Sequences of 0's and 1's: sequence spaces with the separable Hahn property

by
Maria Zeltser (Tallinn)

Abstract

In [3] it was discovered that one of the main results in [1] (Theorem 5.2), applied to three spaces, contains a nontrivial gap in the argument, but neither the gap was closed nor a counterexample was provided. In [4] the authors verified that all three above mentioned applications of the theorem are true and stated a problem concerning the topological structure of one of these three spaces. In this paper we answer the problem and give a counterexample to the theorem in doubt. Also we establish a new way of constructing separable Hahn spaces.

Let χ denote the set of all sequences of 0's and 1's and let $\chi(E)$ denote the linear hull of $\chi \cap E$. Given a sequence space E we consider the natural order on it, i.e. for $x, y \in E$ with $x=\left(x_{k}\right), y=\left(y_{k}\right)$ we set $x \leq y$ whenever $x_{k} \leq y_{k}$ for every $k \in \mathbb{N}$. This order defines the positive cone

$$
E^{+}:=\{x \in E \mid x \geq 0\}=\left\{x \in E \mid x_{k} \geq 0(k \in \mathbb{N})\right\}
$$

on E.
For other notations and preliminary results we refer the reader to [1], [3] and [2].

1. Introduction. In [1] (see also [5] and [8]) the authors considered three types of Hahn properties. A sequence space E is said to have the Hahn property, the separable Hahn property and the matrix Hahn property if the implication

$$
\chi(E) \subset F \Rightarrow E \subset F
$$

holds whenever F is any FK-space, a separable FK-space and a matrix domain c_{A} respectively. Evidently the Hahn property implies the separable Hahn property and the latter implies the matrix Hahn property. It was

[^0]shown in [1, Theorem 5.3], and [8, Theorem 1.3] that the converse implications fail in general.

In [3] it was pointed out that the paper [1] by G. Bennett, J. Boos and T. Leiger contains a nontrivial gap in the proof of Theorem 5.2. This theorem is one of the main results of the paper and it was applied three times (cf. [1, (G) in Section 6, Theorem 6.4, Theorem 5.3]): for the space $|a c|_{0}$ of strongly almost-null sequences, $\ell^{\infty} \cap z^{\alpha}$ with $z \in \ell^{\infty} \backslash \ell^{1}$, and $\ell^{\infty}(|\lambda|)$, where $\left(\lambda_{k}\right)$ is an index sequence satisfying

$$
\begin{equation*}
\lambda_{1}=1 \quad \text { and } \quad \sup _{k}\left(\lambda_{k+1}-\lambda_{k}\right)=\infty \tag{1.1}
\end{equation*}
$$

In Theorem 5.2 of [1] the authors stated that for a monotone sequence space E containing φ the following conditions are equivalent:
(i) E has the matrix Hahn property;
(ii) E has the separable Hahn property;
(iii) $\chi(E)^{\beta}=E^{\beta}$.

However, in the proof of (iii) \Rightarrow (ii) a false argument was used (see [3] for details).

In [3, Theorem 2] J. Boos and T. Leiger showed that the equivalence $($ i $) \Leftrightarrow$ (ii) holds for any monotone sequence space containing φ. Moreover, it is well known that $(\mathrm{i}) \Rightarrow(\mathrm{iii})$ is valid for any sequence space E. So only the implication (iii) \Rightarrow (ii) has not been settled.

In [7] it was shown that the theorem in doubt is true for $E=|a c|_{0}$ regardless of the validity of that theorem. In [4] a gliding hump argument was applied to show that two other applications (for $\ell^{\infty}(|\lambda|)$ and $\ell^{\infty} \cap z^{\alpha}$) of the theorem in [1] are valid.

We note that in the proof of the matrix Hahn property of $\ell^{\infty}(|\lambda|)$ the authors actually made use of the matrix Hahn property of ℓ^{∞}. Using the same idea of proof we will show in this paper that any sequence space

$$
X(|\lambda|, 1):=\left\{x \in \omega \mid\left(\sum_{k=\lambda_{n}}^{\lambda_{n+1}-1}\left|x_{k}\right|\right)_{n} \in X\right\}
$$

has the matrix Hahn property (even the separable Hahn property) whenever X is positively solid and has the matrix Hahn property. This also gives us a way of constructing new separable Hahn spaces.

Now we will verify that the implication (iii) \Rightarrow (ii) does not hold in general.
Theorem 1.1. There exists a monotone sequence space E satisfying $\chi(E)^{\beta}=E^{\beta}$, but failing to have the matrix Hahn property.

Proof. Let $E:=\left\langle\left(c_{0 C_{1}} \cap \chi\right) \cup(\{x\} \cdot \chi)\right\rangle$, where C_{1} is the Cesàro mean operator and x is constructed as follows. Let $x_{k}=1 / k$ for $k=1, \ldots, \lambda_{1}$,
where $\lambda_{1} \in \mathbb{N}$ is chosen such that

$$
\frac{1}{\lambda_{1}} \sum_{k=1}^{\lambda_{1}} x_{k} \leq 2^{-1}
$$

(this can be done since C_{1} is regular). Now we set $x_{k}:=1-1 / k$ for $k=$ $\lambda_{1}+1, \ldots, \lambda_{2}$, where we choose $\lambda_{2}>\lambda_{1}$ such that

$$
\frac{1}{\lambda_{2}} \sum_{k=1}^{\lambda_{2}} x_{k} \geq 1-2^{-1}
$$

(here we also make use of the regularity of C_{1}). Proceeding in this way, for $i>1$ we set $x_{k}:=1 / k$ for $k=\lambda_{2 i-2}+1, \ldots, \lambda_{2 i-1}$, where $\lambda_{2 i-1}>\lambda_{2 i-2}$ is chosen such that

$$
\begin{equation*}
\frac{1}{\lambda_{2 i-1}} \sum_{k=1}^{\lambda_{2 i-1}} x_{k} \leq 2^{-i} \tag{1.2}
\end{equation*}
$$

and then we set $x_{k}:=1-1 / k$ for $k=\lambda_{2 i-1}+1, \ldots, \lambda_{2 i}$, where $\lambda_{2 i}>\lambda_{2 i-1}$ is taken such that

$$
\begin{equation*}
\frac{1}{\lambda_{2 i}} \sum_{k=1}^{\lambda_{2 i}} x_{k} \geq 1-2^{-i} \tag{1.3}
\end{equation*}
$$

Evidently, E is monotone, $E \subset \ell^{\infty}$ and it can be verified that $E \cap \chi=$ $c_{0 C_{1}} \cap \chi$.

We will prove that $E^{\beta}=(E \cap \chi)^{\beta}$. First we note that since $\mathcal{T} \subset E \cap$ $\chi \subset \ell^{\infty}$ and $\mathcal{T}^{\beta}=\ell^{1}$, we have $(E \cap \chi)^{\beta}=\ell^{1}$. In view of the inclusions $E \cap \chi \subset E \subset \ell^{\infty}$, also $E^{\beta}=\ell^{1}$. On the other hand, in view of (1.2) and (1.3), $x \notin c_{C_{1}}$, so $E \not \subset c_{C_{1}}$.

Hence the implication (iii) \Rightarrow (ii) of Theorem 5.2 in [1] does not hold.
Now coming back to the spaces $\ell^{\infty} \cap z^{\alpha}$ and $\ell^{\infty}(|\lambda|)$, we answer the problem stated in [4]. It was shown there that both $\ell^{\infty} \cap z^{\alpha}$ and $\ell^{\infty}(|\lambda|)$ as well as their β-dual spaces are solid BK-spaces. Moreover, the linear functional defined by any element y of the β-dual was shown to be continuous. For $\ell^{\infty}(|\lambda|)$ the authors proved that the norm of this functional is equal to the norm of y in the β-dual space while for $\ell^{\infty} \cap z^{\alpha}$ they only succeeded in verifying that the norm of the functional is less than or equal to the norm of y. So they asked whether equality holds. The following example demonstrates that the answer is negative.

Example. We use the notation of [4]:

$$
E:=\ell \cap z^{\alpha} \quad \text { and } \quad F:=E^{\beta}=\ell^{1}+\ell^{\infty} \cdot\{z\}
$$

We consider

$$
z=\left(\frac{1}{k}\right) \quad \text { and } \quad y=\left(\frac{1}{2^{k}}+\frac{1}{k}\right)
$$

Evidently $y \in \ell^{1}+\ell^{\infty} \cdot\{z\}$. To evaluate $\|y\|_{F}$, consider a representation $y=v+w z$, where

$$
v=\left(\frac{1}{2^{k}}-\frac{\alpha_{k}}{k}\right) \in \ell^{1} \quad \text { and } \quad w=\left(1+\alpha_{k}\right) \in \ell^{\infty}
$$

For $\alpha_{k}=k / 2^{k}(k \in \mathbb{N})$ we get $\|w\|_{\infty}+\|v\|_{1}=3 / 2$, so $\|y\|_{F} \leq 3 / 2$. We will show that $\|w\|_{\infty}+\|v\|_{1} \geq 3 / 2$ for $\left(\alpha_{k}\right) \neq\left(k / 2^{k}\right)$, hence $\|y\|_{F}=3 / 2$ follows. Note that for all $\left(\alpha_{k}\right)$ we get

$$
\|w\|_{\infty}+\|v\|_{1}=\sup _{k}\left|1+\alpha_{k}\right|+\sum_{k}\left|\frac{1}{2^{k}}-\frac{\alpha_{k}}{k}\right| \geq\left|1+\alpha_{1}\right|+\left|\frac{1}{2}-\alpha_{1}\right|
$$

If $\alpha_{1} \in[-1,1 / 2]$, then $\left|1+\alpha_{1}\right|+\left|1 / 2-\alpha_{1}\right|=1+\alpha_{1}+1 / 2-\alpha_{1}=3 / 2$. For $\alpha_{1}<-1$ we get $\left|1+\alpha_{1}\right|+\left|1 / 2-\alpha_{1}\right|=-2 \alpha_{1}-1 / 2>3 / 2$ and for $\alpha_{1}>1 / 2$ we get $\left|1+\alpha_{1}\right|+\left|1 / 2-\alpha_{1}\right|=2 \alpha_{1}+1 / 2>3 / 2$. So $\|y\|_{F}=3 / 2$.

In order to determine the operator norm $\left\|f_{y}\right\|$ of f_{y} we fix $x \in E$ with $\|x\|_{E}=\|x\|_{\infty}+\sum_{k}\left|x_{k} / k\right|=1$. We estimate

$$
\begin{aligned}
\left|\sum_{k} x_{k} y_{k}\right| & \leq \sum_{k} \frac{\left|x_{k}\right|}{k}+\sum_{k} \frac{\left|x_{k}\right|}{2^{k}} \leq \sum_{k} \frac{\left|x_{k}\right|}{k}+\|x\|_{\infty} \sum_{k} \frac{1}{2^{k}} \\
& =\sum_{k} \frac{\left|x_{k}\right|}{k}+\|x\|_{\infty}=1
\end{aligned}
$$

Therefore $\left\|f_{y}\right\| \leq 1<\|y\|_{F}$.
2. Generalization of $\ell^{\infty}(|\lambda|)$. Throughout this section we assume that $1 \leq p, q \leq \infty$. For $p \in(1, \infty)$ we define p^{\prime} to be the number satisfying $1 / p+1 / p^{\prime}=1$. We also use the usual convention that $p^{\prime}=\infty$ for $p=1$ and $p^{\prime}=1$ for $p=\infty$. Most of the proofs in this section are carried out for $p \in(1, \infty)$. The argument for the cases $p=1$ and $p=\infty$ is analogous.

Given a subset X of ω, an index sequence $\left(\lambda_{k}\right)$ satisfying (1.1) and p with $1 \leq p \leq \infty$ we define

$$
X(|\lambda|, p):=\left\{x \in \omega \mid T^{p}(x):=\left(\left(\left\|x^{\left[\lambda_{n+1}-1\right]}-x^{\left[\lambda_{n}-1\right]}\right\|_{p}\right)_{n}\right) \in X\right\}
$$

Note that setting $X=\ell^{q}$ we obtain the space $\ell(\lambda, p, q)$ introduced in [6].
If X is a sequence space, then $X(|\lambda|, p)$ is closed under scalar multiplication. To guarantee that $X(|\lambda|, p)$ is also closed under vector addition, we need to demand that X is positively solid, i.e., satisfies the condition

$$
u \in X, 0 \leq v \leq u \Rightarrow v \in X
$$

Indeed, if X is positively solid and $x, y \in X(|\lambda|, p)$, then by the Minkowski inequality,

$$
0 \leq T^{p}(x+y) \leq T^{p}(x)+T^{p}(y)
$$

hence $T^{p}(x+y) \in X$, implying $x+y \in X(|\lambda|, p)$. So if X is a positively solid sequence space, then $X(|\lambda|, p)$ is a sequence space.

On the other hand, we will show that if X is not positively solid, then $X(|\lambda|, p)$ is not a vector space. Indeed, by assumption we can find $u, v \in \omega$ with $0 \leq v \leq u$ and $u \in X$, but $v \notin X$. We set $x_{\lambda_{n}}:=v_{n}, x_{\lambda_{n}+1}:=$ $\left(u_{n}^{p}-v_{n}^{p}\right)^{1 / p}, y_{\lambda_{n}}:=v_{n}, y_{\lambda_{n}+1}:=-\left(u_{n}^{p}-v_{n}^{p}\right)^{1 / p}(n \in \mathbb{N})$ and $x_{k}:=y_{k}:=0$ for $k \notin\left\{\lambda_{n}, \lambda_{n}+1 \mid n \in \mathbb{N}\right\}$. Then

$$
\left(\sum_{k=\lambda_{n}}^{\lambda_{n+1}-1}\left|x_{k}\right|^{p}\right)^{1 / p}=\left(\sum_{k=\lambda_{n}}^{\lambda_{n+1}-1}\left|y_{k}\right|^{p}\right)^{1 / p}=u_{n} \quad(n \in \mathbb{N})
$$

So x and y are in $X(|\lambda|, p)$. On the other hand,

$$
\left(\sum_{k=\lambda_{n}}^{\lambda_{n+1}-1}\left|x_{k}+y_{k}\right|^{p}\right)^{1 / p}=2 v_{n} \quad(n \in \mathbb{N})
$$

so $x+y \notin X(|\lambda|, p)$. Hence $X(|\lambda|, p)$ is not a vector space.
Evidently any solid space is positively solid. On the other hand, $b s$ and $c s$ are positively solid spaces which are not solid. It is easy to verify that a sequence space is solid if and only if it is monotone and positively solid. Note also that if X is positively solid, then $X(|\lambda|, p)$ is solid. Hereafter we suppose that X is positively solid and contains φ. Hence the space $\left\langle X^{+}\right\rangle$is solid.

Evidently, $X(|\lambda|, p)=X^{+}(|\lambda|, p)$. Hence in particular $\ell(|\lambda|, p)=c s(|\lambda|, p)$ $=b s(|\lambda|, p)$ and more generally, $X_{1}(|\lambda|, p)=X_{2}(|\lambda|, p)$ if $X_{1}^{+}=X_{2}^{+}$.

Proposition 2.1. Let $\xi \in\{\alpha, \beta, \gamma\}$. Then $(X(|\lambda|, p))^{\xi}=\left(X^{+}\right)^{\alpha}\left(|\lambda|, p^{\prime}\right)$.
Proof. Since $X(|\lambda|, p)$ is solid, it is sufficient to show that $(X(|\lambda|, p))^{\alpha}=$ $\left(X^{+}\right)^{\alpha}\left(|\lambda|, p^{\prime}\right)$. Let $y \in\left(X^{+}\right)^{\alpha}\left(|\lambda|, p^{\prime}\right)$ and $x \in X(|\lambda|, p)$. Then by Hölder's inequality,

$$
\begin{aligned}
\sum_{k}\left|y_{k} x_{k}\right| & \leq \sum_{n}\left(\sum_{k=\lambda_{n}}^{\lambda_{n+1}-1}\left|x_{k}\right|^{p}\right)^{1 / p}\left(\sum_{k=\lambda_{n}}^{\lambda_{n+1}-1}\left|y_{k}\right|^{p^{\prime}}\right)^{1 / p^{\prime}} \\
& =\sum_{n}\left[T^{p}(x)\right]_{n}\left[T^{p^{\prime}}(y)\right]_{n}<\infty
\end{aligned}
$$

Hence $(X(|\lambda|, p))^{\alpha} \supset\left(X^{+}\right)^{\alpha}\left(|\lambda|, p^{\prime}\right)$.
Now suppose, contrary to our claim, that there exists $y \in(X(|\lambda|, p))^{\alpha} \backslash$ $\left(X^{+}\right)^{\alpha}\left(|\lambda|, p^{\prime}\right)$. Then $u:=T^{p^{\prime}}(y) \notin\left(X^{+}\right)^{\alpha}$, so we can find $z \in X^{+}$such that $\sum_{n}\left|u_{n} z_{n}\right|=\sum_{n} u_{n} z_{n}=\infty$. We choose a sequence $\left(\varepsilon_{n}\right)$ with $0<\varepsilon_{n}<u_{n}$ $(n \in \mathbb{N})$ such that $\sum_{n} \varepsilon_{n} z_{n}<1$.

For every $n \in \mathbb{N}$ we consider the functional

$$
f_{n}: l_{p}^{\lambda_{n+1}-\lambda_{n}} \rightarrow \mathbb{R}, \quad f_{n}(t)=\sum_{k=\lambda_{n}}^{\lambda_{n+1}-1} y_{k} t_{k-\lambda_{n}+1}
$$

These functionals are continuous and satisfy

$$
\left\|f_{n}\right\|=\left\|\left(y_{k}\right)_{k=\lambda_{n}}^{\lambda_{n+1}-1}\right\|_{p^{\prime}}=\left[T^{p^{\prime}}(y)\right]_{n}=u_{n} \quad(n \in \mathbb{N})
$$

So we can find $x \in \omega$ such that

$$
\left[T^{p}(x)\right]_{n}=z_{n} \quad \text { and } \quad\left|f_{n}\left(\left(x_{k}\right)_{k=\lambda_{n}}^{\lambda_{n+1}-1}\right)\right|>\left(\left[T^{p^{\prime}}(y)\right]_{n}-\varepsilon_{n}\right) z_{n} \quad(n \in \mathbb{N})
$$

Hence $T^{p}(x)=z \in X^{+} \subset X$, therefore $x \in X(|\lambda|, p)$. On the other hand,
$\sum_{k}\left|x_{k} y_{k}\right| \geq \sum_{n}\left|\sum_{k=\lambda_{n}}^{\lambda_{n+1}-1} x_{k} y_{k}\right| \geq \sum_{n}\left(\left[T^{p^{\prime}}(y)\right]_{n}-\varepsilon_{n}\right) z_{n} \geq \sum_{n} u_{n} z_{n}-1=\infty$,
hence $y \notin(X(|\lambda|, p))^{\alpha}$. This contradiction proves that $y \in\left(X^{+}\right)^{\alpha}\left(|\lambda|, p^{\prime}\right)$. Hence $(X(|\lambda|, p))^{\alpha}=\left(X^{+}\right)^{\alpha}\left(|\lambda|, p^{\prime}\right)$.

Lemma 2.2. Let $\left(X, \tau_{X}\right)$ be a K-space with the topology generated by the system of seminorms $\{p \mid p \in \mathcal{P}\}$. Then $X(|\lambda|, q)$ is a K-space with the topology τ generated by the system of seminorms $\{\tilde{p} \mid p \in \mathcal{P}\}$ defined by

$$
\tilde{p}(x)=p\left(T^{q}(x)\right) \quad(x \in X(|\lambda|, q) ; p \in \mathcal{P}) .
$$

Proof. To show that $X(|\lambda|, q)$ is a K-space, we suppose that $\left(x^{(n)}\right)$ converges to x in $(X(|\lambda|, q), \tau)$. Then, since X is a K-space, we have

$$
\left[T^{q}\left(x^{(n)}-x\right)\right]_{i}=\left(\sum_{k=\lambda_{i}}^{\lambda_{i+1}-1}\left|x_{k}^{(n)}-x_{k}\right|^{q}\right)^{1 / q} \rightarrow 0 \quad \text { as } n \rightarrow \infty(i \in \mathbb{N})
$$

Since

$$
\left|x_{k}^{(n)}-x_{k}\right| \leq\left(\sum_{j=\lambda_{i}}^{\lambda_{i+1}-1}\left|x_{j}^{(n)}-x_{j}\right|^{q}\right)^{1 / q} \quad\left(\lambda_{i} \leq k<\lambda_{i+1} ; i, k \in \mathbb{N}\right)
$$

the K-property of $(X(|\lambda|, q), \tau)$ follows.
In order to spread an FK-property from X to $X(|\lambda|, q)$, we assume that the topology of X is consistent with the natural order. More precisely, we asssume that seminorms $\left\{p_{k}\right\}$ generating the FK-topology of X satisfy

$$
\begin{equation*}
u, v \in X, 0 \leq u \leq v \Rightarrow p_{k}(u) \leq p_{k}(v) \quad(k \in \mathbb{N}) \tag{2.4}
\end{equation*}
$$

Moreover, we require the condition

$$
\begin{equation*}
p_{k}(u)=\sup _{n} p_{k}\left(u^{[n]}\right) \quad\left(k \in \mathbb{N} ; u \in X^{+}\right) . \tag{2.5}
\end{equation*}
$$

Note that (2.5) is stronger than the AB-property and, on the assumption that (2.4) is satisfied, weaker than the AK-property. Obviously the norms
$\left\|\|_{q}(1 \leq q \leq \infty)\right.$ and $\| \|_{b s}$ satisfy both (2.4) and (2.5) while $\left\|\|_{b v}\right.$ fails to have both (2.4) and (2.5).

Proposition 2.3. Let X be an FK-space with the topology τ_{X} generated by a system of seminorms $\left\{p_{k}\right\}$ satisfying (2.4) and (2.5). Then $X(|\lambda|, q)$ is an FK-space with the topology τ generated by the system of seminorms $\left\{\tilde{p}_{k}\right\}$ defined by

$$
\tilde{p}_{k}(x)=p_{k}\left(T^{q}(x)\right) \quad(x \in X(|\lambda|, q) ; k \in \mathbb{N})
$$

Proof. In view of Lemma 2.2 it is sufficient to prove that $(X(|\lambda|, q), \tau)$ is complete. Suppose that $\left(x^{(n)}\right)$ is a Cauchy sequence in $(X(|\lambda|, q), \tau)$. By the K-property of $(X(|\lambda|, q), \tau)$ the sequence $\left(x_{k}^{(n)}\right)$ is a Cauchy sequence for every $k \in \mathbb{N}$, hence $\left(x^{(n)}\right)$ converges coordinatewise to some $x \in \omega$. Since

$$
\left|\left[T^{q}\left(x^{(m)}\right)\right]_{i}-\left[T^{q}\left(x^{(n)}\right)\right]_{i}\right| \leq\left[T^{q}\left(x^{(m)}-x^{(n)}\right)\right]_{i} \quad(i \in \mathbb{N})
$$

(2.4) implies that $T^{q}\left(x^{(n)}\right)$ is a Cauchy sequence in $\left(X, \tau_{X}\right)$, hence converges to some $z \in X$. By the K-property of $\left(X, \tau_{X}\right)$ we have

$$
\left[T^{q}\left(x^{(n)}\right)\right]_{i}=\left(\sum_{k=\lambda_{i}}^{\lambda_{i+1}-1}\left|x_{k}^{(n)}\right|^{q}\right)^{1 / q} \rightarrow z_{i} \quad \text { as } n \rightarrow \infty(i \in \mathbb{N})
$$

On the other hand, by the K-property of $(X(|\lambda|, q), \tau)$ it follows that

$$
\left(\sum_{k=\lambda_{i}}^{\lambda_{i+1}-1}\left|x_{k}^{(n)}\right|^{q}\right)^{1 / q} \rightarrow\left(\sum_{k=\lambda_{i}}^{\lambda_{i+1}-1}\left|x_{k}\right|^{q}\right)^{1 / q} \quad \text { as } n \rightarrow \infty(i \in \mathbb{N})
$$

Hence $T^{q}(x)=z \in X$, implying $x \in X(|\lambda|, q)$. Now we prove that $x^{(n)} \rightarrow x$ in $(X(|\lambda|, q), \tau)$. We set $u^{(n)}:=T^{q}\left(x^{(n)}-x\right)(n \in \mathbb{N})$. Let $\varepsilon>0$ and $k, s \in \mathbb{N}$. We choose $N \in \mathbb{N}$ such that $p_{k}\left(T^{q}\left(x^{(i)}-x^{(j)}\right)\right) \leq \varepsilon / 2$ for $i, j \geq N$. In view of the K-property we can choose $i_{0} \geq N$ such that

$$
\sum_{r=1}^{\lambda_{s+1}-1}\left|x_{r}^{\left(i_{0}\right)}-x_{r}\right| p_{k}\left(e^{r}\right) \leq \frac{\varepsilon}{2}
$$

Then for every $i \geq N$ by (2.4) we get

$$
p_{k}\left(\left(u^{(i)}\right)^{[s]}\right) \leq p_{k}\left(T^{q}\left(x^{(i)}-x^{\left(i_{0}\right)}\right)\right)+\sum_{r=1}^{\lambda_{s+1}-1}\left|x_{r}^{\left(i_{0}\right)}-x_{r}\right| p_{k}\left(e^{r}\right) \leq \varepsilon
$$

Then by (2.5) also $p_{k}\left(u^{(i)}\right) \leq \varepsilon$ for $i \geq N$, hence $x^{(n)} \rightarrow x$ in $(X(|\lambda|, q), \tau)$, implying that $(X(|\lambda|, q), \tau)$ is complete.

Lemma 2.4. If $1 \leq p<q \leq \infty$, then $X(|\lambda|, p) \subset X(|\lambda|, q)$.

Proof. For $p<q, n \in \mathbb{N}$ and $x \in \omega$ we get

$$
0 \leq\left[T^{q}(x)\right]_{n} \leq\left[T^{p}(x)\right]_{n} \quad(n \in \mathbb{N})
$$

Since X is positively solid, $T^{p}(x) \in X$ implies $T^{q}(x) \in X$.
Remark 2.5. 1) Evidently $X(|\lambda|, p)=X(|\lambda|, q)$ for any $1 \leq p, q \leq \infty$ if $X^{+}=|\omega|$. We also construct an example of X which satisfies the first equality, but $X^{+} \subsetneq|\omega|$. Let $\left(\lambda_{n}\right)$ be an index sequence satisfying (1.1). We set

$$
X:=\left\{z \in \omega \mid \sqrt[\lambda_{n+1}-\lambda_{n}]{\left|z_{n}\right|} \rightarrow 0\right\}
$$

and note that X is solid. Since

$$
\lambda_{n+1}-\lambda_{n} \sqrt{\left[T^{\infty}(x)\right]_{n}} \leq \sqrt[\lambda_{n+1}-\lambda_{n}]{\left[T^{1}(x)\right]_{n}} \leq \lambda_{n+1}-\lambda_{n} \sqrt{\left(\lambda_{n+1}-\lambda_{n}\right)\left[T^{\infty}(x)\right]_{n}}
$$

for every $n \in \mathbb{N}$, we get

$$
\lim _{n} \sqrt[\lambda_{n+1}-\lambda_{n}]{\left[T^{\infty}(x)\right]_{n}}=\lim _{n} \sqrt[\lambda_{n+1}-\lambda_{n}]{\left[T^{1}(x)\right]_{n}}
$$

Hence Lemma 2.4 implies $X(|\lambda|, 1)=X(|\lambda|, p)=X(|\lambda|, \infty)$ for every $p>1$.
2) For any p, q with $1<p<q<\infty$ we have

$$
\ell^{\infty}(|\lambda|)=\ell^{\infty}(|\lambda|, 1) \subsetneq \ell^{\infty}(|\lambda|, p) \subsetneq \ell^{\infty}(|\lambda|, q) \subsetneq \ell^{\infty}(|\lambda|, \infty)=\ell^{\infty}
$$

To prove $\ell^{\infty}(|\lambda|, p) \subsetneq \ell^{\infty}(|\lambda|, q)$ for $1 \leq p<q<\infty$ we define $x_{k}:=$ $1 /\left(\lambda_{n+1}-\lambda_{n}\right)^{1 / q}$ for $\lambda_{n} \leq k<\lambda_{n+1}$ and $n \in \mathbb{N}$. Then

$$
\sup _{n}\left[T^{q}(x)\right]_{n}=1, \quad \sup _{n}\left[T^{p}(x)\right]_{n}=\sup _{n}\left(\lambda_{n+1}-\lambda_{n}\right)^{(q-p) / q p}=\infty
$$

So $x \in \ell^{\infty}(|\lambda|, q) \backslash \ell^{\infty}(|\lambda|, p)$. To verify $\ell^{\infty}(|\lambda|, q) \subsetneq \ell^{\infty}$ we consider $x=e$.
In [4, Proposition 2.1] it was shown that

$$
\left(\chi \cap \ell^{\infty}(|\lambda|, 1)\right)^{\alpha}=\left(\ell^{\infty}(|\lambda|, 1)\right)^{\alpha}=\ell^{1}(|\lambda|, \infty)=\left|\ell^{\infty}\right|^{\alpha}(|\lambda|, \infty)
$$

We will prove that the same statement holds if we take X instead of ℓ^{∞} on assumption $\chi(X)^{\alpha}=\left(X^{+}\right)^{\alpha}$ (which is satisfied for $X=\ell^{\infty}$).

Lemma 2.6. Let X satisfy $\chi(X)^{\alpha}=\left(X^{+}\right)^{\alpha}$. Then

1) $(\chi \cap X(|\lambda|, 1))^{\alpha}=(\chi \cap X(|\lambda|, 1))^{\beta}=\left(X^{+}\right)^{\alpha}(|\lambda|, \infty)$;
2) $(\chi \cap X(|\lambda|, \infty))^{\alpha}=(\chi \cap X(|\lambda|, \infty))^{\beta}=\left(X^{+}\right)^{\alpha}(|\lambda|, 1)$.

Proof. 1) Since $\chi \cap X(|\lambda|, 1)$ is monotone and $(\chi \cap X(|\lambda|, 1))^{\alpha} \supset$ $(X(|\lambda|, 1))^{\alpha}$, it is sufficient to prove that $(\chi \cap X(|\lambda|, 1))^{\alpha} \subset(X(|\lambda|, 1))^{\alpha}=$ $\left(X^{+}\right)^{\alpha}(|\lambda|, \infty)$. Let $y \in(\chi \cap X(|\lambda|, 1))^{\alpha} \backslash\left(X^{+}\right)^{\alpha}(|\lambda|, \infty)$. Then $u:=T^{\infty}(y) \notin$ $\left(X^{+}\right)^{\alpha}=\chi(X)^{\alpha}$, so we can find $z \in \chi \cap X$ with $\sum_{n}\left|u_{n} z_{n}\right|=\sum_{n} u_{n} z_{n}=\infty$. We put $x_{\xi_{n}}=z_{n}$ and $x_{i}:=0$ for $i \notin\left\{\xi_{k} \mid k \in \mathbb{N}\right\}$, where ξ_{n} is the minimal index $i_{0} \in\left[\lambda_{n}, \lambda_{n+1}\right)$ with $\left|y_{i_{0}}\right|=\max \left\{\left|y_{i}\right| \mid \lambda_{n} \leq i<\lambda_{n+1}\right\}(n \in \mathbb{N})$. Evidently $x \in \chi \cap X(|\lambda|, 1)$. On the other hand,

$$
\sum_{k}\left|y_{k} x_{k}\right|=\sum_{n} u_{n} z_{n}=\infty
$$

which contradicts $y \in(\chi \cap X(|\lambda|, 1))^{\alpha}$.
2) The proof of 2) is analogous to 1) except that the definition of x is now $x_{k}:=z_{n}$ for $\lambda_{n} \leq k<\lambda_{n+1}(n \in \mathbb{N})$.

Remark 2.7. The equality $(\chi \cap X(|\lambda|, p))^{\alpha}=\left(X^{+}\right)^{\alpha}\left(|\lambda|, p^{\prime}\right)$ for $p>1$ may fail even for X satisfying $\chi(X)^{\alpha}=\left(X^{+}\right)^{\alpha}$. Note that for $q \in[1, \infty)$ we get

$$
\chi \cap \ell^{\infty}(|\lambda|, q)=\left\{x \in \chi\left|\sup _{n}\right|\left\{k \in \mathbb{N} \mid x_{k}=1\right\} \cap\left[\lambda_{n}, \lambda_{n+1}\right) \mid<\infty\right\}
$$

So by Lemma 2.6, $\left(\chi \cap \ell^{\infty}(|\lambda|, p)\right)^{\alpha}=\ell^{1}(|\lambda|, \infty)$.
We will now verify that the converse statement for Lemma 2.6 holds even if we replace 1 with p and ∞ with p^{\prime}.

Lemma 2.8. If $X(|\lambda|, p)^{\alpha}=(\chi \cap X(|\lambda|, p))^{\alpha}$, then $\left(X^{+}\right)^{\alpha}=\left(\chi \cap X^{+}\right)^{\alpha}$.
Proof. It suffices to prove that $\left(\chi \cap X^{+}\right)^{\alpha} \subset\left(X^{+}\right)^{\alpha}$. So let $w \in\left(\chi \cap X^{+}\right)^{\alpha}$. Then $\sum_{k}\left|w_{k} u_{k}\right|<\infty$ for every $u \in \chi \cap X^{+}$. We set $y_{\lambda_{i}}:=w_{i}(i \in \mathbb{N})$ and $y_{k}:=0$ for $k \notin\left\{\lambda_{i} \mid i \in \mathbb{N}\right\}$. We verify that $y=\left(y_{i}\right) \in(\chi \cap X(|\lambda|, p))^{\alpha}$. Indeed, let $x \in \chi \cap X(|\lambda|, p)$ and set $u_{i}:=\tilde{x}_{\lambda_{i}}:=x_{\lambda_{i}}(i \in \mathbb{N}), \tilde{x}_{k}:=0$ for $k \notin\left\{\lambda_{i} \mid i \in \mathbb{N}\right\}$. Since $X(|\lambda|, p)$ is solid, $\tilde{x} \in \chi \cap X(|\lambda|, p)$. Then $u=\left(u_{i}\right)=T^{p}(\tilde{x}) \in \chi \cap X^{+}$. Therefore

$$
\sum_{k}\left|y_{k} x_{k}\right|=\sum_{i}\left|y_{\lambda_{i}} x_{\lambda_{i}}\right|=\sum_{i} w_{i} u_{i}<\infty
$$

Therefore $y \in(\chi \cap X(|\lambda|, p))^{\alpha}=X(|\lambda|, p)^{\alpha}$, hence $\sum_{k}\left|y_{k} x_{k}\right|<\infty$ for every $x \in X(|\lambda|, p)$. So if we take $u \in X^{+}$and consider x with $x_{\lambda_{i}}=u_{i}(i \in \mathbb{N})$ and $x_{k}=0$ for $k \notin\left\{\lambda_{i} \mid i \in \mathbb{N}\right\}$ we obtain $u=T^{p}(x)$ and

$$
\sum_{i}\left|w_{i} u_{i}\right|=\sum_{k}\left|x_{k} y_{k}\right|<\infty
$$

Hence $w \in\left(X^{+}\right)^{\alpha}$.
Theorem 2.9. If $\varphi \subset X$ and $\left\langle X^{+}\right\rangle$has the matrix Hahn property, then $X(|\lambda|, 1)$ and $X(|\lambda|, \infty)$ have the separable Hahn property.

Proof. First we verify that $X(|\lambda|, 1)$ has the separable Hahn property. In view of [3, Proposition 1 and Theorem 2] it is sufficient to prove that $\chi \cap X(|\lambda|, 1) \subset c_{0 A}$ implies $X(|\lambda|, 1) \subset c_{0 A}$. We define

$$
b_{n i}:=\max _{\lambda_{i} \leq k<\lambda_{i+1}}\left|a_{n k}\right| \quad(n, i \in \mathbb{N})
$$

and verify that $\chi \cap X \subset c_{0 B}$. Since $\left(a_{n k}\right)_{k} \in(\chi \cap X(|\lambda|, 1))^{\beta}$, by Lemma 2.6
we have $\left(b_{n k}\right)_{k} \in\left(X^{+}\right)^{\alpha}(n \in \mathbb{N})$. If we suppose on the contrary that

$$
\sum_{k} b_{n_{i} k} u_{k} \geq 4 \varepsilon \quad(i \in \mathbb{N})
$$

for some $\varepsilon>0, u \in \chi \cap X$ and an index sequence $\left(n_{i}\right)$, then by the usual gliding hump argument we may choose an index sequence $\left(k_{i}\right)$ and a subsequence $\left(m_{i}\right)$ of $\left(n_{i}\right)$ such that

$$
\begin{gather*}
\sum_{k=k_{p-1}+1}^{k_{p}} b_{m_{p} k} u_{k} \geq 3 \varepsilon, \quad \sum_{k=k_{p}+1}^{\infty} b_{m_{p} k} u_{k} \leq \varepsilon \tag{2.6}\\
\sum_{k=1}^{k_{p-1}} b_{m_{p} k} u_{k} \leq \varepsilon \quad(p \in \mathbb{N})
\end{gather*}
$$

For $p \in \mathbb{N}$ and $k \in \mathbb{N}$ with $k_{p-1}<k \leq k_{p}$ let ξ_{k} denote the minimal index j with $\lambda_{k} \leq j<\lambda_{k+1}$ such that $\left|a_{m_{p} j}\right|=\max \left\{\left|a_{m_{p} i}\right| \mid \lambda_{k} \leq i<\lambda_{k+1}\right\}$. We set $x_{\xi_{k}}:=\operatorname{sgn}\left(a_{m_{p} \xi_{k}}\right) u_{k}$ for $k \in \mathbb{N}$ with $k_{p-1}<k \leq k_{p}$ and $x_{i}:=0$ for $i \notin\left\{\xi_{k} \mid k \in \mathbb{N}\right\}$. Then $x \in \chi(X(|\lambda|, 1))$. Applying (2.6) for every $p \geq 2$ we have

$$
\begin{aligned}
& \left|\sum_{i=1}^{\lambda_{k_{p-1}+1}-1} a_{m_{p} i} x_{i}\right| \leq \sum_{i=1}^{k_{p-1}} \max _{\lambda_{i} \leq k<\lambda_{i+1}}\left|a_{m_{p} k}\right|\left|\sum_{k=\lambda_{i}}^{\lambda_{i+1}-1} x_{k}\right|=\sum_{i=1}^{k_{p-1}} b_{m_{p} i} u_{i}<\varepsilon \\
& \left|\sum_{i=\lambda_{k_{p}+1}}^{\infty} a_{m_{p} i} x_{i}\right| \leq \sum_{i=k_{p}}^{\infty} \max _{\lambda_{i} \leq k<\lambda_{i+1}}\left|a_{m_{p} k}\right|\left|\sum_{k=\lambda_{i}}^{\lambda_{i+1}-1} x_{k}\right|=\sum_{i=k_{p}}^{\infty} b_{m_{p} i} u_{i}<\varepsilon
\end{aligned}
$$

Now for every $p \in \mathbb{N}$ we get

$$
\sum_{i} a_{m_{p} i} x_{i}=\sum_{i=1}^{\lambda_{k_{p-1}+1}-1} a_{m_{p} i} x_{i}+\sum_{k=k_{p-1}+1}^{k_{p}} b_{m_{p} k} u_{k}+\sum_{i=\lambda_{k_{p}+1}}^{\infty} a_{m_{p} i} x_{i} \geq \varepsilon
$$

contrary to $x \in c_{0 A}$. Hence $\chi \cap X \subset c_{0 B}$, implying $X^{+} \subset c_{0 B}$.
Now for every $x \in X(|\lambda|, 1)$ we get

$$
\left|\sum_{k} a_{n k} x_{k}\right| \leq \sum_{i} \sum_{k=\lambda_{i}}^{\lambda_{i+1}-1}\left|a_{n k}\right|\left|x_{k}\right| \leq \sum_{i} b_{n i}\left[T^{1}(x)\right]_{i} \quad(n \in \mathbb{N})
$$

so $x \in c_{0 A}$.
For $X(|\lambda|, \infty)$ we use the same idea of proof except that we define $B=$ $\left(b_{n i}\right)$ and x by setting $b_{n i}:=\sum_{k=\lambda_{i}}^{\lambda_{i+1}-1}\left|a_{n k}\right|(n, i \in \mathbb{N})$ and $x_{j}:=u_{k} \operatorname{sgn}\left(a_{m_{p} j}\right)$ for $p, k, j \in \mathbb{N}$ with $k_{p-1}<k \leq k_{p}$ and $\lambda_{k} \leq j<\lambda_{k+1}$.

Remark 2.10. 1) Note that $X(|\lambda|, 1)$ may fail to have the Hahn property even if $\left\langle X^{+}\right\rangle$has the Hahn property. As an example consider the space $\ell^{\infty}(|\lambda|, 1)$ (cf. [4, Corollary 2.5]).
2) In view of Remark 2.7 the space $X(|\lambda|, p)$ for $p \in(1, \infty)$ fails in general to have the matrix Hahn property.

The following result demonstrates that $X(|\lambda|, 1)$ has the separable Hahn property if and only if $\left\langle X^{+}\right\rangle$does.

Proposition 2.11. If $X(|\lambda|, p)$ has the matrix Hahn property, then $\left\langle X^{+}\right\rangle$has the separable Hahn property.

Proof. Since $\left\langle X^{+}\right\rangle$is solid, by [3, Proposition 1 and Theorem 2] it is sufficient to prove that $\chi \cap\left\langle X^{+}\right\rangle \subset c_{0 B}$ implies $\left\langle X^{+}\right\rangle \subset c_{0 B}$.

Suppose on the contrary that we can find a matrix $B=\left(b_{n k}\right)$ and $u \in X^{+}$ such that $\chi \cap X^{+} \subset c_{0 B}$, but $u \notin c_{0 B}$.

We define the matrix $A=\left(a_{n k}\right)$ and the sequence $x=\left(x_{k}\right)$ by $a_{n \lambda_{i}}:=b_{n i}$, $x_{\lambda_{i}}:=u_{i}(n, i \in \mathbb{N})$ and $a_{n k}:=x_{k}:=0$ for $k \notin\left\{\lambda_{i} \mid i \in \mathbb{N}\right\}$ and $n \in \mathbb{N}$. Evidently, $x \in X(|\lambda|, p)$.

We will verify that $\chi \cap X(|\lambda|, p) \subset c_{0 A}$, but $x \notin c_{0 A}$, which would imply that $X(|\lambda|, p)$ does not have the matrix Hahn property.

To prove the first statement let $y \in \chi \cap X(|\lambda|, p)$ and set $v_{k}:=y_{\lambda_{k}}$ $(k \in \mathbb{N})$. Since $0 \leq v_{k} \leq\left[T^{p}(y)\right]_{k}(k \in \mathbb{N})$, we have $v=\left(v_{k}\right) \in \chi \cap X^{+} \subset c_{0 B}$. So

$$
\lim _{n} \sum_{i} a_{n i} y_{i}=\lim _{n} \sum_{k} a_{n \lambda_{k}} y_{\lambda_{k}}=\lim _{n} \sum_{k} b_{n k} v_{k}=0 .
$$

Hence $y \in c_{0 A}$, implying $\chi \cap X(|\lambda|, p) \subset c_{0 A}$.
On the other hand, $\left(\sum_{k} a_{n k} x_{k}\right)_{n}=\left(\sum_{k} b_{n k} u_{k}\right)_{n} \notin c_{0}$, that is, $x \notin c_{0 A}$.

References

[1] G. Bennett, J. Boos, and T. Leiger, Sequences of 0's and 1's, Studia Math. 149 (2002), 75-99.
[2] J. Boos, Classical and Modern Methods in Summability, Oxford Univ. Press, New York, Oxford, 2000.
[3] J. Boos and T. Leiger, Addendum: Sequences of 0's and 1's (Studia Math. 149 (2002), 75-99), Studia Math. 171 (2005), 305-309.
[4] -, 一, Sequences of 0's and 1's: special sequence spaces with the separable Hahn property, Acta Math. Hungar., to appear (2006).
[5] J. Boos and M. Zeltser, Sequences of 0's and 1's. Classes of concrete 'big' Hahn spaces, Z. Anal. Anwend. 22 (2003), 819-842.
[6] K.-G. Grosse-Erdmann, The Blocking Technique, Weighted Mean Operators and Hardy's Inequality Series, Lecture Notes in Math. 1679, Springer, Berlin, 1998.
[7] C. E. Stuart and P. Abraham, Generalizations of the Nikodym boundedness and Vitali-Hahn-Saks theorems, J. Math. Anal. Appl. 300 (2004), 351-361.
[8] M. Zeltser, J. Boos and T. Leiger, Sequences of 0's and 1's: New results via double sequence spaces, J. Math. Anal. Appl. 275 (2002), 883-899.

Matemaatika-loodusteaduskond
Tallinna Ülikool
Narva mnt. 25
EE 10120 Tallinn, Estonia
E-mail: mariaz@tlu.ee

Received November 4, 2006
Revised version May 17, 2007

[^0]: 2000 Mathematics Subject Classification: 46A45, 46A35, 40C05, 40 H 05.
 Key words and phrases: Hahn property, separable Hahn property, matrix Hahn property, inclusion theorems, Hahn theorem, 0-1 sequences.

 Supported by Project SF0132723s06.

