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Distributionally regulated fun
tionsbyJasson Vindas and Ri
ardo Estrada (Baton Rouge, LA)
Abstra
t. We study the 
lass of distributions in one variable that have distributionallateral limits at every point, but whi
h have no Dira
 delta fun
tions or derivatives at anypoint, the �distributionally regulated fun
tions.� We also 
onsider the related 
lass whereDira
 delta fun
tions are allowed. We prove several results on the boundary behavior offun
tions of two variables F (x, y), x ∈ R, y > 0, with F (x, 0+) = f(x) distributionally,both near points where the distributional point value exists and points where the lateraldistributional limits exist. We give very general formulas for the jumps, in terms of F andrelated fun
tions. We prove that the set of singular points of a distributionally regulatedfun
tion is always 
ountable at the most. We also 
hara
terize the Fourier transforms oftempered distributionally regulated fun
tions in two ways.1. Introdu
tion. The theory of distributions is one of the most pow-erful tools available in applied mathemati
s. Ever sin
e their introdu
tion,distributions have shown their usefulness; a
tually, this was true even be-fore their formal introdu
tion [23℄. Many textbooks 
over the theory andappli
ations of distributions [5, 14, 19, 20, 30, 38℄.There are several approa
hes to the theory of distributions, but in allof them one qui
kly learns that distributions do not have point values, asfun
tions do, despite the fa
t that they are sometimes 
alled generalized�fun
tions.� Interestingly, many 
ommon obje
ts in analysis do not havepoint values, even though they are referred as �fun
tions�: If f ∈ L1(R),what is f(0)? Re
all that the elements of L1(R) are equivalen
e 
lasses offun
tions equal almost everywhere, and thus one may 
hange the values onany set of measure zero, like {0} for instan
e, without 
hanging the elementof L1(R).In a seminal work, �ojasiewi
z [21℄ was the �rst to give a satisfa
toryde�nition of the value of a distribution at a point, whi
h when applied atpoints where the distribution is lo
ally equal to a 
ontinuous fun
tion givesthe usual value, but 
an also be applied in more 
ompli
ated situations.2000 Mathemati
s Subje
t Classi�
ation: Primary 46F10.Key words and phrases: distributions, point values, regulated fun
tions.[211℄ 
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212 J. Vindas and R. EstradaThe notion of point value in the sense of �ojasiewi
z has been shown to bevery useful in several areas, su
h as abelian and tauberian results for integraltransforms [24, 27, 31, 36℄, spe
tral expansions [14, 32℄, the boundary behav-ior of solutions of partial di�erential equations [11, 33℄, or the summabilityof 
ardinal series [34, 35℄. It is remarkable that there is a 
hara
terizationof the Fourier series of distributions having a value at a point [8℄, whileno 
orresponding results are known for other notions of value. The notionof distributional point value of �ojasiewi
z has been generalized in severaldire
tions, like the idea of distributionally bounded distributions [5℄, andespe
ially the theory of distributional asymptoti
 expansions developed byseveral authors [14, 28, 31℄.In [21℄, �ojasiewi
z also introdu
ed and studied the 
lass of distributionsthat have a value at every point. As he showed, these distributions deserveto be 
alled �fun
tions� sin
e the fun
tion given by its values is a well-de�nedmeasurable fun
tion, and the 
orresponden
e between the distributions withvalues at every point and the fun
tion of its values is a bije
tion. Althoughthere is a notion, that of regular distribution, that appears to apply exa
tlyto those distributions that 
orrespond to fun
tions, it is fair to say that thedistributions introdu
ed by �ojasiewi
z, even if not �regular,� are obje
tsthat one would 
all �fun
tions.�The aim of this arti
le is to introdu
e and study a generalization of the�ojasiewi
z fun
tions, namely the distributionally regulated fun
tions, whi
hare those distributions that have a distributional lateral limit at every pointwithout having Dira
 delta fun
tions or derivatives at any point. We also
onsider the related 
lass of distributionally regulated fun
tions with deltafun
tions, whi
h are those distributions that have a distributional laterallimit at every point; we show that in this 
ase the set of points where there aredelta fun
tions is 
ountable at the most. If f is a distributionally regulatedfun
tion (without delta fun
tions), with lateral limits f(x+) and f(x−) atea
h x ∈ R, then we introdu
e the fun
tion(1.1) f̃(x) =
f(x+) + f(x−)

2
.The fun
tion f̃ is a well-de�ned measurable fun
tion, and the 
orrespon-den
e f ↔ f̃ is one-to-one and onto. Therefore, it is justi�ed to identifythe distribution f and the fun
tion f̃ , and 
all f a �fun
tion.� When f is adistributionally regulated fun
tion with delta fun
tions, then f̃ 
aptures theordinary fun
tion part of f, and f − f̃ is a singular distribution that 
onsistsof sums of Dira
 delta fun
tions and derivatives on some at most 
ountableset. The distributionally regulated fun
tions also generalize the 
lassi
al reg-ulated fun
tions, whi
h are those fun
tions that have ordinary lateral limitsat every point [6℄. The 
lassi
al regulated fun
tions play a role in many areas



Distributionally regulated fun
tions 213of mathemati
s su
h as 
onformal mapping theory [29℄, in the des
ription of
urves by their radius of 
urvature [12℄ and the appli
ation of these ideas tothe study of 
rystals [37℄, and in theories of integration more general than theLebesgue integral, a subje
t that has re
eived in
reased attention in re
entyears [1, 17℄. A
tually, �ojasiewi
z proved that there is a des
riptive integralthat 
an be de�ned for distributions that have a value at every point, and itis easy to see that this integral is also de�ned for distributionally regulatedfun
tions. For this integral one has(1.2) 〈f(x), φ(x)〉 =

∞\
−∞

f̃(x)φ(x) dxfor any test fun
tion φ ∈ D(R).The arti
le is organized as follows. In Se
tion 2 we give some preliminarynotions on distributions, point values and the Cesàro behavior of distri-butions. Distributionally regulated fun
tions are de�ned in Se
tion 3. Thenext se
tion introdu
es the φ-transform, a fun
tion of two variables F (x, y),
x ∈ R, y > 0, that satis�es F (x, 0+) = f(x) distributionally and that allowsus to study the lo
al behavior of a distribution f. In Se
tions 4 and 5 we
onsider the pointwise boundary behavior of F (x, y) as (x, y) approa
hes thepoint (x0, 0) in the 
ases when the distributional value f(x0) exists and whenjust the distributional limits f(x±0 ) exist. We give several formulas for thedistributional jumps of f in terms of the φ-transform and related fun
tions;these formulas are very general versions of the jump formulas initially givenby Fejér [15℄, [39, 9.11℄ and by Luká
s [22℄, [39, Thm. 8.13℄ for the ordinaryjumps of a Fourier series, and re
ently generalized by Móri
z [25℄, [11℄. Ourformulas apply to distributions with arbitrary support, whi
h do not need tobe periodi
, and are given not only in terms of 
onjugate harmoni
 fun
tionsbut in terms of more general solutions of partial di�erential equations, asfollows from the results of Se
tion 7.In Se
tion 6 we show that the set of singular points of a distributionallyregulated fun
tion, namely where the lateral limits do not 
oin
ide, or wherethere are delta fun
tions, is 
ountable at the most; this result is easily provedfor 
lassi
al regulated fun
tions, but a new proof is required in this 
ase. InSe
tion 7 we show that the φ-transform is often a solution of a partial dif-ferential equation, su
h as the Lapla
e equation or the heat equation, andtherefore our results be
ome results on the boundary behavior of solutionsof partial di�erential equations. Finally, in Se
tion 8 we provide two 
hara
-terizations of the Fourier transform of tempered distributionally regulatedfun
tions. One is in terms of the existen
e of the limits of integrals of thetype lims→∞

Tas
−s f̂(u)e−iux du, in the Cesàro sense, for a > 0, the other interms of the de
omposition of the distribution f̂(u) in terms of boundaryvalues of analyti
 fun
tions from the upper and lower half planes.



214 J. Vindas and R. Estrada2. Preliminaries. In this se
tion we des
ribe the spa
es of test fun
tionsand distributions needed in this paper. We also give a summary of the notionof Cesàro behavior of a distribution at in�nity [9℄ and at a point [14, 21℄. Allof our fun
tions and distributions are over one-dimensional spa
es.The spa
es of test fun
tions D, E , and S and the 
orresponding spa
esof distributions D′, E ′, and S ′ are well-known [19, 20, 30℄. In general [38℄ we
all a topologi
al ve
tor spa
e A a spa
e of test fun
tions if D ⊂ A ⊂ E , thein
lusions being 
ontinuous, and if the derivative d/dx is a 
ontinuous oper-ator of A. Another useful spa
e, parti
ularly in the study of distributionalasymptoti
 expansions [14, 28, 31℄, is K′, the dual of K. A smooth fun
tion
φ belongs to K if there is a 
onstant γ su
h that φ(k)(x) = O(|x|γ−k) as
|x| → ∞ for k = 0, 1, 2, . . . , that is, if φ(x) = O(|x|γ) strongly. The spa
e
K is formed by the so-
alled GLS symbols [18℄; the topology of K is givenby the 
anoni
al seminorms. The spa
e K′ plays a fundamental role in thetheory of summability of distributional evaluations [9℄. The elements of K′are exa
tly the generalized fun
tions that de
ay very rapidly at in�nity inthe distributional sense or, equivalently, in the Cesàro sense.The Cesàro behavior of a distribution at in�nity is studied by usingthe order symbols O(xα) and o(xα) in the Cesàro sense. If f ∈ D′(R) and
α ∈ R\{−1,−2,−3, . . .}, we say that f(x) = O(xα) as x→ ∞ in the Cesàrosense and write(2.1) f(x) = O(xα) (C) as x→ ∞if there exists N ∈ N su
h that every primitive F of order N of f, i.e.,
F (N) = f, is an ordinary fun
tion for large arguments and satis�es theordinary order relation(2.2) F (x) = p(x) +O(xα+N) as x→ ∞for a suitable polynomial p of degree N − 1 at the most. When the value of
N is important we use the notation(2.3) f(x) = O(xα) (C, N) as x→ ∞.A similar de�nition applies to the little o symbol. The de�nitions when
x→ −∞ are 
lear. One 
an also 
onsider the 
ase when α = −1,−2,−3, . . .[14, Def. 6.3.1℄.The equivalent notations f(x) = O(x−∞) and f(x) = o(x−∞) mean that
f(x) = O(x−β) for ea
h β > 0. It is shown in [9℄, [14, Thm. 6.7.1℄ that adistribution f ∈ D′ is of rapid de
ay at ±∞ in the (C) sense,(2.4) f(x) = O(|x|−∞) (C) as |x| → ∞,if and only if f ∈ K′. Fun
tions like sinx, J0(x), or x2eix belong to K′ andthus are �distributionally small.� The spa
e K′ is a distributional analogueof the spa
e S of rapidly de
reasing smooth fun
tions [14, Se
tion 2.9℄.



Distributionally regulated fun
tions 215These ideas 
an be readily extended to the study of the lo
al behavior ofgeneralized fun
tions [14, 31℄. A
tually, �ojasiewi
z [21℄ de�ned the value ofa distribution f ∈ D′(R) at a point x0 as the limit(2.5) f(x0) = lim
ε→0

f(x0 + εx),if the limit exists in D′(R), that is, if(2.6) lim
ε→0

〈f(x0 + εx), φ(x)〉 = f(x0)

∞\
−∞

φ(x) dxfor ea
h φ ∈ D(R). He showed that the existen
e of the distributional pointvalue γ = f(x0) is equivalent to the existen
e of n ∈ N, and a primitive oforder n of f, that is, F (n) = f, whi
h is 
ontinuous near x = x0 and satis�es(2.7) lim
x→x0

n!F (x)

(x− x0)n
= γ.For example the generalized fun
tion f(x) = sin(1/x) is os
illatory near

x = 0, however, it is easy to see that f(0) exists and equals 0.More generally, one 
ould try to look for a representation of the form(2.8) f(x0 + εx) ∼ εδg(x) as ε→ 0in the spa
e D′(R), where g is non-null. One 
an then show that g has tobe homogeneous of order δ. When f(x0 + εx) = o(εδ) as ε→ 0+, be
ause ofequivalen
es similar to (2.7), we sometimes write f(x0 + x) = o(xβ) (C) as
x→ 0+ [14, Thm. 6.9.1℄.If we 
onsider the limit of f(x0 + εx) in D′(R \ {0}), then we obtain the
on
ept of the distributional limit of f(x) at x = x0. Thus limx→x0

f(x) = Ldistributionally if(2.9) lim
ε→0

〈f(x0 + εx), φ(x)〉 = L

∞\
−∞

φ(x) dx, φ ∈ D(R \ {0}).Noti
e that the distributional limit limx→x0
f(x) 
an be de�ned for f ∈

D′(R \ {x0}). If the point value f(x0) exists distributionally then the distri-butional limit limx→x0
f(x) exists and equals f(x0). On the other hand, if

limx→x0
f(x) = L distributionally then there exist 
onstants a0, . . . , an su
hthat f(x) = f0(x)+

∑n
j=0 ajδ

(j)(x−x0), where the distributional point value
f0(x0) exists and equals L.We may also 
onsider lateral limits. We say that the distributional lateralvalue f(x+

0 ) exists if f(x+
0 ) = limε→0+ f(x0 + εx) in D′(0,∞), that is,(2.10) lim

ε→0+
〈f(x0 + εx), φ(x)〉 = f(x+

0 )

∞\
0

φ(x) dx, φ ∈ D(0,∞).



216 J. Vindas and R. EstradaSimilar de�nitions apply to f(x−0 ). Noti
e that the distributional limit
limx→x0

f(x) exists if and only if the distributional lateral limits f(x−0 ) and
f(x+

0 ) exist and 
oin
ide.3. Regulated fun
tions. In his pioneering work, �ojasiewi
z [21℄ intro-du
ed and studied the distributions that have a distributional point valueat every point. He proved that if one 
onsiders the fun
tion having thosedistributional values as values, then this fun
tion is measurable and in avery pre
ise sense, the distribution 
orresponds to the fun
tion. It is 
om-mon usage to 
all a distribution �regular� if it arises from a lo
ally Lebesgueintegrable fun
tion. The fun
tions studied by �ojasiewi
z are more generalinstan
es of what one should 
all �regular� distributions, namely those aris-ing from a fun
tion by integration. However, in general, the fun
tions thatarise from the distributional point values are often not lo
ally integrable inthe sense of Lebesgue; sometimes they are lo
ally integrable with respe
t tomore general integration pro
esses su
h as the Denjoy�Perron�Hensto
k in-tegral, like the fun
tion f1(x) = x−1 sinx−1, x 6= 0, f1(0) = 0, but sometimesthey are not, like f2(x) = x−2 sinx−1, x 6= 0, f2(0) = 0.In this arti
le we shall study a somewhat bigger 
lass, that of distribu-tionally regulated fun
tions. The de�nition is as follows.Definition. A distribution f ∈ D′(R) is 
alled a distributionally reg-ulated fun
tion if at ea
h point x0 ∈ R both distributional lateral limits
f(x±0 ) exist and f has no Dira
 delta fun
tions at x = x0. We say that fis a distributionally regulated fun
tion with delta fun
tions if at ea
h point
x0 ∈ R both distributional lateral limits f(x±0 ) exist.It will follow from our study that a distribution that is a distributionallyregulated fun
tion a
tually 
orresponds to an a
tual fun
tion, the fun
tiongiven by the distributional point value f(x0), whi
h is de�ned whenever
f(x+

0 ) = f(x−0 ), an equation that holds for all x0 ex
ept for those of anex
eptional set that is 
ountable at the most.On the other hand, a distributionally regulated fun
tion with delta fun
-tions is a distribution, and the name �fun
tion� is used in the way the namefun
tion is used for the Dira
 delta fun
tion.Sometimes we shall refer to distributionally regulated fun
tions as �dis-tributionally regulated fun
tions without delta fun
tions.�The distributionally regulated fun
tions that have no distributional jumpat any point are the fun
tions studied in [21℄, and therefore we shall 
all them�ojasiewi
z fun
tions .Our de�nitions were given for a distribution f ∈ D′(R), de�ned over thewhole real line. However, one 
an 
onsider any of these notions over �niteintervals in the obvious way, namely, a distribution is, say, a distributionally
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tions 217regulated fun
tion over the interval (a, b) if its distributional lateral limitsexist at ea
h point, and no delta fun
tions are present.It is worth pointing out that the 
lassi
al regulated fun
tions are those
lassi
al fun
tions that have lateral limits at every point. They are pre
iselythe uniform limits of step fun
tions [6℄. Observe that the 
lassi
al analogueof the �ojasiewi
z fun
tions are the 
ontinuous fun
tions.Example. If a, b, c, d are 
onstants, and H is the Heaviside fun
tion,then(3.1) f0(x) =

(
a+ b sin

1

x

)
H(x) +

(
c+ d sin

1

x

)
H(−x)is a distributionally regulated fun
tion; it is not a 
lassi
al regulated fun
tionand it is not a fun
tion of bounded variation. One 
an use some 
ondensationof singularities te
hnique to obtain examples that show this behavior not onlyat x = 0 but over a dense set. For instan
e, if {ωn}∞n=0 is dense in R, and if∑∞

n=0 |an| <∞, then(3.2) f1(x) =
∞∑

n=0

anf0(x− ωn)is a distributionally regulated fun
tion with distributional jumps at thepoints x = ωn. Similarly, if q > 1, the fun
tion(3.3) f2(x) =
∞∑

n=1

f0(sinnx)

nqis 
ontinuous at all the irrational points and has distributional jump dis
on-tinuities at ea
h rational number.4. The φ-transform. Our main tool to study the lo
al behavior ofdistributions is the φ-transform, a fun
tion of two variables that we nowde�ne.Let φ ∈ D(R) be a �xed test fun
tion that satis�es(4.1) ∞\
−∞

φ(x) dx = 1.

If f ∈ D′(R) we introdu
e the fun
tion of two variables F = Fφ{f} bythe formula(4.2) F (x, y) = 〈f(x+ yξ), φ(ξ)〉, x ∈ R, y > 0,the distributional evaluation with respe
t to the variable ξ. We 
all F the
φ-transform of f.The φ-transform 
an also be de�ned if φ does not belong to D(R) as longas we 
onsider only distributions f of a more restri
ted 
lass. Indeed, we 
an
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onsider the 
ase when φ ∈ A(R) and f ∈ A′(R) for any suitable spa
e A(R)of test fun
tions, su
h as S(R), K(R), or E(R). Observe that we assume (4.1)in every 
ase.Our �rst result shows that f(x) is the distributional boundary value of
F (x, y) as y → 0.Theorem 1. If f ∈ D′(R) and F is its φ-transform de�ned by (4.2)then(4.3) lim

y→0
F (x, y) = f(x)distributionally in the spa
e D′(R), that is,(4.4) lim

y→0
〈F (x, y), ψ(x)〉 = 〈f(x), ψ(x)〉, ∀ψ ∈ D(R).Proof. If ψ ∈ D(R) then(4.5) 〈F (x, y), ψ(x)〉 = 〈Ψ(yξ), φ(ξ)〉,where(4.6) Ψ(z) = 〈f(x), ψ(x− z)〉is a smooth fun
tion of z. Therefore, Ψ(0) exists in the ordinary sense and
onsequently in the distributional sense of �ojasiewi
z. Hen
e,(4.7) lim
y→0

〈Ψ(yξ), φ(ξ)〉 = Ψ(0) = 〈f(x), ψ(x)〉,and (4.4) follows.The result will also hold when f ∈ E ′(R) and φ ∈ E(R) if φ ∈ L1(R). Inthat 
ase (4.7) follows from the Lebesgue dominated 
onvergen
e theorem,sin
e Ψ ∈ D(R). Another 
ase when f(x) is the distributional boundaryvalue of F (x, y) as y → 0 is if
f(x) = O(|x|β) (C) as |x| → ∞,(4.8)

φ(x) = O(|x|α) strongly as |x| → ∞,(4.9)and(4.10) α < −1, α+ β < −1,as follows from [11, Theorem 1℄. It is true in parti
ular if f ∈ S ′(R) and
φ ∈ S(R).For future referen
e, we say that if f ∈ D′(R) and φ ∈ D(R) we are inCase I . If (4.8)�(4.10) are satis�ed, we say that we are in Case II . When
f ∈ S ′(R) and φ ∈ S(R) we say that we are in Case III . Most of our resultswill hold in any of these three 
ases. However, the results are usually falsewhen we just assume that f ∈ E ′(R) and φ ∈ E(R).Theorem 2. Suppose(4.11) f(x0) = γ
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tions 219distributionally. In any of Cases I , II , or III , we have(4.12) lim
(x,y)→(x0,0)

F (x, y) = γin any se
tor y ≥ m|x− x0| for any m > 0.Proof. Let us show that if |x1| ≤ 1/m then limε→0+ F (x0 + εx1, ε) = γ.Indeed, if φ ∈ D(R), then
F (x0 + εx1, ε) = 〈f(x0 + εx1 + εξ), φ(ξ)〉 = 〈f(x0 + εω), φ(ω − x1)〉

= 〈f(x0 + εω), φx1
(ω)〉where φx1

(ω) = φ(ω − x1) also belongs to D(R) and T∞−∞ φx1
(ω) dω = 1.Thus (4.12) follows. The limit is uniform with respe
t to x1 for |x1| ≤ 1/msin
e {φx1

: |x1| ≤ 1/m} is a 
ompa
t set in D(R). The proof in Cases IIand III is similar.Angular 
onvergen
e of F (x, y) to γ = f(x0) is obtained when thedistributional point value exists. On the other hand, the radial limit,
limy→0+ F (x0, y), exists under a weaker hypothesis.Theorem 3. Suppose Case I , II , or III holds , and the test fun
tion φis even. Let χx0

(s) = (f(x0 + s) + f(x0 − s))/2. If(4.13) χx0
(0) = γdistributionally , then(4.14) lim

y→0+
F (x0, y) = γ.Proof. The fa
t that φ is even yields

lim
y→0+

F (x0, y) = lim
y→0+

〈f(x0 + yξ), φ(ξ)〉

= lim
y→0+

〈f(x0 + yξ), (φ(ξ) + φ(−ξ))/2〉

= lim
y→0+

〈χx0
(yξ), φ(ξ)〉 = γ,as required.Remark. The above result does not hold if f ∈ E ′(R) and φ ∈ E(R).Indeed, if(4.15) φ(x) =
3 sinx3

πx
,then φ ∈ E and T∞−∞ φ(x) dx = 1. If f(x) = δ(x), then(4.16) F (x, y) =

(
3

πx

)
sin

(
x

y

)3

.If x0 6= 0 then f(x0) = 0 but even the radial limit limy→0+ F (x0, y) does notexist.



220 J. Vindas and R. EstradaSuppose now that the distribution f ∈ D′(R) has lateral distributionallimits f(x±0 ) = γ± as x → x0 from the right and from the left, respe
tively,and no delta fun
tions at x = x0. This means that for ea
h ψ ∈ D(R),(4.17) lim
ε→0+

〈f(x0 + εξ), ψ(ξ)〉 = γ−

0\
−∞

ψ(ξ) dξ + γ+

∞\
0

ψ(ξ) dξ.Then we have the ensuing result.Theorem 4. Suppose Case I , II , or III holds and f satis�es (4.17).Then for ea
h θ ∈ (0, π) there exists α = α(θ) ∈ [0, 1] su
h that(4.18) lim
(x,y)→(x0,0)

(x,y)∈lθ

F (x, y) = α(θ)γ+ + (1 − α(θ))γ−

where lθ is the line y = tan θ (x− x0).In Cases II or III , limθ→0 α(θ) = 1, limθ→π α(θ) = 0. In Case I a
tuallythere exist θ0, θ1 ∈ (0, π) su
h that α(θ) = 1 for θ ≤ θ0 while α(θ) = 0 for
θ ≥ θ1.If φ is even then α(π/2) = 1/2.Proof. The limit of F (x, y) as (x, y) → (x0, 0) along lθ is given as

lim
ε→0+

〈f(x0 + ε cos θ + ε sin θ ξ), φ(ξ)〉 = lim
ε→0+

〈f(x0 + εω), φθ(ω)〉

= γ−

0\
−∞

φθ(ω) dω + γ+

∞\
0

φθ(ξ) dω,where(4.19) φθ(ω) =
1

sin θ
φ

(
ω − cos θ

sin θ

)
.The result follows by taking(4.20) α(θ) =

∞\
0

φθ(ω) dω =

∞\
− cot θ

φ(ω) dω,whi
h has the stated properties.Remark. If f(x±0 ) = γ± exist distributionally, then f(x) = f0(x) +∑m
j=0 cjδ

(j)(x − x0) where f0 has no delta fun
tions at x = x0. It followsthat(4.21) F (x, y) = F0(x, y) +

m∑

j=0

cj
yj+1

φ(j)

(
x0 − x

y

)
.Therefore (4.18) is still valid for the �nite part of the limit:(4.22) F.p. lim

(x,y)→(x0,0)
(x,y)∈lθ

F (x, y) = α(θ)γ+ + (1 − α(θ))γ−.
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tions 221Remark. If φ is even and f(x±0 ) = γ± exist distributionally while fhas no delta fun
tions at x = x0 then (4.18) shows that the radial limit
limy→0+ F (x0, y) exists and equals (γ+ + γ−)/2. However, Theorem 3 is astronger result, sin
e the lateral limits may not exist if χx0

(s) has the dis-tributional limit γ at s = 0. More generally, if(4.23) lim
s→0+

χx0
(s) = γdistributionally, then(4.24) F.p. lim

y→0+
F (x0, y) = γ.Remark. If f is a distributionally regulated fun
tion with delta fun
-tions then the �nite part limit F.p. limy→0+ F (x, y) exists for ea
h x ∈ R,and equals (f(x+

0 ) + f(x−0 ))/2. It will follow from the results of Se
tion 6that the set of points where the limit is not an ordinary limit is 
ountableat the most. If f is a distributionally regulated fun
tion without delta fun
-tions then the limit is an ordinary limit for ea
h x ∈ R. On the other hand,if f is a distributionally regulated fun
tion without delta fun
tions then
lim(x,y)→(x0,0), (x,y)∈l F (x, y) exists for ea
h non-horizontal line l, and the setof points where the limit is not independent of l is 
ountable at the most,while if f is a �ojasiewi
z fun
tion then the limit is independent of l for ea
h
x0 ∈ R.5. Limits and jumps. Suppose f ∈ D′(R) is su
h that the laterallimits f(x±0 ) = γ± exist distributionally. In this se
tion we 
onsider 
ertainformulas for the jump d = [f ]x=x0

= γ+ − γ− in terms of the radial limits ofsome fun
tions related to F (x, y).Let us start with the 
ase when f does not have delta fun
tions at x = x0.Observe that sometimes we shall use the notation F,x or F,y for the partialderivatives ∂F/∂x and ∂F/∂y, respe
tively.Theorem 5. Let f be a distribution and φ a test fun
tion that satis-�es (4.1). Suppose Case I , II , or III holds. Suppose the distributional lat-eral limits f(x±0 ) = γ± exist and f has no delta fun
tions at x = x0. Let
d = γ+ − γ− be the jump of f at x = x0 and let ν = φ(0). Then(5.1) lim

y→0+
yF,x(x0, y) = νd.Proof. The hypotheses yield the asymptoti
 formula(5.2) f(x0 + εx) = γ+H(x) + γ−H(−x) + o(1), ε→ 0+,in the spa
e D′(R), where H is the Heaviside fun
tion. Sin
e distributional
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an be di�erentiated, we obtain(5.3) f ′(x0 + εx) =
d

ε
δ(x) + o

(
1

ε

)
, ε→ 0+.Observe now that F,x is pre
isely the φ-representation of f ′(x). Thus (5.3)yields(5.4) F,x(x0, y) =

dφ(0)

y
+ o

(
1

y

)
, y → 0+,and (5.1) follows.If we just assume that the distributional lateral limits f(x±0 ) = γ± exist,then f may have delta fun
tions at x = x0 and thus the formula (5.1) 
anbe modi�ed by using the �nite part of the limit:(5.5) F.p. lim

y→0+
yF,x(x0, y) = νd.A
tually, to obtain (5.5) and in parti
ular (5.1) there is no need to assumethat the distributional lateral limits f(x±0 ) exist; it is enough to suppose thatthe symmetri
 jump fun
tion(5.6) ψx0

(s) =
f(x0 + s) − f(x0 − s)

2has a distributional limit as s→ 0.Theorem 6. Let f be a distribution and φ a test fun
tion that satis-�es (4.1). Suppose Case I , II , or III holds. Suppose(5.7) ψx0
(0+) = d/2distributionally. If φ is even then(5.8) F.p. lim

y→0+
y
∂F

∂x
(x0, y) = νd.When ψx0

(s) does not have delta fun
tions at s = 0 then (5.8) is an ordinarylimit.Proof. Indeed, the result follows by applying (5.5) or (5.1) to Ψ(x, y),the φ-representation of ψx0
(x), and by observing that

F,x(x0, y) = 〈f ′(x0 + yξ), φ(ξ)〉 = 〈f ′(x0 + yξ), (φ(ξ) + φ(−ξ))/2〉
= 〈(f ′(x0 + yξ) − f ′(x0 + yξ))/2, φ(ξ)〉 = 〈ψ′

x0
(yξ), φ(ξ)〉

= Ψ,x(0, y),sin
e ψx0
(0+) = d/2.Another formula for the jump is given in terms of logarithmi
 aver-ages. Observe that in Case II, that is, f(x) = O(|x|β) (C) and φ(x) =

O(|x|α) strongly as |x| → ∞, we need to assume not only that α < −1 and
α+ β < −1, but also that β < 0.
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tions 223Theorem 7. Let f be a distribution and φ a test fun
tion that satis-�es (4.1). Suppose Case I or Case II with β < 0 holds. If ψx0
(0+) = d/2,then(5.9) F.p. lim

y→0+

1

ln y

〈
f(x0 + yξ),

φ(ξ) − φ(0)

ξ

〉
= νd.Proof. Observe that the 
ondition β < 0, or Case I, guarantees thatthe Cesàro evaluation 〈f(x0 + yξ), ̺(ξ)〉, where ̺(ξ) = (φ(ξ) − φ(0))/ξ, iswell-de�ned. Noti
e also that if f(x±0 ) = γ± exist and f has no delta fun
-tions at x = x0 then one may argue that 〈f(x0 + yξ), ̺(ξ)〉 approa
hes

γ−
T0
−∞ ̺(ξ) dξ + γ+

T∞
0 ̺(ξ) dξ as y → 0+; however, both integrals diverge:

|
T0
−∞ ̺(ξ) dξ| = |

T∞
0 ̺(ξ) dξ| = ∞.On the other hand,

∂

∂y

〈
f(x0 + yξ),

φ(ξ) − φ(0)

ξ

〉
=

〈
ξf ′(x0 + yξ),

φ(ξ) − φ(0)

ξ

〉

= 〈f ′(x0 + yξ), φ(ξ) − φ(0)〉

= 〈f ′(x0 + yξ), φ(ξ)〉 =
∂F

∂x
(x0, y).Thus we may use the L'H�pital rule to obtain

F.p. lim
y→0+

1

ln y

〈
f(x0 + yξ),

φ(ξ) − φ(0)

ξ

〉
= F.p. lim

y→0+
y
∂F

∂x
(x0, y) = νd,as required.Remark. The fun
tion F̃ (x, y) = 〈f(x+ yξ), (φ(ξ) − φ(0))/ξ〉 is a typeof �
onjugate� fun
tion to the φ-transform F (x, y). A
tually if φ(x) =

π−1(1 + x2)−1 then F (x, y) is a harmoni
 fun
tion and F̃ (x, y) is pre
iselyits harmoni
 
onjugate.Example. Let us 
onsider the distributional behavior of the distribu-tion fα, α > 0, given by the non-harmoni
 series(5.10) fα(x) =
∞∑

n=1

sinnαx

nas x → 0. Observe that fα(x) = O(|x|−∞) (C) as |x| → ∞. Let us 
onsiderthe 
onjugate fun
tion F̃ (x, y) with φ(x) = π−1(1 + x2)−1 as in the remarkabove. Then(5.11) F̃ (x, y) =
∞∑

n=1

e−nαy cosnαx

n
,

and thus F̃ (0, y) ∼ (1/α) ln y, sin
e ∑
nα≤N 1/n ∼ (1/α) lnN as N → ∞,and it follows that νd = 1/α, or d = π/α, sin
e φ(0) = 1/π. Therefore, sin
e
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fα is odd, we obtain the distributional lateral limits(5.12) fα(0+) =

π

2α
, fα(0−) =

−π
2α

.Observe that this is easy to see for α = 1 from the well-known formula(5.13) f1(x) =
π − x

2
, 0 < x < π,and for α = 1/2 from the formula(5.14) f1/2(x) = π +

∞∑

j=0

(−1)jζ(1/2 − j)x2j+1

(2j + 1)!
, x > 0,obtained by Boersma [3℄ when solving a problem proposed by Glasser [16℄;see also [7℄. It is not hard to see that if α > 1 then (5.12) are not ordinarylimits, sin
e fα is unbounded as x→ 0.6. The number of singularities. In this se
tion we show that if f isa distributionally regulated fun
tion, with or without delta fun
tions, thenthe distributional point value f(x) exists for all x apart from an ex
eptionalset whi
h is 
ountable at the most.The 
orresponding result for ordinary regulated fun
tions is well-known,and a
tually very easy to prove. Indeed, if f(x) is a regulated fun
tion insome interval I then for any λ > 0 the set Sλ 
onsisting of the points xwhere |f(x+) − f(x−)| ≥ λ is dis
rete in I, sin
e at an a

umulation pointof Sλ at least one of the lateral limits 
annot exist. Thus Sλ is 
ountable atthe most, and hen
e so is S =

⋃
λ>0 Sλ =

⋃∞
n=1 S1/n.When f is a regulatedfun
tion of bounded variation, then one 
an even bound nλ(K), the numberof elements of Sλ ∩K for any 
ompa
t interval K, by nλ(K) ≤ V/λ, where

V is the total variation of f over K.This argument does not work if f is distributionally regulated, sin
e inthat 
ase the set Sλ 
ould have limit points, as the next example shows.Example. Consider the fun
tion f with support in [0,∞) with deriva-tive(6.1) f ′(x) =

∞∑

n=1

(−1)nnqδ

(
x− 1

n

)
(C),where q ∈ R. Then f is a distributionally regulated fun
tion, 
onstant in allthe intervals (1/(n + 1), 1/n) for n ∈ N, and in (−∞, 0) where it vanishes.The set of points where f has a non-zero jump is exa
tly S = {1/n : n ∈ N}.In parti
ular, 0 /∈ S, sin
e the fun
tion has the distributional point value

f(0) = 0. If q > 0 then Sλ = S for λ ≤ 1, and thus 0 is an a

umu-lation point of Sλ. A
tually, we may repla
e the sequen
e {(−1)nnq}∞n=1by any distributionally small sequen
e {cn}∞n=1, that is, a sequen
e with
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∑∞

n=1 cnδ(x− n) in K′(R) [14, Se
tion 5.4℄, and still keep f(0) = 0. Indeed,
〈f ′(εx), φ(x)〉 =

〈 ∞∑

n=1

cnδ(εx− 1/n), φ(x)

〉
=

∞∑

n=1

cn
ε
φ

(
1

εn

)

=

∞∑

n=1

ncnτ(εn) = o(ε∞) as ε→ 0+,where τ(x) = (1/x)φ(1/x) belongs to K(R) if φ ∈ D(R), and where all seriesare 
onsidered in the Cesàro sense. Hen
e f is �distributionally smooth� at
x = 0 sin
e it follows that f (m)(0) = 0 for all m ≥ 0.We have the following result on the number of singularities of a distribu-tionally regulated fun
tion.Theorem 8. Let f ∈ D′(R) be distributionally regulated , with or withoutdelta fun
tions. Let(6.2) S = {x ∈ R : f(x) does not exist distributionally}.Then S is 
ountable at the most.Proof. Consider �rst the set S0 of those elements of S where f doesnot have delta fun
tions. If x0 ∈ S0 then f(x+

0 ) 6= f(x−0 ). Let φ ∈ D(R)satisfy (4.1), and let F (x, y) be the φ-representation of f. There exists θ ∈
(0, π/2) su
h that(6.3) lim

x→x±

0

F (x, |x− x0| tan θ) = f(x±0 ), ∀x0 ∈ R.Let U0 = {(r,∞) : r ∈ Q} ∪ {(−∞, r) : r ∈ Q} and let U = {(I+, I−) ∈
U0 × U0 : I+ ∩ I− = ∅}. If x0 ∈ S0 then there exist (I+, I−) ∈ U and n ∈ Nsu
h that

F (x, (x− x0) tan θ) ∈ I+ for x0 < x < x0 + 1/n,(6.4)

F (x, (x0 − x) tan θ) ∈ I− for x0 − 1/n < x < x0.(6.5)For �xed (I+, I−) ∈ U and �xed n ∈ N the family of intervals (x0 − 1/n,
x0 + 1/n), where x0 ∈ S0 satis�es (6.4) and (6.5), is pairwise disjoint, and
onsequently, there are an at most 
ountable number of su
h intervals. Hen
e(6.6) S0 =

⋃

(I+,I−)∈U

∞⋃

n=1

{x0 ∈ R : x0 satis�es (6.4) and (6.5)}is also 
ountable at the most.The analysis at points where f has delta fun
tions of a given order followsby integrating f a suitable number of times. Indeed, let SN be the set ofpoints of S where f has no delta fun
tion of order greater than N. Let Fbe a primitive of f of order N + 1, i.e., F (N+1)(x) = f(x). Then F is alsoa distributionally regulated fun
tion, and SN \ SN−1 is exa
tly the set of
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tions; hen
e SN \ SN−1 is
ountable at the most, and thus so is SN . It follows that S is 
ountable atthe most.7. Boundary behavior of solutions of partial di�erential equa-tions. The results of the previous se
tions apply to general distributionsand test fun
tions. When the test fun
tion φ is of 
ertain spe
ial forms,however, the φ-transform be
omes a parti
ular solution of a partial di�eren-tial equation, and those results be
ome results on the boundary behavior ofsolutions of partial di�erential equations.Suppose �rst that φ = φ1 where(7.1) φ1(x) =
p(x)

q(x)
,

p and q are polynomials, α = deg q − deg p ≥ 2, q does not have real zeros,and T∞−∞ φ1(x) dx = 1. Let(7.2) q(x) =
n∑

k=0

akx
k.

Then if f ∈ D′(R) satis�es the estimate f(x) = O(|x|β) (C) as |x| → ∞,where α+ β < −1, then the φ-transform(7.3) F1(x, y) = 〈f(x+ yξ), φ1(ξ)〉, x ∈ R, y > 0,is a solution of the partial di�erential equation(7.4) n∑

k=0

an−k
∂nF

∂xk∂yn−k
= 0,

with F (x, 0+) = f(x) distributionally, sin
e
n∑

k=0

an−k
∂nF

∂xk∂yn−k
=

n∑

k=0

an−k〈f (n)(x+ yξ)ξn−k, φ1(ξ)〉

= 〈f (n)(x+ yξ)q(ξ), φ1(ξ)〉
= 〈f (n)(x+ yξ), p(ξ)〉 = 0.In the parti
ular 
ase when q(x) = x2 + 1, p(x) = 1/π, we obtain(7.5) φ2(x) =

1

π(x2 + 1)
,and F2(x, y) is the Poisson �integral� of f, whi
h in 
ase f(x) = O(|x|β) (C)as |x| → ∞, for some β < 1, is the harmoni
 fun
tion with F2(x, 0

+) = f(x)distributionally that satis�es F2(x, y) = O(|x|β) (C) as |x| → ∞, for ea
h
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y

π

∞\
−∞

f(ξ) dξ

(x− ξ)2 + y2if f is lo
ally integrable.Let us now take φ = ϕν with Fourier transform given by(7.7) ϕ̂ν(u) = e−uν

,where ν = 2p is an even positive integer. Alternatively, ϕν is the only solutionin S of the ordinary di�erential equation(7.8) ϕ(ν−1)(ξ) = (−1)p ξ

ν
ϕ(ξ),with T∞−∞ ϕ(ξ) dξ = 1. Then if f ∈ S ′(R), and F is the φ-transform 
orre-sponding to ϕν , the fun
tion(7.9) Gν(x, t) = F (x, t1/ν), x ∈ R, t > 0,is a solution of the initial value problem

∂G

∂t
= (−1)p−1∂

νG

∂xν
,(7.10)

G(x, 0+) = f(x) distributionally.In parti
ular, if ν = 2, then(7.11) ϕ̂ν(u) = e−u2

, ϕν(ξ) =
1

2
√
π
e−ξ2/4,and G2(x, t) is the solution of the heat equation G,t = G,xx that satis�es

G(x, 0+) = f(x) distributionally, and with G(x, t) ∈ S ′(R) for ea
h �xed
t > 0. If f is a lo
ally integrable fun
tion then G2(x, t) takes the familiarform(7.12) G2(x, t) =

1

2
√
πt

∞\
−∞

f(ξ)e−(ξ−x)2/4t dξ.If the distributional value f(x0) = γ exists, then F1(x, y), and in par-ti
ular F2(x, y), satis�es F1(x, y) → γ as (x, y) → (x0, 0) in any se
tor
y ≥ m|x − x0| for m > 0. Also Gν(x, t) → γ in any region of the type
t ≥ m(x− x0)

ν for m > 0. A
tually, if χx0
(s) = (f(x0 + s) + f(x0 − s))/2,and the distributional value χx0

(0) = γ exists, then F1(x0, y) → γ as y → 0+and Gν(x0, t) → γ as t → 0+. If instead of the existen
e of the distribu-tional value one just has the existen
e of the distributional limit f(x±0 ) = γ,then the �nite part of the limit of F1(x, y) as (x, y) → (x0, 0) in any se
tor
y ≥ m|x−x0| exists and equals γ; similarly, one obtains the existen
e of the�nite part of the limits in the other 
ases.
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iple one 
an take a test fun
tion in (7.1) with deg q−
deg p = 1. For example, we 
an take φ(x) = (2πi)−1(x ∓ i)−1, but theresults will not hold, sin
e in this 
ase the φ-transform be
omes the analyti
representation, whi
h obeys di�erent rules [13, Chapter 6℄; a
tually evenTheorem 1 does not hold for the analyti
 representation.It is interesting to observe that if f is almost periodi
 or periodi
, then(7.13) f(x) =

∞∑

n=−∞

ane
iαnx,where αn → ±∞ as n→ ±∞. It follows that(7.14) F (x, y) =

∞∑

n=−∞

ane
iαnxφ̂(αny),so that in parti
ular(7.15) F2(x, y) =

∞∑

n=−∞

ane
iαnxe−|αn|y =

∞∑

n=−∞

ane
iαnxr|αn|,

where r = e−y → 1− as y → 0+. The study of the behavior of the φ-transformin this 
ase be
omes the study of the series (7.13) in the Abel sense. Also(7.16) Gν(x, t) =

∞∑

n=−∞

ane
iαnxe−|αn|νt.

The problem of �nding the (ordinary) jumps of a Fourier series was �rstsolved by Fejér [15℄ in terms of the partial sums of the series, and was later
onsidered by Zygmund [39, 9.11, Chapter III, �108℄ in terms of the Abel�Poisson means of the Fourier series. A di�erent formula using logarithmi
means was given by Luká
s [22℄, [39, Thm. 8.13℄, and re
ently studied interms of the Abel�Poisson means by Móri
z [25℄ for point values of the �rstorder and for general distributional point values in [11℄. Theorems 6 and 7provide very general results of the Fejér and Luká
s type, respe
tively, for ageneral test fun
tion φ (whi
h provides many di�erent types of summabilitymeans, su
h as (7.15) or (7.16)) and not only for Fourier series, but also fornon-harmoni
 series and a
tually for any distribution.8. The Fourier transform of regulated fun
tions. In this se
tionwe shall 
hara
terize the Fourier transform of distributionally regulated fun
-tions, with or without delta fun
tions. We �rst start with some 
ommentson distributional evaluations and the notation used for them.Let f ∈ D′(R) with support bounded on the left. If φ ∈ E(R) thenthe evaluation 〈f(x), φ(x)〉 will not be de�ned, in general. We say that the
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tions 229evaluation exists in the Cesàro sense and equals L, written as(8.1) 〈f(x), φ(x)〉 = L (C),if g(x) = L+o(1) (C) as x→ ∞, where g is the primitive of fφ with supportbounded on the left. A similar de�nition applies if supp f is bounded on theright. Observe that if f is lo
ally integrable with supp f ⊂ [a,∞) then (8.1)means that(8.2) ∞\
a

f(x)φ(x) dx = L (C),while if f(x) =
∑∞

n=0 anδ(x− n) then (8.1) tells us that(8.3) ∞∑

n=0

anφ(n) = L (C).In the general 
ase when the support of f extends to both −∞ and +∞,there are various di�erent but related notions of evaluations in the Cesàrosense (or in any other summability sense, in fa
t). If f admits a representa-tion of the form f = f1 + f2, with supp f1 bounded on the left and supp f2bounded on the right, su
h that 〈fj(x), φ(x)〉 = Lj (C) exist, then we saythat the (C) evaluation 〈f(x), φ(x)〉 (C) exists and equals L = L1 +L2. Thisis 
learly independent of the de
omposition. The notation (8.1) is used inthis situation.It often happens that 〈f(x), φ(x)〉 (C) does not exist, but the symmetri
limit, limx→∞{g(x) − g(−x)} = L, where g is any primitive of fφ, existsin the (C) sense. Then we say that the evaluation 〈f(x), φ(x)〉 exists in theprin
ipal value Cesàro sense, and write(8.4) p.v.〈f(x), φ(x)〉 = L (C).Observe that p.v.
∑∞

n=−∞ anφ(n) = L (C) if and only if ∑N
n=−N anφ(n)

→ L (C) as N → ∞, while p.v.
T∞
−∞ f(x)φ(x) dx = L (C) if and only ifTA

−A f(x)φ(x) dx → L (C) as A→ ∞.An intermediate notion, very useful for our purposes, is the following. Ifthere exists k su
h that(8.5) lim
x→∞

{g(ax) − g(−x)} = L (C, k), ∀a > 0,we say that the distributional evaluation exists in the e.v. Cesàro sense andwrite(8.6) e.v.〈f(x), φ(x)〉 = L (C, k),or just e.v.〈f(x), φ(x)〉 = L (C) if there is no need to 
all attention to thevalue of k; observe, however, that the same value of k works for all a > 0.Clearly (8.1)⇒(8.6)⇒(8.4), but the 
onverse impli
ations do not hold.For example, p.v.〈x, 1〉 = 0 (no (C) needed), but e.v.〈x, 1〉 (C) does not
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〈 ∞∑

n=−∞
|n|≥2

δ(x− n)

n ln |n| , 1
〉

= 0,

with no (C) needed, but the Cesàro evaluation does not exist in the sense of(8.1).Our next aim is to 
hara
terize the Fourier transforms of distributionsthat have a jump dis
ontinuity at a point. The 
hara
terization of the Fourierseries of those periodi
 distributions that have a distributional point valuewas given in [8℄: if f(θ) =
∑∞

n=−∞ ane
inθ in the spa
e D′(R) then(8.8) f(θ0) = γ distributionallyif and only if there exists k su
h that(8.9) lim

x→∞

∑

−x≤n≤ax

ane
inθ0 = γ (C, k), ∀a > 0.We shall show that a similar result holds for Fourier transforms.Lemma 1. Let f ∈ S ′(R). If x0 ∈ R then(8.10) f(x0) = γ distributionallyif and only if(8.11) lim

λ→∞
λf̂(λu)e−iλux0 = 2πγδ(u)in the spa
e S ′(R).Proof. Indeed,

f(x0) = γ dist. ⇔ lim
ε→0

f(x0 + εx) = γ

⇔ lim
ε→0

F{f(x0 + εx);u} = 2πγδ(u)

⇔ lim
λ→∞

λf̂(λu)e−iλux0 = 2πγδ(u),as required.In what follows we use the notation spec f = supp f̂ for the spe
trumof f. The next lemma follows from the ideas of [14, Se
tion 6.5℄; see also [36℄.Lemma 2. Let f ∈ S ′(R). Suppose spec f is bounded on the left or onthe right. Then f(x0) = γ distributionally if and only if(8.12) 〈f̂(u), e−iux0〉 = 2πγ (C).Our next lemma 
on
erns the 
ase of a distribution that vanishes on awhole interval.
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tions 231Lemma 3. Let f ∈ S ′(R). Suppose f(x) = 0 for x0 − η < x < x0 + η.Then f admits a de
omposition f = f+−f− with f± ∈ S ′(R), where spec f+is bounded on the right , spec f− is bounded on the left , and where the distri-butional point values f±(x0) = ±µ both exist.Proof. If f ∈ D′(R) then ([4, Theorem 3.14℄, [26℄) there exists a se
tion-ally analyti
 fun
tion F (z) de�ned for z ∈ C\R su
h that the distributionallimits(8.13) f±(x) = F (x± i0) = lim
y→0

F (x± iy)exist and f = f+−f−.When f ∈ S ′(R) we 
an 
hoose the fun
tion F in su
ha way that both f± ∈ S ′(R) [13, Se
tion 6.4℄; a
tually if f(x) = O(|x|β) (C)as x→ ∞ for some β < 0, then we may take(8.14) F (z) =
1

2πi

〈
f(x),

1

x− z

〉
(C).In general F is not unique, but an arbitrary polynomial 
an be added atwill.It is 
lear that spec f+ ⊂ (−∞, 0] while spec f− ⊂ [0,∞).It remains to show that the distributional point values f±(x0) exist. Butsin
e f(x) = 0 for x0−η < x < x0+η it follows that F is analyti
 a
ross thisinterval [2, Se
tion 5.8℄, and thus f±(x) are a
tually real analyti
 fun
tionsfor x0 − η < x < x0 + η and thus f±(x0) are well-de�ned ordinary values.We are now ready to give the 
hara
terization of the Fourier transformsof tempered distributions that have a distributional point value.Theorem 9. Let f ∈ S ′(R). If x0 ∈ R then(8.15) f(x0) = γ distributionallyif and only if(8.16) e.v.〈f̂(u), e−iux0〉 = 2πγ (C),whi
h in 
ase f̂ is lo
ally integrable means that(8.17) e.v.

∞\
−∞

f̂(u)e−iux0 du = 2πγ (C).Proof. Choose any number η with 0 < η < π. There exists a distribution
f1 of period 2π su
h that f(x) = f1(x) for x0 − η < x < x0 + η. This means,be
ause of Lemma 3, that f = f1+f2 where f2 satis�es e.v.〈f̂2(u), e

−iux0〉 = 0
(C), and thus the result will be true if it is true for periodi
 distributionsof period 2π, but this is exa
tly the equivalen
e of (8.8) and (8.9) provedin [8℄.
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eed to the 
ase of tempered distributions that have distri-butional lateral limits at a point.Theorem 10. Let f ∈ S ′(R). If x0 ∈ R then the distributional laterallimits f(x±0 ) = γ± exist and f has no Dira
 delta fun
tion at x = x0 if andonly if there exists k su
h that whenever g(u) is a primitive of f̂(u)e−iux0then the Cesàro limit(8.18) lim
u→∞

(g(au) − g(−u)) = Ix0
(a) (C, k)exists for all a > 0. If this is the 
ase then(8.19) Ix0

(a) = π(γ+ + γ−) + i(γ+ − γ−) ln a.Proof. Suppose that the distributional lateral limits f(x±0 ) = γ± existand f has no Dira
 delta fun
tion at x = x0. Write f = f1 + f2 where
f1(x) = f(x)− (d/2) sgn(x−x0), d = γ+−γ−. Thus for f = f1, the quantity
Ix0,f1

(a) exists and equals π(γ+ + γ−) sin
e the distributional point value
f1(x0) exists and equals (γ+ + γ−)/2, and therefore(8.20) e.v.〈f̂1(u), e

−iux0〉 = π(γ+ + γ−) (C).On the other hand,(8.21) f̂2(u) = (γ+ − γ−)ieiux0p.v.

(
1

u

)
,where p.v.(1/u) is the usual prin
ipal value regularization of the non-inte-grable fun
tion 1/u. Then

Ix0,f2
(a) = lim

s→∞
p.v.

as\
−s

f̂2(u)e
−iux0 du

= lim
s→∞

p.v.

as\
−s

(γ+ − γ−)i
du

u
= (γ+ − γ−)i ln a,

and (8.18) and (8.19) follow.Conversely, suppose that Ix0
(a) exists for ea
h a > 0. Clearly Ix0

(a) isa measurable fun
tion of a. Then an easy 
omputation shows that Ix0
(a)satis�es the fun
tional equation(8.22) Ix0

(ab) = Ix0
(a) + Ix0

(b) − Ix0
(1).While this fun
tional equation has many solutions, 
onstru
ted using a suit-able Hamel basis, an analysis that 
an be tra
ed ba
k to Sierpi«ski showsthat the only measurable solutions are(8.23) Ix0

(a) = Ix0
(1) + ω ln a
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tions 233for some 
onstant ω.Writing f = f1+f2, f2(x) = −i(ω/2) sgn(x−x0) showsthat the distributional value f1(x0) exists and equals Ix0
(1)/(2π) sin
e(8.24) e.v.〈f̂1(u), e

−iux0〉 = Ix0
(1) (C).Hen
e the distributional lateral limits f(x±0 ) exist and equal(8.25) γ± =

Ix0
(1)

2π
∓ iω

2
,whi
h is equivalent to (8.19).Observe in parti
ular that if f̂ is lo
ally integrable, then the distributionallateral limits f(x±0 ) = γ± exist and f has no Dira
 delta fun
tion at x = x0if and only if there exists k su
h that for all a > 0,(8.26) lim

s→∞

as\
−s

f̂(u)e−iux0 du = π(γ+ + γ−) + i(γ+ − γ−) ln a (C, k).In 
ase f is periodi
 of period 2π with Fourier series(8.27) f(x) =
∞∑

n=−∞

ane
inx,the 
ondition be
omes(8.28) lim

N→∞

∑

−aN≤n≤N

ane
inx0 =

γ+ + γ−
2

+
i

2π
(γ+ − γ−) ln a (C, k).We obtain the following 
hara
terization of the Fourier transforms ofdistributionally regulated fun
tions.Theorem 11. Let f ∈ S ′(R). The distribution f is a distributionallyregulated fun
tion with delta fun
tions if and only if for all x0 ∈ R, thedistribution f̂(u)e−iux0 admits the de
omposition(8.29) f̂(u)e−iux0 = px0

(u) + g′x0
(u),where px0

(u) is a polynomial and where for some k,(8.30) lim
u→∞

(g(au) − g(−u)) = Ix0
(a) (C, k)exists for all a > 0. The distribution f is a distributionally regulated fun
tion(without delta fun
tions) if px0

(u) = 0 for ea
h x0 ∈ R; if also Ix0
(a) is a
onstant fun
tion of a for ea
h x0 ∈ R then f is a �ojasiewi
z fun
tion.In any 
ase, the set of points x0 where px0

(u) 6= 0 is 
ountable, as is theset of points x0 where Ix0
(a) is not a 
onstant fun
tion of a.We now give another 
hara
terization of distributions having lateral lim-its based on a de
omposition in terms of boundary limits of analyti
 fun
-tions from the upper and lower half planes. Observe that only prin
ipal valueCesàro evaluations are needed in the following theorem.



234 J. Vindas and R. EstradaTheorem 12. Let f ∈ S ′(R). Let x0 ∈ R. Then the distributional laterallimits f(x±0 ) = γ± exist and f has no Dira
 delta fun
tion at x = x0 if andonly if(8.31) f̂(u)e−iux0 = Hx0
(u+ i0) +Hx0

(u− i0),where Hx0
(z) is analyti
 for z ∈ C \ R, the distributional boundary distribu-tions Hx0

(u± i0) belong to S ′(R), and the prin
ipal value Cesàro evaluations(8.32) p.v.〈Hx0
(u± i0), 1〉 = ν± (C)both exist. In this 
ase ν± = πγ±.Proof. If the distributional lateral limits f(x±0 ) = γ± exist and f has noDira
 delta fun
tion at x = x0 we 
an write f = f+ + f− where f± do nothave delta fun
tions at x = x0, supp f+ ⊂ [x0,∞), supp f− ⊂ (−∞, x0],

f+(x+
0 ) = γ+, and f−(x−0 ) = γ−. Then we de�ne(8.33) Hx0

(z) =

{ 〈f+(x), eiz(x−x0)〉, Re z > 0,
〈f−(x), eiz(x−x0)〉, Re z < 0,so that Hx0

(u± i0) = f̂±(u), and 
onsequently(8.34) p.v.〈Hx0
(u± i0), 1〉 = πγ± (C).Conversely, if (8.31) holds, then f = f+ + f− where(8.35) f±(x) = F−1{eiux0Hx0

(u± i0), x}.But this implies that supp f+ ⊂ [x0,∞), while supp f− ⊂ (−∞, x0]. Then(8.32) shows that the even parts of f± have the distributional values γ±/2at x = x0. But sin
e the distributions f± vanish on one side of x0, itfollows that the distributional lateral limits exist and no delta fun
tion ispresent.We immediately obtain the ensuing result.Theorem 13. Let f ∈ S ′(R). The distribution f is a distributionallyregulated fun
tion with delta fun
tions if and only if for all x0 ∈ R, thedistribution f̂(u)e−iux0 admits the de
omposition(8.36) f̂(u)e−iux0 = px0
(u) +Hx0

(u+ i0) +Hx0
(u− i0),where px0

(u) is a polynomial and where Hx0
(z) is analyti
 for z ∈ C \R, thedistributional boundary distributions Hx0

(u ± i0) belong to S ′(R), and theprin
ipal value Cesàro evaluations(8.37) p.v.〈Hx0
(u± i0), 1〉 = ν± (C)both exist. The distribution f is a distributionally regulated fun
tion (withoutdelta fun
tions) if px0

(u) = 0 for ea
h x0 ∈ R; if also ν+ = ν− for ea
h
x0 ∈ R then f is a �ojasiewi
z fun
tion.



Distributionally regulated fun
tions 235In any 
ase the set of points x0 ∈ R where px0
(u) 6= 0 is 
ountable, as isthe set of points where ν+ 6= ν−.One 
an use these ideas to prove that if the distributional lateral limitsof a distribution that is the boundary value of an analyti
 fun
tion from theupper or lower half plane exist, then they must 
oin
ide [10℄.
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