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Homogeneity and non-coincidence of Hausdorff

and box dimensions for subsets of R
n

by

Anders Nilsson and Peter Wingren (Ume̊a)

Abstract. A class of subsets of R
n is constructed that have certain homogene-

ity and non-coincidence properties with respect to Hausdorff and box dimensions. For
each triple (r, s, t) of numbers in the interval (0, n] with r < s < t, a compact set
K is constructed so that for any non-empty subset U relatively open in K, we have
(dimH(U), dimB(U), dimB(U)) = (r, s, t). Moreover, 2−n

≤ Hr(K) ≤ 2nr/2.

1. Introduction and result. In this work we present a general con-
struction of Cantor type. It produces compact sets that have certain homo-
geneity properties and non-coinciding dimensions with respect to Hausdorff,
lower box and upper box dimensions. The result is formulated in the theo-
rem below. It says that for any given numbers r, s, t in (0, n] with r < s < t,
there is a compact set K in R

n such that the local dimensions equal the
global dimensions in the following sense. For any subset U relatively open
in K, we have

(dimH(U), dimB(U), dimB(U)) = (r, s, t).

It is well known, and easily seen from the definitions, that

(1) dimH(U) ≤ dimB(U) ≤ dimB(U).

In the literature there are many examples and constructions of classes of
compact sets K for which one or both inequalities in (1) are strict; see e.g.
[3], [2], [4], [5]. The backgrounds and directions of these constructions vary.
Since our goal is to establish a class of compact sets that have the above
homogeneity and non-coincidence property, it is natural to compare with
[4] and [5]. We believe that this comparison will throw some light on the
position of the present work in this area.
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Our result could be seen as a generalization of an elegant construction
by Pesin and Weiss [4, pp. 129–132]. Their construction allows room for
variation, and it is possible, within that scope, to produce sets that satisfy
the special homogeneity property. The special blend of different features in
our construction of K allows us to extend the result in [4] from compact sets
K in R

n, n = 2 with r, s, t in (0, log 2/log 3) to compact sets K in R
n for

n arbitrary and with r, s, t in (0, n]. The cost of the generalization is some
loss of elegance.

As an example of a more loosely related result, we mention the interest-
ing result of [5]. In that work, a construction of a compact subset of [0, 1] is
presented where a coutable number of small disjoint subintervals of [0, 1] are
chosen from right to left. Each of these intervals contains a subset Yl with
dimH(Yl) = s and dimP(Yl) = t, l = 1, 2, . . . . The union

⋃

Yl has the same
dimensions as Yl due to countable stability of Hausdorff and packing dimen-
sions. The lack of countable stability of box dimensions makes it possible to
arrange the Yl-sets when going from right to left in such a way that the box
dimensions deviate from the Hausdorff and packing dimensions. One way to
investigate the homogeneity and non-coincidence properties of the compact
sets in [4] and the present paper on one hand, and of the compact sets in
[5] on the other hand, is to study the function

D(x) = lim
δ→0

(

dimH(Uδ(x)), dimB(Uδ(x)), dimB(Uδ(x)), dimP(Uδ(x))
)

, x ∈ K,

where Uδ(x) = Bδ(x) ∩ K. For K in [5], 0 < r < s < t < 1 and r < u < t,

D(0) = (r, s, t, u) and D(x) = (s, s, t, t), x ∈ K \ {0}.
Thus, non-coincidence with respect to all of the four studied dimensions
holds locally only at the point x = 0. At all other x-values in K, the Haus-
dorff dimension and the lower box dimension coincide, as also do the upper
box dimension and the packing dimension. However, for [4] and for our re-
sult,

D(x) = (r, s, t, t) if x ∈ K.

Note that simultaneous homogeneity and non-coincidence is impossible to
reach for the upper box and packing dimension (see e.g. [1, p. 49]). Thus,
the following theorem is sharp.

Theorem. Given r, s, t ∈ (0, n], r < s < t, there is a compact set

K ⊂ R
n such that for each non-empty set U relatively open in K,

dimB(U) = t,(2)

dimB(U) = s,(3)

dimH(U) = r.(4)
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Remark 1. The proof of (4) includes the distinct result that the r-
dimensional Hausdorff measure of K is in the interval [2−n, 2nr/2]. It is also
possible to see from the proof that 0 < Hr(U) < ∞ for each non-empty set
U relatively open in K.

Remark 2. With a minor adjustment in the construction, it is possible
to allow r = 0, but in this case the r-dimensional Hausdorff measure will be
infinite, i.e. Hr(K) = ∞.

2. Construction features that facilitate the proof. We list these
features as (i)–(v) below.

(i) The set K is constructed by a Cantor set procedure. It is the inter-
section of a decreasing sequence of compact sets, i.e. K =

⋂

∞

i=0 Ki where
Ki ⊃ Ki+1 for all i. Each Ki is a finite union of closed dyadic cubes of side
length 2−i.

(ii) For each cube in such a compact union, at least one of its dyadic
subcubes of half the side length is chosen to be part of the next step (i.e.
union) in the construction. Moreover, for an infinite number of i, we have
Ki = Ki+1. Hence, each cube in the construction has an interior point that
belongs to K. We say that the cubes in the construction have the non-empty

interior property with respect to K. This can be used to prove the following
lemma.

Lemma. Let p1 < p2 ≤ q be positive integers. Let F be a collection of

closed dyadic cubes with side lengths in the interval [2−p2 , 2−p1 ]. Then F is

a cover of K if and only if F is a cover of Kq.

Proof. The sufficiency is obvious, so assume that F is a cover of K. Take
an arbitrary closed dyadic cube Q ⊂ Kq of side length 2−q. The interior of Q
must contain at least one point x ∈ K according to the non-empty interior
property with respect to K. Since F is a cover of K, there exists Q∗ ∈ F
that contains x. The only possible closed dyadic cubes that contain interior
points of Q are either subcubes of Q or cubes that contain Q. Since the side
length of Q is less than or equal to the side length of Q∗, we must have
Q ⊂ Q∗. Hence, F is a cover of Kq.

This property helps to control the number of dyadic cubes of a certain
side length that intersect the compact set K, and hence to reach the right
dimension properties.

(iii) The upper and lower box dimensions of K are determined by the
sequence

(5)

{

log nk(K)

− log 2−k

}∞

k=1
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where nk(K) is the number of dyadic cubes with side length 2−k that inter-
sect K. As a consequence, it is suitable to begin the construction by defining
sequences of integers with accumulation points t and s. To achieve (4), these
sequences should also have an accumulation point at r. We find it convenient
to define two sequences with greatest and smallest accumulation points t
and r, and coordinate them with respect to s. By using these sequences
to choose cubes according to (i) and (ii), we pave the way for the proof of
(2)–(4).

(iv) To make the calculations more transparent, we pick the number of
subcubes of a given cube to be a positive integer power of 2. Consequently,
we are able to write the general element in (5) as an arithmetical mean.

(v) This fifth and last feature is important for the proof of (4). Given
a positive integer m, the cubes in the construction with side lengths 2−m

are members of two special families. In each of these families all cubes have
the same future with respect to offspring subcubes, which may be different
from the future of the cubes in the other family, seen from a short term
perspective. However, in the long run, their futures are eventually the same.
The words the same future summarize what can only be understood from
the detailed proof and roughly speaking mean have the same number of

offspring subcubes.

3. Proof of the theorem. The proof is divided into three parts. In
part I, we construct two sequences of integers with some special properties.
In part II, we use them to construct two sequences of families of cubes in R

n.
The latter define a decreasing sequence of non-empty compact sets in R

n.
The set K is then defined to be the non-empty compact intersection of this
decreasing sequence. In part III, we prove that K has properties (2)–(4).

Proof. Part I. We define two sequences of integers named the 0-se-

quence and the 1-sequence, {α(j)(i)}∞i=1, j = 0, 1, where α(j)(i) ∈ {0, n}. The
values in these sequences are chosen consecutively, and each value depends
on the previous ones. In this process, the arithmetic means

α(j)(k) =
1

k

k
∑

i=1

α(j)(i), k = 1, 2, . . . , j = 0, 1,

play a role, as also does ε defined by ε = 1
2 min{t − s, s − r}. In each step,

we choose one element per sequence. The choices are made according to a
special rule, and the rules are repeated periodically. The steps included in
each such period are called a multistep. Multistep p starts with step σp−1+1
and ends with step σp, where {σp}∞p=1 is an increasing sequence of integers
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such that

(6) σp ≥ np(p + 1)/ε.

These numbers will be precisely defined later on. Thus, Multistep 1 consists
of steps i = 1, . . . , σ1 corresponding to choosing α(0)(i) and α(1)(i). Mul-
tistep p > 1 corresponds to choosing α(0)(i) and α(1)(i) for i = σp−1 + 1,
σp−1 + 2, . . . , σp. By describing how to choose elements in Multistep 1, and
in Multistep p + 1 given that Multistep p ≥ 1 is finished, the two sequences
are completely defined.

We now describe the successive choice of elements in the 0-sequence and
1-sequence. By introducing a special auxiliary sequence, we make it easier to
choose elements so that the sequences get the right properties. The auxiliary
sequence {ci}∞i=1 is defined by

ci =

{

0 if i = 1,

nH(s − ci−1) if i > 1,

where H(x) is the Heaviside function, i.e. 0 for negative x-values and 1 for
nonnegative ones, and

ci =
1

i

i
∑

j=1

cj .

Later we will use the property |s − ci| ≤ n/i for all i. This can easily be
shown by induction, but we omit the simple proof. Let S = {i : ci+1 = n}.
This set is unbounded since s > 0. In the process below, all σp will belong
to S.

Now, we begin with Multistep 1, and we choose σ1 ∈ S so that (6)
holds. This is possible because S is unbounded. For i = 1, . . . , σ1, choose
α(0)(i) = α(1)(i) = ci. This gives us α(0)(σ1) = α(1)(σ1) = cσ1 , hence

|s − α(j)(σ1)| ≤ n/σ1, j = 0, 1.

Now, suppose that Multistep p ≥ 1 is finished, so we have chosen values
for i = 1, . . . , σp. Furthermore, suppose that we have the starting conditions

α(0)(σp) = α(1)(σp) = cσp so that

|s − α(j)(σp)| ≤ n/σp, j = 0, 1,

where σp ∈ S and (6) holds. Hence, the starting conditions regulate the
distances between s and the last mean values in Multistep p. We will now
describe Multistep p + 1.

The elements in the 1-sequence are chosen for i = σp +1, . . . , σp+1 in the
following way. For i > σp, let α(1)(i) = n until α(1)(i) ≥ t− ε/p, which must
occur for some integer i = i1 because the mean values α(1)(i) will increase
towards n and t − ε/p < n. Furthermore, the definition of ε together with
(6) implies that α(1)(σp) < t − ε/p, so at least one value must be chosen in
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this way before the inequality is satisfied. Then, for i > i1, let α(1)(i) = 0
until α(1)(i) < r, which must occur for some integer i = i2 because the mean
values α(1)(i) will decrease towards 0 and r > 0. At least one value must be
chosen in this way before the inequality is fulfilled, by the same reasoning
as above. Now, for i > i2, let α(1)(i) = n until α(1)(i) = ci. This must occur
for some integer i = i3 because the function i 7→ ici − iα(1)(i) is a positive
integer multiple of n for i = i2. For i > i2, it decreases by 0 or n in each
step. Since ci = 0 for an infinite number of i, the function reaches 0 when i
is large enough. Finally, for i > i3, let α(1)(i) = ci until i = σp+1, which will
be defined later.

The elements in the 0-sequence are chosen for i = σp + 1, . . . , σp+1 in
the following way. For i > σp, let α(0)(i) = ci until i = i3, and then for
i > i3, let α(0)(i) = n until α(0)(i) ≥ t − ε/p for some integer i = i4. Now,
for i > i4, let α(0)(i) = 0 until α(0)(i) < r for some integer i = i5, and for
i > i5, let α(0)(i) = n until α(0)(i) = ci for some integer i = i6. For i > i6,
let α(0)(i) = ci until i = σp+1, which we can now define as an arbitrary
integer in S larger than max{i6, n(p + 1)(p + 2)/ε}. Note that the values il,
l = 1, . . . , 6, depend on p, but since this is obvious from the context we omit
it in the notation. Note, moreover, that for i = i6, i6 + 1, . . . , σp+1 we have
α(0)(i) = α(1)(i) = ci. Consequently,

|s − α(j)(σp+1)| ≤ n/σp+1, j = 0, 1.

This together with the choice of σp+1 implies that the starting conditions
for Multistep p+2 are satisfied. Induction now gives us the complete 0- and
1-sequences.

The 0-sequence and the 1-sequence defined above have the following
properties that we will use later. For the 1-sequence, we have

max{α(1)(i) : i = σp, σp + 1, . . . , σp+1} = α(1)(i1) ∈
[

t − ε

p
, t − ε

p + 1

)

,(7)

min{α(1)(i) : i = σp, σp + 1, . . . , σp+1} = α(1)(i2) ∈
[

r − n

i2
, r

)

,(8)

and

(9) |s − α(1)(i)| ≤ n/i, i = σp and i = i3, i3 + 1, . . . , σp+1.

For the 0-sequence, we have

max{α(0)(i) : i = σp, σp + 1, . . . , σp+1} = α(0)(i4) ∈
[

t − ε

p
, t − ε

p + 1

)

,(10)

min{α(0)(i) : i = σp, σp + 1, . . . , σp+1} = α(0)(i5) ∈
[

r − n

i5
, r

)

,(11)
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and

(12) |s − α(0)(i)| ≤ n/i, i = σp, σp + 1, . . . , i3 and i = i6, i6 + 1, . . . , σp+1.

To prove the properties (7)–(12) above, we use

(13) |α(j)(k) − α(j)(k − 1)|

=

∣

∣

∣

∣

α(j)(k − 1) · (k − 1) + α(j)(k)

k
− α(j)(k − 1) · k

k

∣

∣

∣

∣

=
|α(j)(k) − α(j)(k − 1)|

k
≤ n

k
.

The equality in (7) is obvious from the choice of i1, as also is the relation

α(1)(i1 − 1) < t − ε/p ≤ α(1)(i1).

This, together with (13) and (6), gives

α(1)(i1) = α(1)(i1) − α(1)(i1 − 1) + α(1)(i1 − 1) <
n

i1
+ t − ε

p

≤ t −
(

ε

p
− n

σp

)

≤ t − ε

(

1

p
− 1

p(p + 1)

)

= t − ε

p + 1
.

Hence, (7) is proved. Property (10) can be proved in the same way. Similarly,
it is obvious that the equality in (8) follows from the choice of i2, as does
the relation

α(1)(i2 − 1) ≥ r > α(1)(i2).

This, together with (13) and (6), gives

α(1)(i2) = α(1)(i2 − 1) − (α(1)(i2 − 1) − α(1)(i2)) ≥ r − n/i2.

Hence, (8) is proved. Property (11) can be proved in the same way. Property
(9) follows from the fact that for i = σp and i = i3, i3 + 1, . . . , σp+1 we
have α(1)(i) = ci. Similarly, property (12) follows from the fact that for
i = σp, σp + 1, . . . , i3 and i = i6, i6 + 1, . . . , σp+1 we have α(0)(i) = ci.

Part II. We will now define two sequences {F (j)(i)}∞i=0, j = 0, 1, where
each element F (j)(i) is a non-empty family of closed cubes in R

n. The union
of the cubes in F (0)(i) ∪ F (1)(i) is a non-empty compact subset of R

n, and
the families are chosen so that the corresponding sequence of compact sets
is decreasing. The set K is then defined to be the non-empty compact in-
tersection of the compact sets in this decreasing sequence.

The families of cubes are defined in a procedure similar to that described
for the 0-sequence and the 1-sequence in part I above. Each family of cubes
F (j)(i) is a subset of F(i) defined by

F(i) =

{ {[m1, m1 + 1] × · · · × [mn, mn + 1] : m1, . . . , mn ∈ Z} if i = 0,

{Q ⊂ R
n : 2i · Q ∈ F(0)} if i > 0.
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Note that each cube in F(i) has exactly 2n subcubes in F(i+1). Now, we be-
gin the process of choosing families. Let F (j)(0) = {[0, 1]n +(j, 0, . . . , 0)} for
j = 0, 1. Multistep 1 consists of choosing families for i = 1, . . . , σ1. Suppose
the family F (j)(i − 1) has been chosen for some i ≥ 1, and we are about to

choose F (j)(i). Each cube in F (j)(i−1) has 2n subcubes in F(i). Let 2α(j)(i) of

these belong to F (j)(i). Thus, the number of cubes in F (j)(i) is 2α(j)(i) times
the number of cubes in F (j)(i−1). This gives us the families in Multistep 1,

and for i = 1, . . . , σ1, the number of cubes in F (j)(i) is 2α(j)(i)·i, j = 0, 1.

Now, suppose that Multistep p ≥ 1 is finished, so that we have cho-
sen families for i = 0, 1, . . . , σp. We will now describe Multistep p + 1.
The families F (0)(σp) and F (1)(σp) have the same number of cubes since
α(0)(σp) = α(1)(σp). Each cube in F (0)(σp) ∪ F (1)(σp) has 2n subcubes in
F(σp + 1). Let 2n−1 of them belong to F (0)(σp + 1), and let the other 2n−1

subcubes belong to F (1)(σp + 1). Since σp ∈ S, we have α(j)(σp + 1) = n for

j = 0, 1, and thus, the number of cubes in F (j)(σp + 1) is 2α(j)(σp+1) times
the number of cubes in F (j)(σp).

For i = σp + 2, . . . , σp+1, the family F (j)(i− 1) has 2n subcubes in F(i).

Let 2α(j)(i) of these belong to F (j)(i). This finishes Multistep p + 1, and for
all i ≤ σp+1, the number of cubes in F (j)(i) is given by

(14) #F (j)(i) = 2α(j)(i)·i, j = 0, 1.

Part III. Now, we prove the dimension properties (2)–(4) for our set K.
We begin with (2) and (3) in the case when U = K. Let nk(K) be the number
of cubes in F(k) that intersect K; hence nk(K) is the number of cubes in
F (0)(k) ∪ F (1)(k) and possibly their closest neighbors from F(k). By using
(14), this can be estimated from below and above as

2N(k) ≤ nk(K) ≤ 2 · 3n · 2N(k),

where N(k) = max{α(j)(k) · k : j = 0, 1}. This gives

max
j=0,1

α(j)(k) ≤ lnnk(K)

− ln 2−k
≤ ln 2 · 3n

− ln 2−k
+ max

j=0,1
α(j)(k).

By (7) and (10), we have

lim
k→∞

max
j=0,1

α(j)(k) = t,

and by (9) and (12), we have

lim
k→∞

max
j=0,1

α(j)(k) = s.

This proves (2) and (3) if U = K. Now, suppose U is an arbitrary non-empty
and relatively open set in K, i.e. U = O ∩ K for some O open in R

n. Then
there must exist a Q ∈ F (0)(σp) ∪ F (1)(σp) for some positive integer p with
Q ⊂ O. Consider an arbitrary k > σp. We can estimate nk(Q ∩ K) from
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below by the number of cubes in F (0)(k) ∪ F (1)(k) that are subcubes to Q.
Since all cubes in F (0)(σp)∪F (1)(σp) have the same number of subcubes in
F (0)(k)∪F (1)(k), and #F (0)(σp) = #F (1)(σp), we can use (14) to make the
following estimate:

nk(Q ∩ K) ≥ #(F (0)(k) ∪ F (1)(k))

#(F (0)(σp) ∪ F (1)(σp))
= c(2α(0)(k)·k + 2α(1)(k)·k),

where
c =

1

#(F (0)(σp) ∪ F (1)(σp))
.

This gives
lnnk(Q ∩ K)

− ln 2−k
≥ ln c

− ln 2−k
+ max

j=0,1
α(j)(k).

By (7) and (10), we get dimB(Q ∩ K) ≥ t, and by (9) and (12), it follows
that dimB(Q∩K) ≥ s. The upper and lower box dimensions are monotone,
and Q ∩ K ⊂ O ∩ K ⊂ K, thus (2) and (3) follow.

Now, we prove (4), and we begin with the case U = K.
By considering net measures (see for example [1, p. 33]), and since K is

compact, it is easy to see that dimH(K) can be determined by examining
finite covers {Qi} of K where each Qi belongs to some F (j)(m) for a positive
integer m and j ∈ {0, 1} that depend on i.

To show the lower estimate of (4), dimH(K) ≥ r, we consider the class
of all families of finite covers of K with cubes from our construction and
of side length at most 2−σp for some positive integer p. We include all such
covers in our consideration if we first consider a subclass of covers, namely
those where the cubes have side lengths larger than 2−σν for a ν > p, and
then let ν → ∞.

Each cover in the above-mentioned subclass is a collection of cubes in our
construction, with side lengths in the interval (2−σν , 2−σp ]. Since there are
a finite number of such covers, we may choose a cover, F , that minimizes
the Carathéodory sum with respect to r. For each positive integer l, let
Kl = F (0)(l) ∪ F (1)(l).

Choose a largest cube, Q0, in the minimizing cover. We have Q0 ∈
F (j)(m) for some j = 0 or j = 1 and some m ∈ [σp, σν). Then take into
account any cube Q in Km. We identify Q and its dyadic subcubes of side
length not smaller than 2−σν and appearing in the construction with a finite
tree graph in the following way. The cube Q is viewed as the root node. From
this root, we have successive edges to nodes that correspond to subcubes of
half the side length in the construction. Thus, with this graph-theoretical
approach, a finite tree T (Q) is assigned to each cube Q ∈ Km in a natural
way via set inclusion. The collection of leaves from all trees is Kσν . From the
construction it follows that all trees, T (Q), with root cubes Q from F (j)(m)
are isomorphic.
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We now consider the chosen minimizing cover, F , and the corresponding
family F (j)(m). For each Q ∈ Km, let F(Q) consist of the cubes in F
that are subcubes to Q. We claim that the sums

∑

Qi∈F(Q) |Qi|r have the

same value for all Q ∈ F (j)(m). Assume otherwise; then there are cubes
Q1, Q2 ∈ F (j)(m) such that

(15)
∑

Qi∈F(Q1)

|Qi|r <
∑

Qi∈F(Q2)

|Qi|r.

Since F is a cover of K, the Lemma shows that F also covers Kσν . The
elements in Kσν are the leaves in the trees {T (Q) : Q ∈ Km}. Hence, for
each Q ∈ Km, the leaves in T (Q) are covered by F . This implies that the
unique path from each leaf in T (Q) to the root node must contain a node
in F . Another way of saying this is that F(Q) covers the leaves in T (Q).

By the isomorphism I from T (Q1) to T (Q2), the nodes F(Q1) in T (Q1)
correspond to some nodes, I(F(Q1)), in T (Q2). Thus, the unique path from
each leaf in T (Q2) to the root node must contain a node in I(F(Q1)). Hence,
I(F(Q1)) covers the leaves in T (Q2).

Now, if we remove the cubes in F(Q2) from F , and replace them with
those in I(F(Q1)), we get a new collection of cubes, F ′. From the reasoning
above, it is clear that F ′ also covers the leaves Kσν . Hence, by the Lemma,
F ′ is a cover of K. The Carathéodory sum of F ′ is smaller than that of F ,
because in the former, the partial sum

∑

Qi∈F(Q2) |Qi|r has been replaced

with
∑

Qi∈I(F(Q1))
|Qi|r, which is smaller according to (15).

This contradicts the minimizing property of F . Hence, the sum
∑

Qi∈F(Q) |Qi|r is the same for all Q ∈ F (j)(m). Moreover, this value must

be |Q0|r, since F(Q0) = {Q0}. This makes it possible to estimate the Cara-
théodory sum of F with respect to r in a simple way.

Since the number of cubes in F (j)(m) is 2α(j)(m)·m, it follows that
∑

Q∈F

|Q|r ≥
∑

Q∈F(j)(m)

∑

Qi∈F(Q)

|Qi|r =
∑

Q∈F(j)(m)

|Q0|r ≥ 2α(j)(m)·m2−mr.

From (8) and (11), it follows that α(j)(m) ≥ r−n/m, and using this we get
∑

Q∈F

|Q|r ≥ 2(r−n/m)m2−mr = 2−n.

Since F is a cover that minimizes the Carathéodory sum with respect to r,
this shows that the lower bound 2−n is valid for all covers under considera-
tion, i.e. covers consisting of a collection of cubes in our construction with
side lengths in (2−σν , 2−σp ]. Moreover, the lower bound 2−n does not depend
on p or ν. Hence, by letting ν → ∞ and then p → ∞, we get Hr(K) ≥ 2−n,
and thereby dimH(K) ≥ r.
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We now show the upper estimate dimH(K) ≤ r. Consider a cover of K
consisting of the cubes in

F = F (1)(i2) ∪ F (0)(i5),

in Multistep p+1. The number of cubes in this cover, #F , can be estimated
with (8) and (11) as

#F (1)(i2) = 2α(1)(i2)·i2 < 2ri2 , #F (0)(i5) = 2α(0)(i5)·i5 < 2ri5 .

This gives us

∑

Q∈F

|Q|r < 2ri2 · (
√

n 2−i2)r + 2ri5 · (
√

n 2−i5)r = 2nr/2.

Letting p → ∞ gives us Hr(K) ≤ 2nr/2, so dimH(K) ≤ r.

This proves dimH(U) = r if U = K. Now, consider an arbitrary non-
empty set U that is relatively open in K, i.e. U = O∩K for some O open in
R

n. Since O is open, there must exist a cube Q∗ ⊂ O that belongs to F (j)(σp)
for some j ∈ {0, 1} and p ≥ 1. All cubes in F = F (0)(σp)∪F (1)(σp) have the
same future, in the sense that they have the same number of subcubes in
the subsequent families. This implies that dimH(Q1 ∩ K) = dimH(Q2 ∩ K)
for all Q1, Q2 ∈ F . This gives

dimH(K) = dimH

(

⋃

Q∈F

(Q ∩ K)
)

= max{dimH(Q ∩ K) : Q ∈ F}

= dimH(Q∗ ∩ K) ≤ dimH(O ∩ K)

≤ dimH(K).

Hence, since U = O ∩ K and we already know that dimH(K) = r, we have
dimH(U) = r. This concludes the proof of the theorem.
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