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Arens regularity of module actions

by

M. Eshaghi Gordji (Semnan and Tehran) and M. Filali (Oulu)

Abstract. We study the Arens regularity of module actions of Banach left or right
modules over Banach algebras. We prove that if A has a brai (blai), then the right
(left) module action of A on A∗ is Arens regular if and only if A is reflexive. We find
that Arens regularity is implied by the factorization of A∗ or A∗∗ when A is a left or
a right ideal in A∗∗. The Arens regularity and strong irregularity of A are related to
those of the module actions of A on the nth dual A(n) of A. Banach algebras A for
which Z(A∗∗) = A but A ( Z

t(A∗∗) are found (here Z(A∗∗) and Z
t(A∗∗) are the topo-

logical centres of A∗∗ with respect to the first and second Arens product, respectively).
This also gives examples of Banach algebras such that A ( Z(A∗∗) ( A∗∗

. Finally, the
triangular Banach algebras T are used to find Banach algebras having the following prop-
erties: (i) T ∗T = T T ∗ but Z(T ∗∗) 6= Z

t(T ∗∗); (ii) Z(T ∗∗) = Z
t(T ∗∗) and T ∗T = T ∗

but T T ∗ 6= T ∗; (iii) Z(T ∗∗) = T but T is not weakly sequentially complete. The results
(ii) and (iii) are new examples answering questions asked by Lau and Ülger.

1. Introduction. The extension of bilinear maps on normed spaces and
the concept of regularity of bilinear maps were introduced by Richard Arens
in 1951 (see [1] and [2]). We start by recalling these definitions. Throughout
the paper, we shall identify any Banach space with its natural image in the
second dual. Let X , Y and Z be normed spaces and let f : X × Y → Z be
a continuous bilinear map. Then the adjoint of f is defined by

f∗ : Z∗ × X → Y ∗, 〈f∗(z′, x), y〉 = 〈z′, f(x, y)〉

(z′ ∈ Z∗, x ∈ X, y ∈ Y ).

Clearly, for each x ∈ X, the map z′ 7→ f∗(z′, x) : Z∗ → Y ∗ is weak∗-
weak∗ continuous. Since f∗ is a continuous bilinear map, this process may
be repeated to define f∗∗ = (f∗)∗ : Y ∗∗×Z∗ → X∗, and then f∗∗∗ = (f∗∗)∗ :
X∗∗ × Y ∗∗ → Z∗∗. The map f∗∗∗ is the unique extension of f such that

• x′′ 7→ f∗∗∗(x′′, y′′) : X∗∗ → Z∗∗ is weak∗-weak∗ continuous for each
y′′ ∈ Y ∗∗,
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• y′′ 7→ f∗∗∗(x, y′′) : Y ∗∗ → Z∗∗ is weak∗-weak∗ continuous for each
x ∈ X.

The first topological centre of f may therefore be defined as

Z(f) = {x′′ ∈ X∗∗ : y′′ 7→ f∗∗∗(x′′, y′′) : Y ∗∗ → Z∗∗ is

weak∗-weak∗ continuous}.

Let now f t : Y ×X → Z be the transpose of f defined by f t(y, x) = f(x, y)
for all x ∈ X and y ∈ Y . Then f t is a continuous bilinear map from Y × X

to Z, and so it may be extended as above to f t∗∗∗ : Y ∗∗ × X∗∗ → Z∗∗.
Consider next the map f t∗∗∗t : X∗∗ × Y ∗∗ → Z∗∗. Again we have:

• y′′ 7→ f t∗∗∗t(x′′, y′′) : Y ∗∗ → Z∗∗ is weak∗-weak∗ continuous for each
x′′ ∈ X∗∗,

• x′′ 7→ f t∗∗∗t(x′′, y) : X∗∗ → Z∗∗ is weak∗-weak∗ continuous for each
y ∈ Y.

The second topological centre of f may be defined as

Zt(f) = {y′′ ∈ Y ∗∗ : x′′ 7→ f t∗∗∗(y′′, x′′) : X∗∗ → Z∗∗ is

weak∗-weak∗ continuous}

= {y′′ ∈ Y ∗∗ : x′′ 7→ f t∗∗∗t(x′′, y′′) : X∗∗ → Z∗∗ is

weak∗-weak∗ continuous}.

Clearly, X ⊆ Z(f) and Y ⊆ Zt(f).
The map f is Arens regular when f∗∗∗ = f t∗∗∗t. This is equivalent to the

condition that the map

y′′ 7→ f∗∗∗(x′′, y′′) : Y ∗∗ → Z∗∗

is weak∗-weak∗ continuous for every x′′ ∈ X∗∗, i.e., Z(f) = X∗∗; and to the
condition that the map

x′′ 7→ f t∗∗∗t(x′′, y′′) : X∗∗ → Z∗∗

is weak∗-weak∗ continuous for every y′′ ∈ Y ∗∗, i.e., Z(f t) = Y ∗∗.

The map f is left strongly Arens irregular when Z(f) = X, right strongly

Arens irregular when Z(f t)=Y , and strongly Arens irregular when Z(f)=X

and Z(f t)=Y .
Let now X be a Banach A-bimodule, and let

πl : A× X → X and πr : X ×A → X

be the right and left module actions of A on X. Then X∗∗ is a Banach
A∗∗-bimodule with module actions

π∗∗∗
l : A∗∗ × X∗∗ → X∗∗ and π∗∗∗

r : X∗∗ ×A∗∗ → X∗∗.

Similarly, X∗∗ is a Banach A∗∗-bimodule with module actions

πt∗∗∗t
l : A∗∗ × X∗∗ → X∗∗ and πt∗∗∗t

r : X∗∗ ×A∗∗ → X∗∗.
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We may therefore define the topological centres of the right and left
module actions of A on X as follows:

ZA(X∗∗) := Z(πr) = {x′′ ∈ X∗∗ : the map a′′ 7→ π∗∗∗
r (x′′, a′′) :

A∗∗ → X∗∗ is weak∗-weak∗ continuous},

ZX(A∗∗) := Z(πl) = {a′′ ∈ A∗∗ : the map x′′ 7→ π∗∗∗
l (a′′, x′′) :

X∗∗ → X∗∗ is weak∗-weak∗ continuous},

Zt
A(X∗∗) := Z(πt

l ) = {x′′ ∈ X∗∗ : the map a′′ 7→ πt∗∗∗
l (x′′, a′′) :

A∗∗ → X∗∗ is weak∗-weak∗ continuous},

Zt
X(A∗∗) := Z(πt

r) = {a′′ ∈ A∗∗ : the map x′′ 7→ πt∗∗∗
r (a′′, x′′) :

X∗∗ → X∗∗ is weak∗-weak∗ continuous}.

We note also that if X is a left (right) Banach A-module and πl : A×X

→ X (πr : X × A → X) is the left (right) module action of A on X, then
X∗ is a right (left) Banach A-module. The right module action is given by
π∗

l : X∗ ×A → X∗, where as above,

〈π∗
l (x

′, a), x〉 = 〈x′, πl(a, x)〉 (a ∈ A, x′ ∈ X∗, x ∈ X),

which we shall write simply as 〈x′a, x〉 = 〈x′, ax〉 when there is no confusion.
The left module action is given by πt∗t

r : A× X∗ → X∗, where as above,

〈πt∗t
r (a, x′), x〉 = 〈πt∗

r (x′, a), x〉 = 〈x′, πt
r(a, x)〉 = 〈x′, πr(x, a)〉

for all a ∈ A, x′ ∈ X∗, x ∈ X, which we shall also write as 〈ax′, x〉 = 〈x′, xa〉
when no confusion can arise.

Similarly, X∗∗, . . . , X(n) are left or right Banach A-modules. Therefore
we may start with the operation π : A×A →A and consider A∗,A∗∗, . . . ,A(n)

as A-bimodules for each n ≥ 1. We denote by πrn
: A(n) × A → A(n) and

πln : A×A(n) → A(n), respectively, the right and left module actions of A
on A(n). Here πln = πt∗t

rn−1
and πrn

= π∗
ln−1

for all n ≥ 1 with A(0) = A and
πl0 = πr0 = π.

Regarding A as a Banach A-bimodule, the operation π : A × A → A
extends to π∗∗∗ and πt∗∗∗t defined on A∗∗×A∗∗. These extensions are known,
respectively, as the first (left) and the second (right) Arens products, and
with each of them, the second dual space A∗∗ becomes a Banach algebra. In
this situation, we shall also simplify our notations. So the first (left) Arens
product of a′′, b′′ ∈ A∗∗ will be simply indicated by a′′b′′ and defined by the
following three steps:

〈a′a, b〉 = 〈a′, ab〉, 〈b′′a′, a〉 = 〈b′′, a′a〉, 〈a′′b′′, a′〉 = 〈a′′, b′′a′〉

for all a′ ∈ A∗, a, b ∈ A. Similarly, the second (right) Arens product of
a′′, b′′ ∈ A∗∗ will be indicated by a′′.b′′ and defined by
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〈a.a′, b〉 = 〈a′, ba〉, 〈a′.a′′, a〉 = 〈a′′, a.a′〉, 〈a′′.b′′, a′〉 = 〈b′′, a′.a′′〉

for all a′ ∈ A∗, a, b ∈ A.

We find the usual first and second topological centres of A∗∗, which are

Z(A∗∗) = {a′′ ∈ A∗∗ : b′′ 7→ a′′b′′ is weak∗-weak∗ continuous},

Zt(A∗∗) = {b′′ ∈ A∗∗ : a′′ 7→ a′′.b′′ is weak∗-weak∗ continuous}.

Following our previous notations, Z(A∗∗) = Z(π) = ZA(A∗∗) and Zt(A∗∗) =
Zt(π) = Zt

A(A∗∗).

A Banach algebra A is Arens regular when Z(A∗∗) = A∗∗, or equiva-
lently, Zt(A∗∗) = A∗∗; and according to [5], A is strongly Arens irregular

when Z(A∗∗) = Zt(A∗∗) = A.

For more information, the reader is directed to [4], [5], [7], [10] and [17].

Recall that a bounded left approximate identity (blai) in a Banach algebra
A is a bounded net (eα) in A such that ‖eαa − a‖ → 0. A bounded right
approximate identity (brai) is defined similarly. A bounded approximate
identity (bai) is a net (eα) which is both a blai and a brai.

The paper is organized as follows. In Section 2, we prove that if A has a
brai (blai), then the right (left) module action of A on A∗ is Arens regular
if and only if A is reflexive. This includes results proved by Arıkan in [3],
Ülger in [19], and Dales, Rodŕıguez and Velasco in [6].

In Section 3, we see in particular that if A has a brai (or a blai) and
the left module action of A on A(2k) (or A(2k−1)) is Arens regular for some
k ≥ 1, then A is Arens regular. If A has a brai (or a blai) and is strongly
left (right) irregular, then the left (right) module action of A on A(2k) (or
A(2k−1)) is strongly Arens irregular for every k ≥ 1.

In Section 4, we prove that A is Arens regular if A∗ factors and A is
a left ideal in A∗∗. A similar conclusion is obtained when A∗∗ (as a Ba-
nach A-bimodule) factors and A is a right ideal in A∗∗. We also relate the
factorization of A∗∗ to the weak∗ cluster points in A∗∗ of a bai of A.

In Section 5, we retake an example used by Ghahramani et al. in [12],
and we provide in Theorem 5.1 a class of Banach algebras which are left
strongly Arens irregular but not right strongly Arens irregular. This class
includes the recent example given by Dales and Lau in [5, Example 4.5].
Another type of example was also provided by Neufang in [16]. Theorem 5.1
enables us also to give simple examples of Banach algebras that are neither
Arens regular nor left strongly Arens irregular. An earlier example of the
latter type of algebras was given by Saghafi in [18].

In Section 6, we determine the topological centres of the second duals
of the so-called triangular Banach algebras. The Arens regularity of these
algebras has been studied by Forrest and Marcoux in [11]. We then use these
centres to show the following assertions:
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(i) A∗A = AA∗ is not sufficient for Z(A∗∗) = Zt(A∗∗);
(ii) Z(A∗∗) = Zt(A∗∗) and A∗A = A∗ is not sufficient for AA∗ = A∗;
(iii) there exists a Banach algebra A that is strongly irregular but not

weakly sequentially complete.

The results (ii) and (iii) are new examples answering the questions asked
by Lau and Ülger in [14]. Examples different from ours have also been given
in [12].

2. Arens regularity of the module actions of A on A∗. Arıkan
proved in [3] that a unital Banach algebra A is reflexive if and only if every
left module action of A is Arens regular. Ülger extended this theorem by
proving in [19] that a unital Banach algebra A is reflexive if and only if
the left module action of A on the dual A∗ of A is Arens regular. Dales,
Rodŕıguez and Velasco obtained in [6] the same result when A has just
a bounded left approximate identity (blai) but assumed that A is Arens
regular. With a short and simpler proof, and without the condition that A
is Arens regular, our first theorem includes all these results.

Theorem 2.1. Let A be a Banach algebra, and let π : A × A → A be

the product of A.

(1) If A has a bounded right approximate identity (brai), then A is re-

flexive if and only if the right module action of A on A∗ is Arens

regular , or equivalently , ZA(A∗∗∗) = A∗∗∗.

(2) If A has a bounded left approximate identity (blai), then A is reflex-

ive if and only if the left module action of A on A∗ is Arens regular ,
or equivalently , ZA∗(A∗∗) = A∗∗.

Proof. If A is reflexive, then the right and left module actions of A on
A∗ are obviously Arens regular.

For the converse, suppose that the right module action π∗ : A∗×A → A∗

of A on A∗ is Arens regular, let a′′′ ∈ A∗∗∗ be arbitrary, and (a′′α)α be a net

weak∗ converging to some a′′ in A∗∗. Then π∗∗∗∗(a′′′, a′′α)
weak∗

−−→ π∗∗∗∗(a′′′, a′′)
in A∗∗∗ (since the right action of A on A∗ is regular). Thus for every
b′′ ∈ A∗∗, we have

lim
α
〈a′′′, a′′αb′′〉 = lim

α
〈a′′′, π∗∗∗(a′′α, b′′)〉 = lim

α
〈π∗∗∗∗(a′′′, a′′α), b′′〉

= 〈π∗∗∗∗(a′′′, a′′), b′′〉 = 〈a′′′, π∗∗∗(a′′, b′′)〉 = 〈a′′′, a′′b′′〉.

Let e′′ be a cluster point of the brai of A in A∗∗. Then e′′ is a right identity
in A∗∗ (with the first Arens product which coincides with π∗∗∗), and so
a′′αe′′ = a′′α for each α and a′′e′′ = a′′. Accordingly,

lim
α
〈a′′′, a′′α〉 = lim

α
〈a′′′, a′′αe′′〉 = 〈a′′′, a′′e′′〉 = 〈a′′′, a′′〉,
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showing that the weak and weak∗ topologies coincide on A∗∗. Therefore A∗∗

is reflexive, and so also is A. This proves statement (1).
For the second statement, let B := A with the product ̺ = πt. Then B

is a Banach algebra with a brai, and ̺∗ (= πt∗) is Arens regular. Statement
(1) implies that B is reflexive, and so is A.

Corollary 2.1. Let A be a Banach algebra with a bai. Then the fol-

lowing assertions are equivalent.

(1) ZA∗(A∗∗) = A∗∗ (or π∗ : A×A∗ → A∗ is Arens regular).
(2) ZA(A∗∗∗) = A∗∗∗ (or πt∗t : A∗ ×A → A∗ is Arens regular).
(3) A is reflexive.

The following example shows that the condition that A has a bai is
essential for the corollary above to hold.

Example 2.1. Let X be a non-reflexive Banach space, x ∈ X and f ∈
X∗ such that 〈f, x〉 = 1. We define the product on A := X by ab = 〈f, b〉a.
Then A is clearly a Banach algebra with a right identity x (see [6]). It
is straightforward to check that the left action of A on A∗ is given by
aa′ = 〈f, a〉a′, and so a′′a′′′ = 〈a′′, f〉a′′′. The right module action of A
on A∗ is given by a′a = 〈a′, a〉f , and so a′′′a′′ = 〈a′′′, a′′〉〈·, f〉. Therefore we
have ZA∗(A∗∗) = A∗∗, but A is not reflexive, and ZA(A∗∗∗) 6= A∗∗∗ (equality
would imply that the weak and weak∗ topologies coincide on A∗∗ and force
A to be reflexive). This means that assertion (1) is equivalent to neither
(2) nor (3) even if A has a brai. Similarly, if we give B := X the product
ab = 〈f, a〉b, it is easy to see that ZB(B∗∗∗) = B∗∗∗, but ZB∗(B∗∗) 6= B∗∗. So
assertion (2) is equivalent to neither (1) nor (3) even if B has a blai.

We know from [21] that L1(G) is Arens regular if and only if it is reflexive
(equivalent to G being finite) for every locally compact group G (see [10]
for more details). Since L1(G) has a bai, we have the following corollary.

Corollary 2.2. Let G be a locally compact group. Then the following

assertions are equivalent.

(1) ZL∞(G)(L
1(G)∗∗) = L1(G)∗∗ (i.e., πt∗t : L∞(G) × L1(G) → L∞(G)

is Arens regular).
(2) ZL1(G)(L

1(G)∗∗∗) = L1(G)∗∗∗ (i.e., π∗ : L1(G) × L∞(G) → L∞(G)
is Arens regular).

(3) ZL1(G)(L
1(G)∗∗) = L1(G)∗∗ (i.e., π : L1(G) × L1(G) → L1(G) is

Arens regular).
(4) G is finite.

It is well known that a C∗-algebra is reflexive if and only if it is of finite
dimension. Since also every C∗-algebra has a bai, we have the following
corollary.
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Corollary 2.3. Let A be a C∗-algebra. Then the following assertions

are equivalent.

(1) ZA∗(A∗∗) = A∗∗ (or π∗ : A∗ ×A → A∗ is Arens regular).
(2) ZA(A∗∗∗) = A∗∗∗ (or πt∗t : A×A∗ → A∗ is Arens regular).
(3) A is of finite dimension.

We next give a theorem which will be useful later in Section 5 for finding
a class of Banach algebras which are left or right strongly Arens irregular
but are not strongly Arens irregular. This theorem is also a generalization
of Theorem 2.1.

Theorem 2.2. Let X be a right A-module with module action πr :
X × A → X. If there exists x′ ∈ X∗ such that π∗

r (x
′, X) = A∗ and

π∗∗
r (A∗∗, x′) = X∗, then ZA(X∗∗) = X.

Proof. Let x′′ ∈ ZA(X∗∗). We show that x′′ is weak∗ continuous from X∗

to C, so let y′α
weak∗

−−→ y′ in X∗. By the assumed factorization, there exists a
net (b′′α) in A∗∗ and b′′ ∈ A∗∗ such that y′α = π∗∗

r (b′′α, x′) and y′ = π∗∗
r (b′′, x′).

We show first that b′′α
weak∗

−−→ b′′ in A∗∗. So let a′ ∈ A∗ and pick x ∈ X such
that a′ = π∗

r (x
′, x). Then

lim
α
〈b′′α, a′〉 = lim

α
〈b′′α, π∗

r (x
′, x)〉 = lim

α
〈π∗∗

r (b′′α, x′), x〉 = lim
α
〈y′α, x〉

= 〈y′, x〉 = 〈π∗∗
r (b′′, x′), x〉 = 〈b′′, π∗

r (x
′, x)〉 = 〈b′′, a′〉.

Thus b′′α
weak∗

−−→ b′′ in A∗∗. Now since x′′ ∈ ZA(X∗∗), we have

lim
α
〈x′′, y′α〉 = lim

α
〈x′′, π∗∗

r (b′′α, x′)〉 = lim
α
〈π∗∗∗

r (x′′, b′′α), x′〉

= 〈π∗∗∗
r (x′′, b′′), x′〉 = 〈x′′, π∗∗

r (b′′, x′)〉 = 〈x′′, y′〉.

Since x′′ : X∗ → C is weak∗ continuous, it must be in X. The proof is
complete.

Corollary 2.4. Let A be a Banach algebra with a brai. Then ZA(A∗∗∗)
= A∗.

Proof. Let π : A × A → A be the product of A and let e′′ be a cluster
point of a brai of A in A∗∗. Then π∗

r (e
′′,A∗) = A∗ and π∗∗

r (A∗∗, e′′) = A∗∗.
Applying the theorem above, we obtain ZA(A∗∗∗) = A∗.

3. Arens regularity of the left module action of A on A(n). In this
section, we relate the Arens regularity and strong Arens irregularity of the
left module actions of A on the nth dual A(n) of A to the Arens regularity
and strong Arens irregularity of A. We prove, in particular, that not only
is L1(G) strongly Arens irregular but also Z

L1(G)(n)(L1(G)∗∗) = L1(G) for

every n ∈ N.
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Let X, Y and Z be normed spaces and let f : X×Y → Z be a continuous
bilinear map. Then we say that f factors if f is onto Z.

Theorem 3.1. Let A be a Banach algebra and let X be a left Banach

A-module with module action πl : A × X → X. If π∗∗
l : X∗∗ × X∗ → A∗

factors, then ZX(A∗∗) ⊆ ZA(A∗∗).

To prove this theorem, we need the following lemma.

Lemma 3.1. Let π : A×A → A be the product of A, and let X be a left

Banach A-module with module action πl : A× X → X. Then

(1) π∗(π∗∗
l (x′′, x′), a) = π∗∗

l (x′′, π∗
l (x

′, a)) (a ∈ A, x′′ ∈ X∗∗, x′ ∈ X∗),
(2) π∗∗

l (π∗∗∗
l (b′′, x′′), x′) = π∗∗(b′′, π∗∗

l (x′′, x′)) (b′′ ∈ A∗∗, x′′ ∈ X∗∗,

x′ ∈ X∗).

Proof. Let a, b ∈ A, x ∈ X, x′ ∈ X∗, x′′ ∈ X∗∗, and note first that

〈π∗
l (x

′, π(a, b), x〉 = 〈x′, πl(π(a, b), x)〉 = 〈x′, πl(a, πl(b, x))〉

= 〈π∗
l (x

′, a), πl(b, x)〉 = 〈π∗
l (π

∗
l (x

′, a), b), x〉

for every x ∈ X, showing that π∗
l (x

′, π(a, b) = π∗
l (π

∗
l (x

′, a), b). It follows that

〈π∗(π∗∗
l (x′′, x′), a), b〉 = 〈π∗∗

l (x′′, x′), π(a, b)〉 = 〈x′′, π∗
l (x

′, π(a, b)〉

= 〈x′′, π∗
l (π

∗
l (x

′, a), b)〉 = 〈π∗∗
l (x′′, π∗

l (x
′, a)), b〉,

which proves (1).
To prove (2), we apply (1):

〈π∗∗
l (π∗∗∗

l (b′′, x′′), x′), a〉 = 〈π∗∗∗
l (b′′, x′′), π∗

l (x
′, a)〉 = 〈b′′, π∗∗

l (x′′, π∗
l (x

′, a)〉

= 〈b′′, π∗(π∗∗
l (x′′, x′), a)〉 = 〈π∗∗(b′′, π∗∗

l (x′′, x′)), a〉,

as required.

Proof of Theorem 3.1. Let π : A × A → A be the product of A, a′′ ∈

ZX(A∗∗), and let b′′α
weak∗

−−→ b′′ in A∗∗. We must show that π∗∗∗(a′′, b′′α)
weak∗

−−→
π∗∗∗(a′′, b′′) in A∗∗. So let a′ ∈ A∗. Since π∗∗

l factors, there exist x′′ ∈ X∗∗

and x′ ∈ X∗ such that a′ = π∗∗
l (x′′, x′). Since we know that π∗∗∗

l (b′′α, x′′)
weak∗

−−→
π∗∗∗

l (b′′, x′′) in X∗∗, we see that

π∗∗∗
l (a′′, π∗∗∗

l (b′′α, x′′))
weak∗

−−→ π∗∗∗
l (a′′, π∗∗∗

l (b′′, x′′))

in X∗∗ (since a′′ ∈ ZX(A∗∗)). Therefore by Lemma 3.1(2), we have

lim
α
〈a′′b′′α, a′〉 = lim

α
〈a′′, π∗∗(b′′α, a′)〉 = lim

α
〈a′′, π∗∗(b′′α, π∗∗

l (x′′, x′))〉

= lim
α
〈a′′, π∗∗

l (π∗∗∗
l (b′′α, x′′), x′)〉 = lim

α
〈π∗∗∗

l (a′′, π∗∗∗
l (b′′α, x′′)), x′〉

= 〈π∗∗∗
l (a′′, π∗∗∗

l (b′′, x′′)), x′〉 = 〈a′′, π∗∗
l (π∗∗∗

l (b′′, x′′), x′)〉

= 〈a′′, π∗∗(b′′, π∗∗
l (x′′, x′)〉 = 〈a′′, π∗∗(b′′, a′)〉 = 〈a′′b′′, a′〉.

Therefore π∗∗∗(a′′, b′′α)
weak∗

−−→π∗∗∗(a′′, b′′) in A∗∗, as required.
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Lemma 3.2. Let A be a Banach algebra, let πln : A×A(n) → A(n) be the

left module action of A on A(n), and consider π∗∗
ln

: A(n+2) ×A(n+1) → A∗.

(1) If A has a blai , then π∗∗
ln

factors for every positive odd integer n.

(2) If A has a brai , then π∗∗
ln

factors for every positive even integer n.

Proof. (1) Let (eα) be a blai in A with a cluster point e′′ ∈ A∗∗. We
argue by induction and prove that π∗∗

l2k−1
(a′, e′′) = a′ for every k ∈ N and

a′ ∈ A∗. As usual we start with k = 1, and let a ∈ A be arbitrary. Then

〈π∗∗
l1

(a′, e′′), a〉 = 〈a′, π∗
l1
(e′′, a)〉 = 〈π∗

l1
(e′′, a), a′〉

= 〈e′′, πl1(a, a′)〉 = lim
α
〈eα, πl1(a, a′)〉

= lim
α
〈πl1(a, a′), eα〉 = lim

α
〈a′, eαa〉 = 〈a′, a〉,

hence π∗∗
l1

(a′, e′′) = a′, and so π∗∗
l1

factors.
Now we show, that for any a′ ∈ A∗ and a ∈ A, we have

〈π∗∗
l2k+1

(a′, e′′), a〉 = 〈π∗∗
l2k−1

(a′, e′′), a〉 (k ≥ 1),

which will clearly yield our claim. Using πln = πt∗t
rn−1

and πrn
= π∗

ln−1
for

every n ≥ 1, we obtain

〈π∗∗
l2k+1

(a′, e′′), a〉 = 〈π∗
l2k+1

(e′′, a), a′〉 = 〈e′′, πl2k+1
(a, a′)〉 = 〈a′, πr2k

(e′′, a)〉

= 〈πr2k
(e′′, a), a′〉 = 〈e′′, πl2k−1

(a, a′)〉 = 〈π∗
l2k−1

(e′′, a), a′〉

= 〈a′, π∗
l2k−1

(e′′, a)〉 = 〈π∗∗
l2k−1

(a′, e′′), a〉,

as required. Therefore, for every odd integer n ≥ 1, π∗∗
ln

factors.
(2) Suppose now that e′′ is a cluster point in A∗∗ of a brai (eα) of A.

Then, for n = 2, we have

〈π∗∗
l2

(e′′, a′), a〉 = 〈e′′, π∗
l2
(a′, a)〉 = 〈π∗

l2
(a′, a), e′′〉 = 〈a′, πl2(a, e′′)〉

= 〈πl2(a, e′′), a′〉 = 〈e′′, πr1(a
′, a)〉 = lim

α
〈eα, πr1(a

′, a)〉

= lim
α
〈πr1(a

′, a), eα〉 = lim
α
〈a′, aeα〉 = 〈a′, a〉,

and so π∗∗
l2

factors. As before, we next show that

〈π∗∗
l2k

(e′′, a′), a〉 = 〈π∗∗
l2k−2

(e′′, a′), a〉 (k ≥ 2).

Using πln = πt∗t
rn−1

and πrn
= π∗

ln−1
for every n ≥ 1, we obtain

〈π∗∗
l2k

(e′′, a′), a〉 = 〈e′′, π∗
l2k

(a′, a)〉 = 〈π∗
l2k

(a′, a), e′′)〉 = 〈a′, πl2k
(a, e′′)〉

= 〈πl2k
(a, e′′), a′〉 = 〈e′′, πr2k−1

(a′, a)〉 = 〈πr2k−1
(a′, a), e′′〉

= 〈a′, πl2k−2
(a, e′′)〉 = 〈π∗

l2k−2
(a′, a), e′′〉 = 〈e′′, π∗

l2k−2
(a′, a)〉

= 〈π∗∗
l2k−2

(e′′, a′), a〉.

Therefore, π∗∗
l2k

(e′′, a′) = π∗∗
l2k−2

(e′′, a′), implying by induction that π∗∗
ln

factors
for every even integer n ≥ 2.
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Theorem 3.2. Let A be a Banach algebra and k ≥ 1.

(1) If A has a blai , then ZA(2k−1)(A∗∗) ⊆ ZA(A∗∗).
(2) If A has a brai , then ZA(2k)(A∗∗) ⊆ ZA(A∗∗).

Proof. Apply Theorem 3.1 and Lemma 3.2.

Corollary 3.1. If A has a brai (blai) and the left module action of A
on A(n) is Arens regular for some positive even (odd) integer n, then A is

Arens regular.

Corollary 3.2. If A has a bai and is left strongly Arens irregular ,
then for every n ≥ 1, the left module action of A on A(n) is strongly Arens

irregular , i.e., ZA(n)(A∗∗) = A.

We know that for every locally compact group G, the group algebra
L1(G) is left strongly Arens irregular (see [13], [9], [15]). So we have the
following result.

Corollary 3.3. Let G be a locally compact group and n ≥ 1. Then

Z
L1(G)(n)(L1(G)∗∗) = L1(G).

Remark. The inclusions in Theorems 3.1 and 3.2 may be strict, as can
be seen from Corollary 2.3 for infinite-dimensional C∗-algebras.

4. Arens regularity and some factorizations. Let A be a Banach
algebra and X be a Banach A-bimodule. Then X factors A on the left

(right) if X = XA (X = AX). In this section, we see in particular how
Arens regularity is implied by the factorization of A∗ or A∗∗ when A is a
left or right ideal in A∗∗. When A has a bai with a weak∗ cluster point e′′

in A∗∗, Lau and Ülger related in [14] the factorization of A∗ to e′′. Here we
obtain some results relating the factorization of A∗∗ to e′′.

Theorem 4.1. Let A be a Banach algebra, X be a Banach A-bimodule

and regard X∗ as a Banach A-bimodule. If A is a left ideal in A∗∗ and X∗

factors A on the right , then ZA(X∗∗) = X∗∗.

Proof. Let x′′ ∈ X∗∗ and suppose that a′′α
weak∗

−−→ a′′ in A∗∗. We show that

x′′a′′α
weak∗

−−→x′′a′′ in X∗∗. Let x′ ∈ X∗. Then there exist a ∈ A and y′ ∈ X∗

such that x′ = ay′. Since A is a left ideal in A∗∗, we have a′′αa
weak∗

−−→ a′′a in A∗∗

if and only if a′′αa
weak
−→ a′′a in A. Since a 7→ ay′ : A → X∗ is weak-weak contin-

uous (see for example [8, Theorem V.3.15]), it follows that a′′αay′
weak
−→ a′′ay′

in X∗. Thus

lim
α
〈x′′a′′α, x′〉 = lim

α
〈x′′a′′α, ay′〉 = lim

α
〈x′′, a′′αay′〉 = 〈x′′, a′′ay′〉 = 〈x′′a′′, x′〉,

showing that x′′ ∈ ZA(X∗∗).
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Corollary 4.1. Let A be a left ideal in A∗∗.

(1) If A∗ factors A on the right , then A is Arens regular.

(2) If A∗∗ factors A on the right , then ZA(A∗∗∗) = A∗∗∗.

Theorem 4.2. Let A be a right ideal in A∗∗. In each of the following

situations, A is Arens regular.

(1) A∗ factors A on the left.

(2) A∗∗ factors A on the left.

Proof. Let a′′ ∈ A∗∗ and let b′′α
weak∗

−−→ b′′ in A∗∗. In each situation, we

must show that a′′b′′α
weak∗

−−→ a′′b′′ in A∗∗. For (1), let a′ ∈ A∗ and pick b′ ∈ A∗

and b ∈ A such that a′ = b′b. Then, since A is a right ideal in A∗∗,

lim
α
〈a′′b′′α, a′〉 = lim

α
〈a′′b′′α, b′b〉 = lim

α
〈ba′′b′′α, b′〉

= 〈ba′′b′′, b′〉 = 〈a′′b′′, b′b〉 = 〈a′′b′′, a′〉,

showing that a′′ ∈ Z(A∗∗). Thus A is Arens regular.
For the second situation, pick c′′ ∈ A∗∗ and a ∈ A such that a′′ = c′′a.

Since A is a right ideal in A∗∗, we see that ab′′α
weak
−→ ab′′ in A, and so again

by [8, Theorem V.3.15], ab′′αa′
weak
−→ ab′′a′ in A∗ for every a′ ∈ A∗. Thus

lim
α
〈a′′b′′α, a′〉 = lim

α
〈a′′, b′′αa′〉 = lim

α
〈c′′, ab′′αa′〉

= 〈c′′, ab′′a′〉 = 〈(c′′a)b′′, a′〉 = 〈a′′b′′, a′〉,

showing again that a′′ ∈ Z(A∗∗). Therefore A is Arens regular.

In [6, Section 5], it was proved that for a Banach algebra A, A∗ is an
A∗∗-submodule of A∗∗∗ if and only if A is Arens regular. Below we show
that in fact A∗ is always a ZA(A∗∗)-submodule of A∗∗∗.

Theorem 4.3. Let A be a Banach algebra. Then the following assertions

hold.

(1) A∗ is always a ZA(A∗∗)-submodule of A∗∗∗.

(2) If A∗ factors ZA(A∗∗) on the left and ZA(A∗∗) is a right ideal of

A∗∗, then A is Arens regular.

Proof. For (1), let a′ ∈ A∗ and a′′ ∈ ZA(A∗∗). We verify that a′a′′ as
an element of A∗∗∗ is weak∗ continuous from A∗∗ into C, and so it must be

in A∗. Let b′′α
weak∗
−−→ b′′ in A∗∗. Then

lim
α
〈a′a′′, b′′α〉 = lim

α
〈a′, a′′b′′α〉 = 〈a′, a′′b′′〉 = 〈a′a′′, b′′〉,

as required.
With statement (1) in mind, the proof of statement (2) is the same as

that of statement (1) in Theorem 4.2 with ZA(A∗∗) replacing A.
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It is known that if a Banach algebra A with a bai is a right ideal in
A∗∗ then WAP(A) = A∗A (see [20]). But the converse is not true since
WAP(A) = A∗A = A∗ whenever A is Arens regular. This has been adjusted
in [14, Theorem 3.6] by showing that WAP(A) = A∗A if and only if AA∗∗ ⊆
ZA(A∗∗). Next we further improve this theorem.

Theorem 4.4. Let the Banach algebra A have a bai. If ZA(A∗∗) is a

right ideal of A∗∗, then WAP(A) = A∗A. If , in addition, ZA(A∗∗) factors

A on the left , then these statements are equivalent.

Proof. Since ZA(A∗∗) is a right ideal in A∗∗, we see that

AA∗∗ ⊆ ZA(A∗∗)A∗∗ ⊆ ZA(A∗∗).

Applying [14, Theorem 3.6], we obtain WAP(A) = A∗A.

Suppose now that ZA(A∗∗) factors A on the left and WAP(A) = A∗A.
Then, by [14, Theorem 3.6], AA∗∗ ⊆ ZA(A∗∗). Let now a′′ ∈ A∗∗ and
b′′ ∈ ZA(A∗∗), and pick c′′ ∈ ZA(A∗∗) and a ∈ A such that b′′ = c′′a. Then
we have b′′a′′ = c′′(aa′′) ∈ ZA(A∗∗).

Theorem 4.5. Let the Banach algebra A have a brai (eα) and let X be

a right (left) Banach A-module. Then X factors A on the left (on the right)

if and only if xeα
weak
−→ x (eαx

weak
−→ x) in X for every x ∈ X.

Proof. Suppose that X factors A on the left, let x be any element in X

and write it as x = ya for some y ∈ X and a ∈ A. Note first that since

aeα
‖·‖
−→ a in A, we have aeα

weak
−→ a in A. Accordingly, for any x′ ∈ X∗,

lim
α
〈xeα, x′〉 = lim

α
〈yaeα, x′〉 = lim

α
〈aeα, x′y〉 = 〈a, x′y〉 = 〈ya, x′〉 = 〈x, x′〉,

and so xeα
weak
−→ x, as required.

For the converse, suppose that xeα
weak
−→ x in X for every x ∈ X. Since

XA is a closed subspace of X (see for example [4, Section 2.9] or [17, Theo-
rem 5.2.2]), this means that x ∈ XA, as required.

The theorem above was proved in [14, Lemma 2.1] for X = A∗. As a
corollary, Lau and Ülger proved that A∗ factors A if and only if A∗∗ has an
identity. When X = A∗∗, we have the following.

Corollary 4.2. Let A be a Banach algebra A and (eα) be a bai in A

with a weak∗ cluster point e′′ in A∗∗. If eα
weak
−→ e′′ in A∗∗, then A∗∗ factors

A on the left. If e′′ is also a left identity (for instance when A is Arens

regular), then the converse also holds.

Proof. The necessity follows directly from Theorem 4.5. In fact, a′′eα
weak
−→ a′′ since the map b′′ 7→ a′′b′′ : A∗∗ → A∗∗ is weak-weak continuous and
e′′ is a right identity in A∗∗.
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For the second statement, suppose that e′′ is a left identity for A∗∗. Then

again by Theorem 4.5, eα = e′′eα
weak
−→ e′′ in A∗∗.

Corollary 4.3. Let the Banach algebra A be a right ideal in A∗∗ and

let (eα) be a bai in A with a weak∗ cluster point e′′ in A∗∗. Then eα
weak
−→ e′′

in A∗∗ if and only if A∗∗ factors A on the left.

Proof. This follows from Theorem 4.2 and the corollary above.

5. Topological centres of module extensions of Banach algebras.

Let A be a Banach algebra and X be a Banach A-bimodule with module
actions πr and πl. Let B = X ⊕1 A as a Banach space so that

‖(x, a)‖ = ‖x‖ + ‖a‖ (a ∈ A, x ∈ X).

Then B is a Banach algebra with the product

(x, a)(y, b) = (xb + ay, ab).

The second dual B∗∗ of B is identified with X∗∗ ⊕1 A
∗∗ as a Banach space,

and the first Arens product on B∗∗ is given by

(1) (x′′, a′′)(y′′, b′′) = (x′′b′′ + a′′y′′, a′′b′′),

where a′′b′′ is as usual the first Arens product of a′′ and b′′ in A∗∗, x′′a′′ =
π∗∗∗

r (x′′, a′′) and a′′x′′ = π∗∗∗
l (a′′, x′′) for every x′′ ∈ X∗∗ and a′′ ∈ A∗∗. First,

we determine the first topological centre of B∗∗. As in [12] or [6], we see from
(1) that (x′′, a′′) ∈ Z(B∗∗) if and only if

(i) b′′ 7→ a′′b′′ : A∗∗ → A∗∗ is weak∗-weak∗ continuous,
(ii) y′′ 7→ a′′y′′ : X∗∗ → X∗∗ is weak∗-weak∗ continuous,
(iii) b′′ 7→ x′′b′′ : A∗∗ → X∗∗ is weak∗-weak∗ continuous.

Therefore we have

(2) Z(B∗∗) = ZA(X∗∗) × (ZX(A∗∗) ∩ Z(A∗∗)).

Secondly, we determine the second topological centre of B∗∗. The second
Arens product of B∗∗ is given by

(3) (x′′, a′′) · (y′′, b′′) = (x′′.b′′ + a′′.y′′, a′′ · b′′),

where a′′.b′′ is as usual the second Arens product of a′′ and b′′ in A∗∗,
x′′.a′′ = πt∗∗∗t

r (x′′, a′′) and a′′.x′′ = πt∗∗∗t
l (a′′, x′′) for every x′′ ∈ X∗∗ and

a′′ ∈ A∗∗. Accordingly, (y′′, b′′) ∈ Zt(B∗∗) if and only if

(i) a′′ 7→ a′′ · b′′ : A∗∗ → A∗∗ is weak∗-weak∗ continuous,
(ii) x′′ 7→ x′′.b′′ : X∗∗ → X∗∗ is weak∗-weak∗ continuous,
(iii) a′′ 7→ a′′.y′′ : A∗∗ → X∗∗ is weak∗-weak∗ continuous.

Therefore we have

(4) Zt(B∗∗) = Zt
A(X∗∗) × (Zt

X(A∗∗) ∩ Zt(A∗∗)).
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Now we are able to give a class of Banach algebras which are not strongly
Arens irregular but are left strongly Arens irregular.

Theorem 5.1. Let A be a strongly irregular Banach algebra and let X

be a non-reflexive right A-module with a module action πr : X × A → X

such that π∗
r (x

′, X) = A∗ and π∗∗
r (A∗∗, x′) = X∗ for some x′ ∈ X (these are

the conditions imposed on X in Theorem 2.2). Take the left module action

of A on X to be trivial. Then B = X ⊕1 A is left strongly Arens irregular ,
but not right strongly Arens irregular.

Proof. By Theorem 2.2, we have ZA(X∗∗) = X. Then, by (2), we have

Z(B∗∗) = X × (ZX(A∗∗) ∩ A) = X ×A = B.

In other words, B is left strongly Arens irregular. On the other hand, since
the left module action of A on X is trivial, Zt

A(X∗∗) = X∗∗. Then, by (4),

Zt(B∗∗) = X∗∗ × (Zt
X(A∗∗) ∩A) = X∗∗ ×A 6= B,

which means that B is not right strongly Arens irregular.

Remark. The careful reader would notice at this stage that if A is
reflexive instead of strongly Arens irregular in Theorem 5.1, then Zt(B∗∗) =
X∗∗ ×A = B∗∗, and so B is Arens regular while Z(B∗∗) = X ×A = B. This
is of course absurd unless X is also reflexive. Indeed, the proposition below
shows that this is the case.

Proposition 5.1. Let A and X be as in Theorem 2.2, i.e., X is a right

A-module with module action πr : X × A → X and x′ ∈ X∗ such that

π∗
r (x

′, X) = A∗ and π∗∗
r (A∗∗, x′) = X∗. If A is reflexive, then X is reflexive.

Proof. We show that the weak∗ and weak topologies coincide on X∗.

So let y′α
weak∗

−−→ y′ in X∗. By hypothesis, we write y′α = π∗∗
r (aα, x′) and y′ =

π∗∗
r (a, x′) for some net (aα) in A, a ∈ A and x′ ∈ X∗ (since A∗∗ = A). We

verify that in fact a is the weak limit of (aα) in A. So let a′ ∈ A∗ and write
a′ = π∗

r (x
′, x) for some x ∈ X. Then

〈aα, a′〉 = 〈aα, π∗
r (x

′, x)〉 = 〈π∗∗
r (aα, x′), x〉 = 〈y′α, x〉

weak∗

−−→〈y′, x〉 = 〈π∗∗
r (a, x′), x〉 = 〈a, π∗

r (x
′, x)〉 = 〈a, a′〉,

as required. We then apply [8, Theorem V.3.15] to see that the map a 7→
π∗∗

r (a, x′) : A → X∗ is weak-weak continuous, and accordingly, y′α =

π∗∗
r (aα, x′)

weak
−−→π∗∗

r (a, x′) = y′ in X∗.

Corollary 5.1. Let G be an infinite locally compact group. Consider

L∞(G) as an L1(G)-module with the natural right module action and the

trivial left module action. Then L∞(G) ⊕1 L1(G) is left strongly Arens ir-

regular , but not right strongly Arens irregular.
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Example 5.1. The construction above enables us also to give simple
examples of Banach algebras which are neither Arens regular nor strongly
Arens irregular. Let A be a Banach algebra as in Example 2.1. Then
ZA∗(A∗∗) = ZA(A∗∗) = A∗∗ and ZA(A∗∗∗) 6= A∗∗∗. For B = A∗ ⊕1 A,

we have Z(B∗∗) = ZA(A∗∗∗) × A∗∗. Therefore B∗∗ 6= Z(B∗∗) 6= B, showing
that B is neither Arens regular nor strongly Arens irregular.

Another example of such an algebra has been given by Saghafi in [18],
where she starts with a compact totally ordered space X which is a semi-
group under the multiplication xy = max{x, y}, takes a continuous regular
Borel measure µ on X with suppµ = X and considers the commutative
Banach algebra L1(µ) with convolution as multiplication, and proves that
the algebraic centre (which agrees with the topological centre in this case) of
L1(µ)∗∗ equipped with the first Arens product is not the whole of L1(µ)∗∗,
but is much larger than L1(µ).

6. Topological centres of triangular Banach algebras. In [11],
Forrest and Marcoux found necessary and sufficient conditions for the Arens
regularity of unital triangular Banach algebras. In this section, we find the
topological centres of triangular Banach algebras and we use these centres
to prove the following assertions:

(i) There exists a Banach algebra T such that T ∗ factors T only from
one side and Z(T ∗∗) = Zt(T ∗∗). This shows that the existence of
a bounded approximate identity in the algebra is necessary for the
validity of [14, Proposition 2.10].

(ii) There is a Banach algebra T such that T ∗T = T T ∗ but Z(T ∗∗) 6=
Zt(T ∗∗). This answers negatively question (6d) in [14].

(iii) There exists a Banach algebra T which is strongly Arens irregular,
but it is not weakly sequentially complete. This answers negatively
question (6j) in [14].

We should note that the Banach algebra in the list of questions given in [14]
is throughout assumed to have a bai, while our T in (ii) and (iii) is even
unital.

In [12], Ghahramani et al. also gave examples which are different from
ours to answer these questions.

Let A and B be Banach algebras, and suppose that X is a Banach A,B-
module; that is, X is a Banach space, a left A-module and a right B-module,
and the action πl of A and the action πr of B are continuous, that is,

‖πr(πl(a, x), b)‖ ≤ ‖a‖A‖x‖X‖b‖B

for all a ∈ A, x ∈ X, b ∈ B. For simplicity, we shall write πl(a, x) as ax and
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πr(x, b) as xb. We define the corresponding triangular Banach algebra by

T =

(

A X

0 B

)

with the sum and product being given by the usual 2× 2 matrix operations
and obvious internal module actions. The norm on T is

∥

∥

∥

∥

(

a x

0 b

)∥

∥

∥

∥

:= ‖a‖A + ‖x‖X + ‖b‖B.

We can extend the actions of A and B on X to actions of A∗∗ and B∗∗ on
X∗∗ via

a′′x′′ = π∗∗∗
l (a′′, x′′), x′′b′′ = π∗∗∗

r (x′′, b′′) for x′′ ∈ X∗∗, a′′ ∈ A∗∗, b′′ ∈ B∗∗.

As in [11], the first Arens product of T ∗∗ behaves just like matrix multipli-
cation with coordinate-level operations behaving like the first Arens product
of the building blocks. In other words, we have

(1)

(

a′′1 x′′
1

0 b′′1

)(

a′′2 x′′
2

0 b′′2

)

=

(

a′′1a
′′
2 a′′1x

′′
2 + x′′

1b
′′
2

0 b′′1b
′′
2

)

.

Similarly for the second Arens product of T ∗∗, we have

(2)

(

a′′1 x′′
1

0 b′′1

)

.

(

a′′2 x′′
2

0 b′′2

)

=

(

a′′1.a
′′
2 a′′1.x

′′
2 + x′′

1.b
′′
2

0 b′′1.b
′′
2

)

,

where a′′.x′′ = πt∗∗∗t
l (a′′, x′′) and x′′.b′′ = πt∗∗∗t

r (x′′, b′′) for every x′′ ∈ X∗∗,
a′′ ∈ A∗∗ and b′′ ∈ B∗∗.

Applying (1) and (2), we obtain

Theorem 6.1. Let T be as above. Then

Z(T ∗∗) =

(

Z(A∗∗) ∩ ZX(A∗∗) ZB(X∗∗)

0 Z(B∗∗)

)

,

Zt(T ∗∗) =

(

Zt(A∗∗) Zt
A(X∗∗)

0 Zt(B∗∗) ∩ Zt
X(B∗∗)

)

.

Suppose now that A is a commutative unital Banach algebra, and let ϕ

be an element of the spectrum of A. Then C is a Banach A-bimodule with
the following module actions:

ac = cϕ(a), ca = 0 (a ∈ A, c ∈ C).

We denote C by Cϕ as a Banach A-bimodule. Since C is a reflexive Banach
space, ZB(C∗∗

ϕ ) = Zt
A(C∗∗

ϕ ) = Cϕ. Let now A be a strongly Arens irregular
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Banach algebra (such as l1(Z) with convolution product) and let

T =

(

A Cϕ

0 A

)

.

Then Z(T ∗∗) = Zt(T ∗∗) = T . On the other hand, T ∗ factors T from the left
but does not factor from the right. Therefore we have the following corollary.

Corollary 6.1. There exists a Banach algebra T such that T ∗ factors

T from one side only and Z(T ∗∗) = Zt(T ∗∗).

We now answer question (6d) in [14].

Corollary 6.2. Let A be an infinite-dimensional unital C∗-algebra,
B = A and X = A∗. Then T is unital , T ∗ factors T but Z(T ∗∗) 6= Zt(T ∗∗).

Proof. Since A is Arens regular, Z(A∗∗) = Zt(A∗∗) = A∗∗. Let π :
A × A → A be the product of A. Then by Corollary 2.3, the left module
action of A on A∗ is not Arens regular since A is of infinite dimension. This
is equivalent to ZX(A∗∗) 6= A∗∗. We see from Theorem 6.1 that

Z(T ∗∗) =

(

ZX(A∗∗) ZA(X∗∗)

0 A∗∗

)

, Zt(T ∗∗) =

(

A∗∗ Zt
A(X∗∗)

0 Zt
X(A∗∗)

)

.

Thus Z(T ∗∗) 6= Zt(T ∗∗). Clearly T ∗ factors T since T is unital with a unit
element

(

I 0
0 I

)

, where I is the identity of A.

We now prove assertion (iii). Let A = B = l1(Z) with convolution prod-
uct, X = A∗ and let T =

(

A X
0 B

)

. Then T is unital, and it is easy to see that
Zt
A(X∗∗) = ZB(X∗∗) = A∗ since ℓ1(Z)∗∗ has an identity. On the other hand,

A is strongly Arens irregular; then by Theorem 6.1, T is strongly Arens
irregular. It is easy to show that T is weakly sequentially complete if and
only if A, B and X are weakly sequentially complete. Since we know that
X = l∞(Z) is not weakly sequentially complete, we have

Corollary 6.3. There exists a unital strongly Arens irregular Banach

algebra T which is not weakly sequentially complete.

Acknowledgments. We are indebted to the referee for the careful read-
ing of the paper and the detailed criticism which greatly improved the pre-
sentation of the paper.
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