space.

(ii) (E, τ) is a Schwartz space.
(iii) (E, τ) is not nuclear.

Proof. Let αn := ln(1 + n), n = 1, 2, . . . , and α := (αn)n∈N. Then with
the notation of [18, pp. 27 and 211] we have E = Λ1(α). Consequently, E is
a power series space of finite type.

Now, (i) follows from [18, pp. 50 and 69 (Proposition 3.6.2)]; according
to [18, p. 212], (ii) follows from [18, p. 210 (Proposition 10.6.8)]; and (iii)
follows from [18, p. 497 (Proposition 21.6.3)].

Another class of nonnuclear Schwartz spaces will be presented in Re-
mark 5.7.

Theorem 4.5. A Schwartz group is not necessarily locally quasi-convex.

Even more: There exists a metrizable Schwartz group with trivial character

group.

Proof. Let F be a Fréchet Schwartz space which is not nuclear (Example
4.4). According to a result of M. and W. Banaszczyk ([4]), there is a (dis-
crete) closed subgroup H of F such that the quotient group sp(H)/H, which
is a Schwartz group by Proposition 3.6(a.3), has no nontrivial continuous
characters. This group is a non-locally quasi-convex metrizable Schwartz
group.

5. Some classes of Schwartz groups. From now on, X will denote
a completely regular Hausdorff space, and Cco(X) the space of real-valued
continuous functions on X, endowed with the compact-open topology.

Recall that X is said to be hemicompact if it has a countable cobase of
compact sets, i.e. there exists a sequence (Kn) of compact subsets of X such
that any compact subset of X is contained in one of them. On the other
hand, X is said to be a k-space if a subset of X is open provided that its
intersection with every compact subset is open with respect to the compact
subset. In the literature hemicompact k-spaces are often called kω-spaces
(see [11] for a survey of results concerning this class).

Definition 5.1. X is said to satisfy the Ascoli theorem if every compact
subset of Cco(X) is equicontinuous.

The famous Arzelà–Ascoli theorem states that k-spaces have this prop-
erty. However, in [22, p. 403] it is proved that arbitrary products of Čech
complete spaces satisfy the Ascoli theorem as well. Consequently, the class
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of spaces satisfying the Ascoli theorem is strictly wider than the class of
k-spaces. (E.g. Z

I is not a k-space when I is an uncountable index set; see
[19, Problem 7J(b)].)

In order to obtain new examples of Schwartz groups, we will use some
results concerning free locally convex spaces and free topological Abelian
groups in the sense of Markov ([20]). Recall that for a completely regular
Hausdorff space X, the free Abelian topological group over X is the free
Abelian group A(X) endowed with the unique Hausdorff group topology for
which the mapping η : X → A(X), which maps the topological space X onto
a basis of A(X), becomes a topological embedding and such that for every
continuous mapping f : X → G, where G is an Abelian Hausdorff group,

the unique group homomorphism f̃ : A(X) → G which satisfies f = f̃ ◦ η is
continuous.

Replacing topological Abelian groups by locally convex spaces and group
homomorphisms by linear maps we obtain the definition of the free locally
convex space L(X) over X.

For an overview of this theory we refer the reader to the surveys [23],
[28], and [9].

Our next theorem is based on the fact that the dual of a metrizable locally
convex space endowed with the compact open topology is a locally convex
Schwartz space (in [18, 16.4.2] it is proved that the dual of a metrizable space
with the topology of precompact convergence is a Schwartz space, and from
[18, 9.4.2] it follows that on the dual of a metrizable space the topology of
precompact convergence coincides with the compact-open topology).

Theorem 5.2. If a hemicompact space X satisfies the Ascoli theorem

then L(X) is a Schwartz locally convex vector space.

Proof. The mapping

I : L(X) → Cco(X)∗co,
∑

λxx 7→
[
f 7→

∑
λxf(x)

]
,

is well defined, since L(X) is algebraically free over X and the linear func-
tionals f 7→ f(x) are continuous with respect to the compact-open topology
on Cco(X). The injectivity of I follows from the fact that X is completely
regular.

According to [25], the topology on L(X) is that of uniform convergence
on all equicontinuous and pointwise bounded subsets of X. But, since X
satisfies the Ascoli theorem, these are exactly the relatively compact subsets
of Cco(X). Hence I is an embedding.

Since X is hemicompact, Cco(X) is a metrizable locally convex space.
Hence Cco(X)∗co is a Schwartz space. Since L(X) is a topological subspace
of Cco(X)∗co, it is a Schwartz space itself.
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Theorem 5.2 is a rather natural statement in locally convex space theory
which does not seem to have been observed until now. Its analogue for groups
is also true:

Corollary 5.3. If a hemicompact space X satisfies the Ascoli theorem

then A(X) is a locally quasi-convex Schwartz group.

Proof. For any Hausdorff completely regular space X, A(X) is a topo-
logical subgroup of L(X) ([28, Th. 3]). By Theorem 5.2, L(X) is a Schwartz
locally convex space, hence a Schwartz locally quasi-convex group, as also
is its subgroup A(X).

Theorem 5.4. Every Hausdorff group G which is a hemicompact space

and satisfies the Ascoli theorem is a Schwartz group.

Proof. According to Corollary 5.3, A(G) is a Schwartz group. Moreover,
the canonical mapping A(G) → G is a quotient mapping ([20] or (12.7) in
[1]), thus G is a Schwartz group.

Corollary 5.5. Every Hausdorff group which is a hemicompact k-space

is a Schwartz group.

Corollary 5.6. Let G be a metrizable group. Its character group G
∧

is a Schwartz group.

Proof. This follows from Corollary 5.5 and the fact that the character
group of a metrizable group is a hemicompact k-space (cf. (4.7) in [1] or
Theorem 1 in [8]).

Remark 5.7.

(a) In [3] it is shown that for a compact space X the free Abelian topo-
logical group A(X) is a nuclear group if and only if X is finite. So
for an infinite compact set X, the groups A(X) and L(X) are locally
quasi-convex Schwartz groups but not nuclear.

(b) Let X be a completely regular space. The group C(X, T) of all
continuous functions of X into T, endowed with the compact-open
topology, is a Schwartz group if and only if all compact subsets of
X are finite. [Taking into account the permanence properties given
in Section 3 above, we can replace “nuclear” by “Schwartz” in the
statement and the proof of the analogous result involving nuclear
groups ([1, 20.31]).]
The analogous result for the space of real-valued functions C(X, R)
is contained in [18, Th. 10.8.1].
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