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Sequences of 0’s and 1’s: sequence spaces

with the separable Hahn property

by

Maria Zeltser (Tallinn)

Abstract. In [3] it was discovered that one of the main results in [1] (Theorem 5.2),
applied to three spaces, contains a nontrivial gap in the argument, but neither the gap
was closed nor a counterexample was provided. In [4] the authors verified that all three
above mentioned applications of the theorem are true and stated a problem concerning the
topological structure of one of these three spaces. In this paper we answer the problem
and give a counterexample to the theorem in doubt. Also we establish a new way of
constructing separable Hahn spaces.

Let χ denote the set of all sequences of 0’s and 1’s and let χ(E) denote
the linear hull of χ ∩ E. Given a sequence space E we consider the natural
order on it, i.e. for x, y ∈ E with x = (xk), y = (yk) we set x ≤ y whenever
xk ≤ yk for every k ∈ N. This order defines the positive cone

E+ := {x ∈ E | x ≥ 0} = {x ∈ E | xk ≥ 0 (k ∈ N)}

on E.

For other notations and preliminary results we refer the reader to [1], [3]
and [2].

1. Introduction. In [1] (see also [5] and [8]) the authors considered
three types of Hahn properties. A sequence space E is said to have the
Hahn property, the separable Hahn property and the matrix Hahn property

if the implication

χ(E) ⊂ F ⇒ E ⊂ F

holds whenever F is any FK-space, a separable FK-space and a matrix do-
main cA respectively. Evidently the Hahn property implies the separable
Hahn property and the latter implies the matrix Hahn property. It was
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shown in [1, Theorem 5.3], and [8, Theorem 1.3] that the converse implica-
tions fail in general.

In [3] it was pointed out that the paper [1] by G. Bennett, J. Boos and
T. Leiger contains a nontrivial gap in the proof of Theorem 5.2. This theorem
is one of the main results of the paper and it was applied three times (cf. [1,
(G) in Section 6, Theorem 6.4, Theorem 5.3]): for the space |ac|0 of strongly
almost-null sequences, ℓ∞ ∩ zα with z ∈ ℓ∞ \ ℓ1, and ℓ∞(|λ|), where (λk) is
an index sequence satisfying

λ1 = 1 and sup
k

(λk+1 − λk) = ∞.(1.1)

In Theorem 5.2 of [1] the authors stated that for a monotone sequence
space E containing ϕ the following conditions are equivalent:

(i) E has the matrix Hahn property;
(ii) E has the separable Hahn property;
(iii) χ(E)β = Eβ .

However, in the proof of (iii)⇒(ii) a false argument was used (see [3] for
details).

In [3, Theorem 2] J. Boos and T. Leiger showed that the equivalence
(i)⇔(ii) holds for any monotone sequence space containing ϕ. Moreover, it
is well known that (i)⇒(iii) is valid for any sequence space E. So only the
implication (iii)⇒(ii) has not been settled.

In [7] it was shown that the theorem in doubt is true for E = |ac|0
regardless of the validity of that theorem. In [4] a gliding hump argument
was applied to show that two other applications (for ℓ∞(|λ|) and ℓ∞ ∩ zα)
of the theorem in [1] are valid.

We note that in the proof of the matrix Hahn property of ℓ∞(|λ|) the
authors actually made use of the matrix Hahn property of ℓ∞. Using the
same idea of proof we will show in this paper that any sequence space

X(|λ|, 1) :=
{

x ∈ ω
∣

∣

∣

(

λn+1−1
∑

k=λn

|xk|
)

n
∈ X

}

has the matrix Hahn property (even the separable Hahn property) whenever
X is positively solid and has the matrix Hahn property. This also gives us a
way of constructing new separable Hahn spaces.

Now we will verify that the implication (iii)⇒(ii) does not hold in general.

Theorem 1.1. There exists a monotone sequence space E satisfying

χ(E)β = Eβ , but failing to have the matrix Hahn property.

Proof. Let E := 〈(c0C1
∩ χ) ∪ ({x} · χ)〉, where C1 is the Cesàro mean

operator and x is constructed as follows. Let xk = 1/k for k = 1, . . . , λ1,
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where λ1 ∈ N is chosen such that

1

λ1

λ1
∑

k=1

xk ≤ 2−1

(this can be done since C1 is regular). Now we set xk := 1 − 1/k for k =
λ1 + 1, . . . , λ2, where we choose λ2 > λ1 such that

1

λ2

λ2
∑

k=1

xk ≥ 1 − 2−1

(here we also make use of the regularity of C1). Proceeding in this way, for
i > 1 we set xk := 1/k for k = λ2i−2 + 1, . . . , λ2i−1, where λ2i−1 > λ2i−2 is
chosen such that

1

λ2i−1

λ2i−1
∑

k=1

xk ≤ 2−i(1.2)

and then we set xk := 1 − 1/k for k = λ2i−1 + 1, . . . , λ2i, where λ2i > λ2i−1

is taken such that

1

λ2i

λ2i
∑

k=1

xk ≥ 1 − 2−i.(1.3)

Evidently, E is monotone, E ⊂ ℓ∞ and it can be verified that E ∩ χ =
c0C1

∩ χ.
We will prove that Eβ = (E ∩ χ)β. First we note that since T ⊂ E ∩

χ ⊂ ℓ∞ and T β = ℓ1, we have (E ∩ χ)β = ℓ1. In view of the inclusions
E ∩ χ ⊂ E ⊂ ℓ∞, also Eβ = ℓ1. On the other hand, in view of (1.2) and
(1.3), x 6∈ cC1

, so E 6⊂ cC1
.

Hence the implication (iii)⇒(ii) of Theorem 5.2 in [1] does not hold.

Now coming back to the spaces ℓ∞∩zα and ℓ∞(|λ|), we answer the prob-
lem stated in [4]. It was shown there that both ℓ∞ ∩ zα and ℓ∞(|λ|) as well
as their β-dual spaces are solid BK-spaces. Moreover, the linear functional
defined by any element y of the β-dual was shown to be continuous. For
ℓ∞(|λ|) the authors proved that the norm of this functional is equal to the
norm of y in the β-dual space while for ℓ∞ ∩ zα they only succeeded in veri-
fying that the norm of the functional is less than or equal to the norm of y.
So they asked whether equality holds. The following example demonstrates
that the answer is negative.

Example. We use the notation of [4]:

E := ℓ ∩ zα and F := Eβ = ℓ1 + ℓ∞ · {z}.

We consider

z =

(

1

k

)

and y =

(

1

2k
+

1

k

)

.
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Evidently y ∈ ℓ1 + ℓ∞ · {z}. To evaluate ‖y‖F , consider a representation
y = v + wz, where

v =

(

1

2k
−

αk

k

)

∈ ℓ1 and w = (1 + αk) ∈ ℓ∞.

For αk = k/2k (k ∈ N) we get ‖w‖∞ + ‖v‖1 = 3/2, so ‖y‖F ≤ 3/2. We will
show that ‖w‖∞ + ‖v‖1 ≥ 3/2 for (αk) 6= (k/2k), hence ‖y‖F = 3/2 follows.
Note that for all (αk) we get

‖w‖∞ + ‖v‖1 = sup
k

|1 + αk| +
∑

k

∣

∣

∣

∣

1

2k
−

αk

k

∣

∣

∣

∣

≥ |1 + α1| +

∣

∣

∣

∣

1

2
− α1

∣

∣

∣

∣

.

If α1 ∈ [−1, 1/2], then |1 + α1| + |1/2 − α1| = 1 + α1 + 1/2 − α1 = 3/2. For
α1 < −1 we get |1 + α1|+ |1/2− α1| = −2α1 − 1/2 > 3/2 and for α1 > 1/2
we get |1 + α1| + |1/2 − α1| = 2α1 + 1/2 > 3/2. So ‖y‖F = 3/2.

In order to determine the operator norm ‖fy‖ of fy we fix x ∈ E with
‖x‖E = ‖x‖∞ +

∑

k |xk/k| = 1. We estimate
∣

∣

∣

∑

k

xkyk

∣

∣

∣
≤

∑

k

|xk|

k
+

∑

k

|xk|

2k
≤

∑

k

|xk|

k
+ ‖x‖∞

∑

k

1

2k

=
∑

k

|xk|

k
+ ‖x‖∞ = 1.

Therefore ‖fy‖ ≤ 1 < ‖y‖F .

2. Generalization of ℓ∞(|λ|). Throughout this section we assume that
1 ≤ p, q ≤ ∞. For p ∈ (1,∞) we define p′ to be the number satisfying
1/p + 1/p′ = 1. We also use the usual convention that p′ = ∞ for p = 1
and p′ = 1 for p = ∞. Most of the proofs in this section are carried out for
p ∈ (1,∞). The argument for the cases p = 1 and p = ∞ is analogous.

Given a subset X of ω, an index sequence (λk) satisfying (1.1) and p
with 1 ≤ p ≤ ∞ we define

X(|λ|, p) := {x ∈ ω | T p(x) := ((‖x[λn+1−1] − x[λn−1]‖p)n) ∈ X}.

Note that setting X = ℓq we obtain the space ℓ(λ, p, q) introduced in [6].

If X is a sequence space, then X(|λ|, p) is closed under scalar multipli-
cation. To guarantee that X(|λ|, p) is also closed under vector addition, we
need to demand that X is positively solid, i.e., satisfies the condition

u ∈ X, 0 ≤ v ≤ u ⇒ v ∈ X.

Indeed, if X is positively solid and x, y ∈ X(|λ|, p), then by the Minkowski
inequality,

0 ≤ T p(x + y) ≤ T p(x) + T p(y),
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hence T p(x+y) ∈ X, implying x+y ∈ X(|λ|, p). So if X is a positively solid
sequence space, then X(|λ|, p) is a sequence space.

On the other hand, we will show that if X is not positively solid, then
X(|λ|, p) is not a vector space . Indeed, by assumption we can find u, v ∈ ω
with 0 ≤ v ≤ u and u ∈ X, but v 6∈ X. We set xλn

:= vn, xλn+1 :=
(up

n − vp
n)1/p, yλn

:= vn, yλn+1 := −(up
n − vp

n)1/p (n ∈ N) and xk := yk := 0
for k 6∈ {λn, λn + 1 | n ∈ N}. Then

(

λn+1−1
∑

k=λn

|xk|
p
)1/p

=
(

λn+1−1
∑

k=λn

|yk|
p
)1/p

= un (n ∈ N).

So x and y are in X(|λ|, p). On the other hand,

(

λn+1−1
∑

k=λn

|xk + yk|
p
)1/p

= 2vn (n ∈ N),

so x + y 6∈ X(|λ|, p). Hence X(|λ|, p) is not a vector space.

Evidently any solid space is positively solid. On the other hand, bs and
cs are positively solid spaces which are not solid. It is easy to verify that
a sequence space is solid if and only if it is monotone and positively solid.
Note also that if X is positively solid, then X(|λ|, p) is solid. Hereafter we
suppose that X is positively solid and contains ϕ. Hence the space 〈X+〉 is
solid.

Evidently, X(|λ|, p)=X+(|λ|, p). Hence in particular ℓ(|λ|, p)=cs(|λ|, p)
= bs(|λ|, p) and more generally, X1(|λ|, p) = X2(|λ|, p) if X+

1 = X+
2 .

Proposition 2.1. Let ξ ∈ {α, β, γ}. Then (X(|λ|, p))ξ = (X+)α(|λ|, p′).

Proof. Since X(|λ|, p) is solid, it is sufficient to show that (X(|λ|, p))α =
(X+)α(|λ|, p′). Let y ∈ (X+)α(|λ|, p′) and x ∈ X(|λ|, p). Then by Hölder’s
inequality,

∑

k

|ykxk| ≤
∑

n

(

λn+1−1
∑

k=λn

|xk|
p
)1/p(

λn+1−1
∑

k=λn

|yk|
p′

)1/p′

=
∑

n

[T p(x)]n[T p′(y)]n < ∞.

Hence (X(|λ|, p))α ⊃ (X+)α(|λ|, p′).

Now suppose, contrary to our claim, that there exists y ∈ (X(|λ|, p))α \
(X+)α(|λ|, p′). Then u := T p′(y) 6∈ (X+)α, so we can find z ∈ X+ such that
∑

n |unzn| =
∑

n unzn = ∞. We choose a sequence (εn) with 0 < εn < un

(n ∈ N) such that
∑

n εnzn < 1.
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For every n ∈ N we consider the functional

fn : lλn+1−λn
p → R, fn(t) =

λn+1−1
∑

k=λn

yktk−λn+1.

These functionals are continuous and satisfy

‖fn‖ = ‖(yk)
λn+1−1
k=λn

‖p′ = [T p′(y)]n = un (n ∈ N).

So we can find x ∈ ω such that

[T p(x)]n = zn and |fn((xk)
λn+1−1
k=λn

)| > ([T p′(y)]n − εn)zn (n ∈ N).

Hence T p(x) = z ∈ X+ ⊂ X, therefore x ∈ X(|λ|, p). On the other hand,

∑

k

|xkyk| ≥
∑

n

∣

∣

∣

λn+1−1
∑

k=λn

xkyk

∣

∣

∣
≥

∑

n

([T p′(y)]n − εn)zn ≥
∑

n

unzn − 1 = ∞,

hence y 6∈ (X(|λ|, p))α. This contradiction proves that y ∈ (X+)α(|λ|, p′).
Hence (X(|λ|, p))α = (X+)α(|λ|, p′).

Lemma 2.2. Let (X, τX) be a K-space with the topology generated by the

system of seminorms {p | p ∈ P}. Then X(|λ|, q) is a K-space with the

topology τ generated by the system of seminorms {p̃ | p ∈ P} defined by

p̃(x) = p(T q(x)) (x ∈ X(|λ|, q); p ∈ P).

Proof. To show that X(|λ|, q) is a K-space, we suppose that (x(n)) con-
verges to x in (X(|λ|, q), τ). Then, since X is a K-space, we have

[T q(x(n) − x)]i =
(

λi+1−1
∑

k=λi

|x
(n)
k − xk|

q
)1/q

→ 0 as n → ∞ (i ∈ N).

Since

|x
(n)
k − xk| ≤

(

λi+1−1
∑

j=λi

|x
(n)
j − xj |

q
)1/q

(λi ≤ k < λi+1; i, k ∈ N),

the K-property of (X(|λ|, q), τ) follows.

In order to spread an FK-property from X to X(|λ|, q), we assume that
the topology of X is consistent with the natural order. More precisely, we
asssume that seminorms {pk} generating the FK-topology of X satisfy

u, v ∈ X, 0 ≤ u ≤ v ⇒ pk(u) ≤ pk(v) (k ∈ N).(2.4)

Moreover, we require the condition

pk(u) = sup
n

pk(u
[n]) (k ∈ N; u ∈ X+).(2.5)

Note that (2.5) is stronger than the AB-property and, on the assumption
that (2.4) is satisfied, weaker than the AK-property. Obviously the norms
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‖ ‖q (1 ≤ q ≤ ∞) and ‖ ‖bs satisfy both (2.4) and (2.5) while ‖ ‖bv fails to
have both (2.4) and (2.5).

Proposition 2.3. Let X be an FK-space with the topology τX generated

by a system of seminorms {pk} satisfying (2.4) and (2.5). Then X(|λ|, q) is

an FK-space with the topology τ generated by the system of seminorms {p̃k}
defined by

p̃k(x) = pk(T
q(x)) (x ∈ X(|λ|, q); k ∈ N).

Proof. In view of Lemma 2.2 it is sufficient to prove that (X(|λ|, q), τ)
is complete. Suppose that (x(n)) is a Cauchy sequence in (X(|λ|, q), τ). By

the K-property of (X(|λ|, q), τ) the sequence (x
(n)
k ) is a Cauchy sequence for

every k ∈ N, hence (x(n)) converges coordinatewise to some x ∈ ω. Since

|[T q(x(m))]i − [T q(x(n))]i| ≤ [T q(x(m) − x(n))]i (i ∈ N),

(2.4) implies that T q(x(n)) is a Cauchy sequence in (X, τX), hence converges
to some z ∈ X. By the K-property of (X, τX) we have

[T q(x(n))]i =
(

λi+1−1
∑

k=λi

|x
(n)
k |q

)1/q
→ zi as n → ∞ (i ∈ N).

On the other hand, by the K-property of (X(|λ|, q), τ) it follows that

(

λi+1−1
∑

k=λi

|x
(n)
k |q

)1/q
→

(

λi+1−1
∑

k=λi

|xk|
q
)1/q

as n → ∞ (i ∈ N).

Hence T q(x) = z ∈ X, implying x ∈ X(|λ|, q). Now we prove that x(n) → x
in (X(|λ|, q), τ). We set u(n) := T q(x(n)−x) (n ∈ N). Let ε > 0 and k, s ∈ N.
We choose N ∈ N such that pk(T

q(x(i) − x(j))) ≤ ε/2 for i, j ≥ N . In view
of the K-property we can choose i0 ≥ N such that

λs+1−1
∑

r=1

|x(i0)
r − xr|pk(e

r) ≤
ε

2
.

Then for every i ≥ N by (2.4) we get

pk((u
(i))[s]) ≤ pk(T

q(x(i) − x(i0))) +

λs+1−1
∑

r=1

|x(i0)
r − xr|pk(e

r) ≤ ε.

Then by (2.5) also pk(u
(i)) ≤ ε for i ≥ N , hence x(n) → x in (X(|λ|, q), τ),

implying that (X(|λ|, q), τ) is complete.

Lemma 2.4. If 1 ≤ p < q ≤ ∞, then X(|λ|, p) ⊂ X(|λ|, q).
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Proof. For p < q, n ∈ N and x ∈ ω we get

0 ≤ [T q(x)]n ≤ [T p(x)]n (n ∈ N).

Since X is positively solid, T p(x) ∈ X implies T q(x) ∈ X.

Remark 2.5. 1) Evidently X(|λ|, p) = X(|λ|, q) for any 1 ≤ p, q ≤ ∞
if X+ = |ω|. We also construct an example of X which satisfies the first
equality, but X+ ( |ω|. Let (λn) be an index sequence satisfying (1.1). We
set

X := {z ∈ ω | λn+1−λn
√

|zn| → 0}

and note that X is solid. Since

λn+1−λn
√

[T∞(x)]n ≤ λn+1−λn
√

[T 1(x)]n ≤ λn+1−λn
√

(λn+1 − λn)[T∞(x)]n

for every n ∈ N, we get

lim
n

λn+1−λn
√

[T∞(x)]n = lim
n

λn+1−λn
√

[T 1(x)]n.

Hence Lemma 2.4 implies X(|λ|, 1) = X(|λ|, p) = X(|λ|,∞) for every p > 1.

2) For any p, q with 1 < p < q < ∞ we have

ℓ∞(|λ|) = ℓ∞(|λ|, 1) ( ℓ∞(|λ|, p) ( ℓ∞(|λ|, q) ( ℓ∞(|λ|,∞) = ℓ∞.

To prove ℓ∞(|λ|, p) ( ℓ∞(|λ|, q) for 1 ≤ p < q < ∞ we define xk :=
1/(λn+1 − λn)1/q for λn ≤ k < λn+1 and n ∈ N. Then

sup
n

[T q(x)]n = 1, sup
n

[T p(x)]n = sup
n

(λn+1 − λn)(q−p)/qp = ∞.

So x ∈ ℓ∞(|λ|, q) \ ℓ∞(|λ|, p). To verify ℓ∞(|λ|, q) ( ℓ∞ we consider x = e.

In [4, Proposition 2.1] it was shown that

(χ ∩ ℓ∞(|λ|, 1))α = (ℓ∞(|λ|, 1))α = ℓ1(|λ|,∞) = |ℓ∞|α(|λ|,∞).

We will prove that the same statement holds if we take X instead of ℓ∞ on
assumption χ(X)α = (X+)α (which is satisfied for X = ℓ∞).

Lemma 2.6. Let X satisfy χ(X)α = (X+)α. Then

1) (χ ∩ X(|λ|, 1))α = (χ ∩ X(|λ|, 1))β = (X+)α(|λ|,∞);

2) (χ ∩ X(|λ|,∞))α = (χ ∩ X(|λ|,∞))β = (X+)α(|λ|, 1).

Proof. 1) Since χ ∩ X(|λ|, 1) is monotone and (χ ∩ X(|λ|, 1))α ⊃
(X(|λ|, 1))α, it is sufficient to prove that (χ ∩ X(|λ|, 1))α ⊂ (X(|λ|, 1))α =
(X+)α(|λ|,∞). Let y ∈ (χ∩X(|λ|, 1))α\(X+)α(|λ|,∞). Then u := T∞(y) 6∈
(X+)α = χ(X)α, so we can find z ∈ χ∩X with

∑

n |unzn| =
∑

n unzn = ∞.
We put xξn

= zn and xi := 0 for i 6∈ {ξk | k ∈ N}, where ξn is the minimal
index i0 ∈ [λn, λn+1) with |yi0 | = max{|yi| | λn ≤ i < λn+1} (n ∈ N).
Evidently x ∈ χ ∩ X(|λ|, 1). On the other hand,



Sequences of 0’s and 1’s 95

∑

k

|ykxk| =
∑

n

unzn = ∞,

which contradicts y ∈ (χ ∩ X(|λ|, 1))α.

2) The proof of 2) is analogous to 1) except that the definition of x is
now xk := zn for λn ≤ k < λn+1 (n ∈ N).

Remark 2.7. The equality (χ ∩ X(|λ|, p))α = (X+)α(|λ|, p′) for p > 1
may fail even for X satisfying χ(X)α = (X+)α. Note that for q ∈ [1,∞) we
get

χ ∩ ℓ∞(|λ|, q) = {x ∈ χ | sup
n

|{k ∈ N | xk = 1} ∩ [λn, λn+1)| < ∞}.

So by Lemma 2.6, (χ ∩ ℓ∞(|λ|, p))α = ℓ1(|λ|,∞).

We will now verify that the converse statement for Lemma 2.6 holds even
if we replace 1 with p and ∞ with p′.

Lemma 2.8. If X(|λ|, p)α = (χ∩X(|λ|, p))α, then (X+)α = (χ∩X+)α.

Proof. It suffices to prove that (χ∩X+)α ⊂ (X+)α. So let w∈(χ ∩ X+)α.
Then

∑

k |wkuk| < ∞ for every u ∈ χ ∩ X+. We set yλi
:= wi (i ∈ N) and

yk := 0 for k 6∈ {λi | i ∈ N}. We verify that y = (yi) ∈ (χ ∩ X(|λ|, p))α.
Indeed, let x ∈ χ ∩ X(|λ|, p) and set ui := x̃λi

:= xλi
(i ∈ N), x̃k := 0

for k 6∈ {λi | i ∈ N}. Since X(|λ|, p) is solid, x̃ ∈ χ ∩ X(|λ|, p). Then
u = (ui) = T p(x̃) ∈ χ ∩ X+. Therefore

∑

k

|ykxk| =
∑

i

|yλi
xλi

| =
∑

i

wiui < ∞.

Therefore y ∈ (χ ∩X(|λ|, p))α = X(|λ|, p)α, hence
∑

k |ykxk| < ∞ for every
x ∈ X(|λ|, p). So if we take u ∈ X+ and consider x with xλi

= ui (i ∈ N)
and xk = 0 for k 6∈ {λi | i ∈ N} we obtain u = T p(x) and

∑

i

|wiui| =
∑

k

|xkyk| < ∞.

Hence w ∈ (X+)α.

Theorem 2.9. If ϕ ⊂ X and 〈X+〉 has the matrix Hahn property , then

X(|λ|, 1) and X(|λ|,∞) have the separable Hahn property.

Proof. First we verify that X(|λ|, 1) has the separable Hahn property.
In view of [3, Proposition 1 and Theorem 2] it is sufficient to prove that
χ ∩ X(|λ|, 1) ⊂ c0A implies X(|λ|, 1) ⊂ c0A. We define

bni := max
λi≤k<λi+1

|ank| (n, i ∈ N)

and verify that χ∩X ⊂ c0B. Since (ank)k ∈ (χ∩X(|λ|, 1))β, by Lemma 2.6
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we have (bnk)k ∈ (X+)α (n ∈ N). If we suppose on the contrary that
∑

k

bnikuk ≥ 4ε (i ∈ N)

for some ε > 0, u ∈ χ ∩ X and an index sequence (ni), then by the usual
gliding hump argument we may choose an index sequence (ki) and a subse-
quence (mi) of (ni) such that

(2.6)

kp
∑

k=kp−1+1

bmpkuk ≥ 3ε,

∞
∑

k=kp+1

bmpkuk ≤ ε,

kp−1
∑

k=1

bmpkuk ≤ ε (p ∈ N).

For p ∈ N and k ∈ N with kp−1 < k ≤ kp let ξk denote the minimal index
j with λk ≤ j < λk+1 such that |ampj | = max{|ampi| | λk ≤ i < λk+1}.
We set xξk

:= sgn(ampξk
)uk for k ∈ N with kp−1 < k ≤ kp and xi := 0 for

i 6∈ {ξk | k ∈ N}. Then x ∈ χ(X(|λ|, 1)). Applying (2.6) for every p ≥ 2 we
have

∣

∣

∣

λkp−1+1−1
∑

i=1

ampixi

∣

∣

∣
≤

kp−1
∑

i=1

max
λi≤k<λi+1

|ampk|
∣

∣

∣

λi+1−1
∑

k=λi

xk

∣

∣

∣
=

kp−1
∑

i=1

bmpiui < ε,

∣

∣

∣

∞
∑

i=λkp+1

ampixi

∣

∣

∣
≤

∞
∑

i=kp

max
λi≤k<λi+1

|ampk|
∣

∣

∣

λi+1−1
∑

k=λi

xk

∣

∣

∣
=

∞
∑

i=kp

bmpiui < ε.

Now for every p ∈ N we get

∑

i

ampixi =

λkp−1+1−1
∑

i=1

ampixi +

kp
∑

k=kp−1+1

bmpkuk +

∞
∑

i=λkp+1

ampixi ≥ ε,

contrary to x ∈ c0A. Hence χ ∩ X ⊂ c0B, implying X+ ⊂ c0B.

Now for every x ∈ X(|λ|, 1) we get

∣

∣

∣

∑

k

ankxk

∣

∣

∣
≤

∑

i

λi+1−1
∑

k=λi

|ank| |xk| ≤
∑

i

bni[T
1(x)]i (n ∈ N),

so x ∈ c0A.

For X(|λ|,∞) we use the same idea of proof except that we define B =

(bni) and x by setting bni :=
∑λi+1−1

k=λi
|ank| (n, i ∈ N) and xj := uksgn(ampj)

for p, k, j ∈ N with kp−1 < k ≤ kp and λk ≤ j < λk+1.
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Remark 2.10. 1) Note that X(|λ|, 1) may fail to have the Hahn property
even if 〈X+〉 has the Hahn property. As an example consider the space
ℓ∞(|λ|, 1) (cf. [4, Corollary 2.5]).

2) In view of Remark 2.7 the space X(|λ|, p) for p ∈ (1,∞) fails in general
to have the matrix Hahn property.

The following result demonstrates that X(|λ|, 1) has the separable Hahn
property if and only if 〈X+〉 does.

Proposition 2.11. If X(|λ|, p) has the matrix Hahn property , then

〈X+〉 has the separable Hahn property.

Proof. Since 〈X+〉 is solid, by [3, Proposition 1 and Theorem 2] it is
sufficient to prove that χ ∩ 〈X+〉 ⊂ c0B implies 〈X+〉 ⊂ c0B.

Suppose on the contrary that we can find a matrix B = (bnk) and u ∈ X+

such that χ ∩ X+ ⊂ c0B, but u 6∈ c0B.
We define the matrix A = (ank) and the sequence x = (xk) by anλi

:= bni,
xλi

:= ui (n, i ∈ N) and ank := xk := 0 for k 6∈ {λi | i ∈ N} and n ∈ N.
Evidently, x ∈ X(|λ|, p).

We will verify that χ ∩ X(|λ|, p) ⊂ c0A, but x 6∈ c0A, which would imply
that X(|λ|, p) does not have the matrix Hahn property.

To prove the first statement let y ∈ χ ∩ X(|λ|, p) and set vk := yλk

(k ∈ N). Since 0 ≤ vk ≤ [T p(y)]k (k ∈ N), we have v = (vk) ∈ χ∩X+ ⊂ c0B.
So

lim
n

∑

i

aniyi = lim
n

∑

k

anλk
yλk

= lim
n

∑

k

bnkvk = 0.

Hence y ∈ c0A, implying χ ∩ X(|λ|, p) ⊂ c0A.
On the other hand, (

∑

k ankxk)n = (
∑

k bnkuk)n 6∈ c0, that is, x 6∈ c0A.
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