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On L
p integrability and convergence of trigonometric series

by

D. S. Yu (Hangzhou and Antigonish), P. Zhou (Antigonish) and
S. P. Zhou (Hangzhou and Antigonish)

Abstract. We first give a necessary and sufficient condition for x−γφ(x) ∈ Lp,
1 < p < ∞, 1/p − 1 < γ < 1/p, where φ(x) is the sum of either

∑

∞

k=1 ak cos kx or
∑

∞

k=1 bk sin kx, under the condition that {λn} (where λn is an or bn respectively) belongs
to the class of so called Mean Value Bounded Variation Sequences (MVBVS). Then we
discuss the relations among the Fourier coefficients λn and the sum function φ(x) under
the condition that {λn} ∈ MVBVS, and deduce a sharp estimate for the weighted modulus
of continuity of φ(x) in Lp norm.

1. Introduction. Let Lp, 1 < p < ∞, be the space of all p-power
integrable functions of period 2π equipped with the norm

‖f‖p =
(

π\
−π

|f(x)|p dx
)1/p

.

Write

f(x) =

∞
∑

k=1

ak cos kx, g(x) =

∞
∑

k=1

bk sin kx

for those x where the series converge. Denote by φ(x) either f(x) or g(x) and
let λn be the associated Fourier coefficients, i.e., λn is either an or bn. In this
paper, we first consider necessary and sufficient conditions for x−γφ(x) ∈
Lp, 1/p−1 < γ < 1/p, and give an answer to Boas’ [2] Question 6.12, “What
condition is necessary and sufficient for x−γφ(x) ∈ Lp, 1/p − 1 < γ < 1/p,
when λn ≥ 0?”, under some weak condition on the sequence {λn}.

2000 Mathematics Subject Classification: 42A20, 42A32.
Key words and phrases: Fourier series, Lp integrability, modulus of continuity, mean

value bounded variation sequences.
Research of D. S. Yu supported by NSERC RCD grant and AARMS of Canada.
Research of P. Zhou supported by NSERC of Canada.
S. P. Zhou is W. F. James Professor of St. Francis Xavier University. His research

was also supported in part by Natural Science Foundation of China under grant number
10471130.

[215] c© Instytut Matematyczny PAN, 2007



216 D. S. Yu et al.

The definition below introduces a new class of sequences called Mean
Value Bounded Variation Sequences (MVBVS) which was first defined
in [10]:

Definition. A nonnegative sequence A = {an}
∞
n=0 is said to be a mean

value bounded variation sequence ({an} ∈ MVBVS) if there is a λ ≥ 2 such
that

2n
∑

k=n

|ak − ak+1| ≤
C(A)

n

[λn]
∑

k=[λ−1n]

ak

for all n = 1, 2, . . . and some constant C(A) depending only upon the se-
quence A.

Our first main result is:

Theorem 1. Let 1 < p < ∞. If {λn} ∈ MVBVS, then x−γφ(x) ∈ Lp,
1/p − 1 < γ < 1/p, if and only if

(1)
∞

∑

n=1

np+pγ−2λp
n < ∞.

Theorem 1 answers Boas’ Question 6.12 under the condition that {λn} ∈
MVBVS. Answers under stronger conditions on {λn} were given earlier by
Chen ([3], [4]) for monotonic {λn}, Leindler ([6]) for “rest bounded varia-
tion” {λn}, Zhou–Le ([9]) for “group bounded variation” {λn}, and Yu–Zhou
([8]) for “non-onesided bounded variation” {λn}.

Throughout this paper, we use C to denote a positive constant indepen-
dent of the integer n; C may depend on the parameters such as p, γ, and λ,
and it may have different values in different occurrences.

The next aim of this paper is to discuss the relations between the Fourier
coefficients λn and the sum function φ(x), under the condition that {λn} ∈
MVBVS. Let f ∈ Lp, 1 < p < ∞ and 1/p − 1 < γ < 1/p. Define the
weighted modulus of continuity of f in Lp norm as follows:

ω(f, h)p,x−γ := ω(f, h)p,γ := sup
|t|≤h

‖x−γ(f(x + t) − f(x))‖p.

Our second main result is:

Theorem 2. Let 1 < p < ∞. If {λn} ∈ MVBVS satisfies (1), then for

1/p − 1 < γ < 1/p, we have

ω(φ, 1/n)p,γ ≤ Cn−1
(

n−1
∑

k=1

k2p+pγ−2λp
k

)1/p
+ C

(

∞
∑

k=n

kp+pγ−2λp
k

)1/p
.

The special case of this result, when γ = 0 (non-weighted case) and {λn}
is monotonic, was first given by Aljančić [1]. Then the monotonicity condi-
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tion on the sequence {λn} was weakened by Leindler [7] to “rest bounded
variation”, by Zhou–Le [9] to “group bounded variation”, and by Yu–Zhou
[8] to “non-onesided bounded variation”. Our Theorem 2 above is the first
result in the case of weighted modulus of continuity in Lp norm. We also
weaken the condition on the sequence {λn} to the weakest condition so far
that {λn} ∈ MVBVS. See Zhou–Zhou–Yu [10] for details on the relations
between the classes of sequences mentioned above.

2. Proof of Theorem 1. Throughout this paper, we set λ0 = 0. We
need the following lemmas:

Lemma 1 (Boas [2]). Let 1 < p < ∞. If λn ≥ 0 and 1/p − 1 < γ < 1/p,
then a sufficient condition for x−γφ(x) ∈ Lp is

(2)

∞
∑

n=1

np+pγ−2
(

∞
∑

k=n

|∆λk|
)p

< ∞,

and a necessary condition is

(3)
∞

∑

n=1

np+pγ−2
(

∞
∑

k=n

k−1λk

)p
< ∞.

Lemma 2 (Leindler [5]). Let p ≥ 1, αn ≥ 0, and βn > 0. Then

∞
∑

n=1

βn

(

n
∑

k=1

αk

)p
≤ pp

∞
∑

n=1

β1−p
n

(

∞
∑

k=n

βk

)p
αp

n,(4)

∞
∑

n=1

βn

(

∞
∑

k=n

αk

)p
≤ pp

∞
∑

n=1

β1−p
n

(

n
∑

k=1

βk

)p
αp

n.(5)

Proof of Theorem 1. Sufficiency. Suppose that (1) holds. For {λn} ∈
MVBVS and sufficiently large n, there exists a λ ≥ 2 such that

∞
∑

k=n

|∆λk| ≤
∞

∑

j=0

2j+1n
∑

k=2jn

|∆λk| ≤ C
∞

∑

j=0

1

2jn

[λ2jn]
∑

k=[λ−12jn]

λk(6)

≤ C
∞

∑

k=[λ−1n]

λk

k + 1
.

Thus,



218 D. S. Yu et al.

(7)
∞

∑

n=[λ]+1

np+pγ−2
(

∞
∑

k=n

|∆λk|
)p

≤ C
∞
∑

n=[λ]+1

np+pγ−2

( ∞
∑

k=[λ−1n]

λk

k+1

)p

≤ C
∞

∑

n=[λ]+1

np+pγ−2

( ∞
∑

k=[λ−1n]

λk

k

)p

≤ C
∞
∑

n=[λ]+1

([λ−1n])p+pγ−2

( ∞
∑

k=[λ−1n]

λk

k

)p

≤ C
∞

∑

n=1

np+pγ−2

( ∞
∑

k=n

λk

k

)p

≤ C
∞

∑

n=1

n(p+pγ−2)(1−p)
(

n
∑

k=1

kp+pγ−2
)p

(

λn

n

)p

(by (5))

≤ C

∞
∑

n=1

np+pγ−2λp
n.

Combining this with (2), we obtain the sufficiency.

Necessity. If x−γφ(x) ∈ Lp, then (3) holds. For {λn} ∈ MVBVS, we
have, for all [n/2] + 1 ≤ k ≤ n,

λn ≤
n−1
∑

i=k

|∆λi| + λk ≤
2k
∑

i=k

|∆λi| + λk

≤ C
1

k

[λk]
∑

i=[λ−1k]

λi + λk ≤ C

[λn]
∑

i=[n/(2λ)]

λi

i + 1
+ λk,

and so

(8) λn ≤ C

[λn]
∑

k=[n/(2λ)]

λk

k + 1
+

2

n

n
∑

k=[n/2]+1

λk ≤ C

[λn]
∑

k=[n/(2λ)]

λk

k + 1
.

Therefore,

∞
∑

n=[2λ]+1

np+pγ−2λp
n ≤ C

∞
∑

n=[2λ]+1

np+pγ−2

( [λn]
∑

k=[n/(2λ)]

λk

k

)p

≤ C

∞
∑

n=[2λ]+1

([n/(2λ)])p+pγ−2

( ∞
∑

k=[n/(2λ)]

λk

k

)p

≤ C
∞

∑

n=1

np+pγ−2

( ∞
∑

k=n

λk

k

)p

< ∞,

by (3). This completes the proof of Theorem 1.
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3. Proof of Theorem 2. Now we prove Theorem 2. First, we prove
two lemmas.

Lemma 3. Let 1 < p < ∞ and {an} ∈ MVBVS. Then for 1/p − 1 <
γ < 1/p,

n−p
n−1
∑

m=1

mpγ−2
(

m
∑

ν=1

ν2|∆aν |
)p

≤ Cn−p
n−1
∑

ν=1

ν2p+pγ−2ap
ν + C

∞
∑

ν=n

νp+pγ−2ap
ν .

Proof. Let

m∗ :=

{

m, m is even,

m − 1, m is odd.

For {an} ∈ MVBVS, we have

m
∑

ν=1

ν2|∆aν | ≤

[log m/log 2]
∑

j=1

2j
∑

ν=2j−1

ν2|∆aν | +
m

∑

ν=[m/2]

ν2|∆aν |(9)

≤ C

[log m/log 2]
∑

j=1

[λ2j−1]
∑

ν=[λ−12j−1]

νaν

+ C

[λm∗/2]
∑

ν=[m∗/(2λ)]

νaν + m2(am + am+1)

≤ C

[λm/2]
∑

ν=1

νaν + m2(am + am+1).

By applying (4) with βm = mpγ−2, αν = νaν for ν < n, and αν = 0 for
ν ≥ n, we obtain (note that pγ − 2 < −1)

n−1
∑

m=1

mpγ−2
(

m
∑

ν=1

νaν

)p
≤

∞
∑

m=1

βm

(

m
∑

ν=1

αν

)p
(10)

≤ pp
∞

∑

m=1

β1−p
m

(

∞
∑

ν=m

βν

)p
αp

m ≤C
n−1
∑

ν=1

ν2p+pγ−2ap
ν .

By applying (5) with βm = mp+pγ−2, αν = aν for ν < n, and αν = 0 for
ν ≥ n, we deduce that (note that p + pγ − 2 > −1)

(11)
∑

λm/2≤n−1

mpγ−2
(

[λm/2]
∑

ν=m+1

νaν

)p
≤ C

∑

λm/2≤n−1

mp+pγ−2
(

[λm/2]
∑

ν=m

aν

)p

≤ C

n−1
∑

m=1

mp+pγ−2
(

n−1
∑

ν=m

aν

)p
≤ C

n−1
∑

ν=1

ν2p+pγ−2ap
ν .
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Similarly,

(12)
∑

n<λm/2≤λ(n−1)/2

mpγ−2
(

n−1
∑

ν=m+1

νaν

)p

≤ C
∑

n<λm/2≤λ(n−1)/2

mp+pγ−2
(

n−1
∑

ν=m

aν

)p
≤ C

n−1
∑

ν=1

ν2p+pγ−2ap
ν .

Also, by using Hölder’s inequality, we get

(13) n−p
∑

n<λm/2≤λ(n−1)/2

mp+pγ−2
(

[λm/2]
∑

ν=n

aν

)p
≤ Cnpγ−1

(

[λn/2]
∑

ν=n

aν

)p

≤ Cnp+pγ−2

[λn/2]
∑

ν=n

ap
ν ≤ C

∞
∑

ν=n

νp+pγ−2ap
ν .

Combining (10)–(13) gives

n−p
n−1
∑

m=1

mpγ−2
(

[λm/2]
∑

ν=1

νaν

)p
≤ n−p

n−1
∑

m=1

mpγ−2
(

m
∑

ν=1

νaν

)p
(14)

+ n−p
∑

λm/2≤n−1

mpγ−2
(

[λm/2]
∑

ν=m+1

νaν

)p

+n−p
∑

n<λm/2≤λ(n−1)/2

mpγ−2
(

n−1
∑

ν=m+1

νaν

)p

+n−p
∑

n<λm/2≤λ(n−1)/2

mp+pγ−2
(

[λm/2]
∑

ν=n

aν

)p

≤ Cn−p
n−1
∑

ν=1

ν2p+pγ−2ap
ν +C

∞
∑

ν=n

νp+pγ−2ap
ν.

Finally, we estimate

(15) n−p
n−1
∑

m=1

mpγ−2(m2(am + am+1))
p

≤ 2n−p
n−1
∑

m=1

m2p+pγ−2ap
m+np+pγ−2ap

n≤ 2n−p
n−1
∑

ν=1

ν2p+pγ−2ap
ν +

∞
∑

ν=n

νp+pγ−2ap
ν .

We complete the proof of Lemma 3 by combining (9), (14), and (15).
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Lemma 4. Let 1 < p < ∞ and {an} ∈ MVBVS. Then for 1/p − 1 <
γ < 1/p,

(16) n−p
n−1
∑

m=1

mp+pγ−2
(

n
∑

ν=m+1

ν|∆aν |
)p

≤ Cn−p
n−1
∑

ν=1

ν2p+pγ−2ap
ν + C

∞
∑

ν=n

νp+pγ−2ap
ν .

Proof. In a similar way to the proof of (8), we have for {an} ∈ MVBVS,

an + an+1 ≤ C

[λ(n+1)]
∑

ν=[n/(2λ)]

aν

ν + 1
≤ Cn−1

[λ(n+1)]
∑

ν=[n/(2λ)]

aν .

Similar to the proof of Lemma 3, we obtain

n
∑

ν=m+1

ν|∆aν | ≤

[log n/log 2]−1
∑

j=[log(m+1)/log 2]

2j
2j+1
∑

ν=2j

|∆aν | +
n∗

∑

ν=[n∗/2]

ν|∆aν | + n(an + an+1)

≤ C

[λn/2]
∑

ν=[(m+1)/(2λ)]

aν + C

[λ(n+1)]
∑

ν=[(n−1)/(2λ)]

aν

≤ C

[λn/2]
∑

ν=[m/(2λ)]

aν + C

[λ(n+1)]
∑

ν=[λn/2]+1

aν ≤ C

[λ(n+1)]
∑

ν=[m/(2λ)]

aν .

So we can split the left-hand side of the inequality in (16) into

(17) n−p
n−1
∑

m=1

mp+pγ−2
(

n
∑

ν=m+1

ν|∆aν |
)p

≤ Cn−p
n−1
∑

m=1

mp+pγ−2
(

m
∑

ν=[m/(2λ)]

aν

)p
+ Cn−p

n−1
∑

m=1

mp+pγ−2
(

n−1
∑

ν=m+1

aν

)p

+ Cn−p
n−1
∑

m=1

mp+pγ−2
(

[λ(n+1)]
∑

ν=n

aν

)p
=: I1 + I2 + I3.

Evidently,

(18) I3 ≤ Cnp+pγ−2

[λ(n+1)]
∑

ν=n

ap
ν ≤ C

∞
∑

ν=n

νp+pγ−2ap
ν .
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From the proof of (11) of Lemma 3,

(19) I2 ≤ Cn−p
n−1
∑

ν=1

ν2p+pγ−2ap
ν .

For I1, we have

I1 ≤ Cn−p

[2λ]
∑

m=1

mp+pγ−2
(

m
∑

ν=[m/(2λ)]

aν

)p
(20)

+ Cn−p
n−1
∑

m=[2λ]+1

([m/(2λ)])p+pγ−2
(

n−1
∑

ν=[m/(2λ)]

aν

)p

≤ Cn−p
n−1
∑

ν=1

ν2p+pγ−2ap
ν + CI2 ≤ C

∞
∑

ν=n

νp+pγ−2ap
ν .

Combining (17)–(20), we obtain (16).

Now we are ready to prove Theorem 2.

Proof of Theorem 2. We prove the theorem for the case when φ(x) =
f(x). The case when φ(x) = g(x) can be proved similarly. Let h = π/(2n).
Since f is an even function, it is clear that

ω(f, h)p,γ ≤ C sup
0<t≤h

({

π/n\
0

x−pγ |f(x ± t) − f(x)|p dx
}1/p

+
{

π\
π/n

x−pγ |f(x ± t) − f(x)|p dx
}1/p)

=: C sup
0<t≤h

(J1 + J2).

By Minkowski’s inequality,

1

2
J1 ≤

( π/n\
0

x−pγ

∣

∣

∣

∣

n−1
∑

ν=1

aν sin
1

2
νt sin

(

x ±
1

2
t

)∣

∣

∣

∣

p

dx

)1/p

+
(

π/n\
0

x−pγ
∣

∣

∣

∞
∑

ν=n

aν [cos ν(x ± t) − cos νx]
∣

∣

∣

p
dx

)1/p

≤ t
{

π/n\
0

x−pγ
(

n−1
∑

ν=1

νaν

)p
dx

}1/p

+ C
{

∞
∑

m=n

3π/(2m)\
3π/(2(m+1))

x−pγ
∣

∣

∣

∞
∑

ν=n

aν cos νx
∣

∣

∣

p
dx

}1/p

=: J11 + J12.
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By Hölder’s inequality, we have (note that 2p + pγ − 2 > p − 1 > 0)

J11 ≤ Cn−1−1/p+γ
n−1
∑

ν=1

νaν(21)

≤ Cn−1−1/p+γ
(

n−1
∑

ν=1

ν2p+pγ−2ap
ν

)1/p(
n−1
∑

ν=1

ν
(−1−γ+2/p)p

p−1

)(p−1)/p

≤ Cn−1
(

n−1
∑

ν=1

ν2p+pγ−2ap
ν

)1/p
.

The condition that {λn} satisfies (1), i.e., {aν} satisfies (1), implies that
limν→∞ aν = 0. By Abel’s transformation, with the same argument as in
the proof of (6), we obtain

∣

∣

∣

∞
∑

ν=n

aν cos νx
∣

∣

∣
≤

m
∑

ν=n

aν+(m+1)
∞

∑

ν=m+1

|∆aν | ≤
m

∑

ν=n

aν+m
∞

∑

ν=[λ−1(m+1)]

aν

ν + 1
.

Set βm = mpγ−2, αν = 0 for ν < n, and αν = aν for ν ≥ n. Then by (4),

(22)

∞
∑

m=n

mpγ−2
(

m
∑

ν=n

aν

)p
≤ C

∞
∑

m=n

mp+pγ−2ap
m.

Note that

(23)
∞

∑

m=n

mp+pγ−2

( ∞
∑

ν=[λ−1(m+1)]

aν

ν

)p

≤
∑

n≤m≤λn−1

mp+pγ−2

( m
∑

ν=[λ−1(m+1)]

aν

ν

)p

+
∑

n≤m≤λn−1

mp+pγ−2

( ∞
∑

ν=m

aν

ν

)p

+
∑

m≥λn

mp+pγ−2

( ∞
∑

ν=[λ−1(m+1)]

aν

ν

)p

≤ Cnpγ−1
(

[λn]
∑

ν=[λ−1(n+1)]

aν

)p
+ C

∞
∑

m=n

mp+pγ−2

( ∞
∑

ν=m

aν

ν

)p

≤ Cn−p

[λn]
∑

ν=[λ−1(n+1)]

ν2p+pγ−2ap
ν + C

∞
∑

m=n

mp+pγ−2

( ∞
∑

ν=m

aν

ν

)p

(by Hölder’s inequality)



224 D. S. Yu et al.

≤ Cn−p
n−1
∑

ν=1

ν2p+pγ−2ap
ν + C

∞
∑

ν=n

νp+pγ−2ap
ν + C

∞
∑

m=n

mp+pγ−2

( ∞
∑

ν=m

aν

ν

)p

≤ Cn−p
n−1
∑

ν=1

ν2p+pγ−2ap
ν + C

∞
∑

ν=n

νp+pγ−2ap
ν ,

where in the last inequality, we have used the following inequality:

∞
∑

m=n

mp+pγ−2

( ∞
∑

ν=m

aν

ν

)p

≤

∞
∑

m=1

βm

(

∞
∑

ν=m

αν

)p
≤ C

∞
∑

ν=n

νp+pγ−2ap
ν ,

which can be deduced from (5) by taking βm = mp+pγ−2, αν = 0 for ν < n,
αν = aν/ν for ν ≥ n. Thus, it follows from (22) and (23) that

(24) J12 ≤ Cn−1
(

n−1
∑

k=1

ν2p+pγ−2ap
ν

)1/p
+ C

(

∞
∑

k=n

νp+pγ−2ap
ν

)1/p
.

Denote by Dk(x) the Dirichlet kernel of order k. Following Leindler [6], we
have

J2 ≤
{

π\
π/n

x−pγ
∣

∣

∣

n
∑

ν=1

∆aν(Dν(x ± t) − Dν(x))
∣

∣

∣

p
dx

}1/p

+
{

π\
π/n

x−pγ
∣

∣

∣

∞
∑

ν=n+1

∆aν(Dν(x ± t) − Dν(x))
∣

∣

∣

p
dx

}1/p

=: J21 + J22.

Now

(J21)
p ≤ C

n−1
∑

m=1

π/m\
π/(m+1)

x−pγ
n

∑

ν=1

|∆aν(Dν(x ± t) − Dν(x))|p dx

≤ Ctp
{

n−1
∑

m=1

mpγ−2
(

m
∑

ν=1

ν2|∆aν |
)p

+
n−1
∑

m=1

mpγ+p−2
(

n
∑

ν=m+1

ν|∆aν |
)p}

.

Hence, it follows from Lemmas 3 and 4 that

(25) J21 ≤ Cn−1
(

n−1
∑

k=1

ν2p+pγ−2ap
ν

)1/p
+ C

(

∞
∑

k=n

νp+pγ−2ap
ν

)1/p
.
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For J22, we have

J22 ≤
{

π+π/(2n)\
π/(2n)

∣

∣

∣

∞
∑

ν=n+1

|∆aν | |Dν(x)|
∣

∣

∣

p
dx

}1/p

≤ C
∣

∣

∣

∞
∑

ν=n+1

|∆aν |
∣

∣

∣

p{
∞\

π/(2n)

x−p−pγ dx
}1/p

≤ Cn1+γ−1/p
∞
∑

k=[λ−1(n+1)]

ak

k
(by (6))

≤ Cn1+γ−1/p
n−1
∑

k=[λ−1(n+1)]

ak

k
+ Cn1+γ−1/p

∞
∑

k=n

ak

k
.

By Hölder’s inequality,

n1+γ−1/p
n−1
∑

k=[λ−1(n+1)]

ak

k
≤ n1+γ−1/p

(

n−1
∑

k=[λ−1(n+1)]

k2p+pγ−2ap
k

)1/p

×
(

n−1
∑

k=[λ−1(n+1)]

k
(−3−γ+2/p)p

p−1

)(p−1)/p

≤ Cn−1
(

n−1
∑

ν=1

ν2p+pγ−2ap
ν

)1/p
,

and

n1+γ−1/p
∞

∑

k=n

ak

k
≤ n1+γ−1/p

(

∞
∑

k=n

kp+pγ−2ap
k

)1/p(
∞

∑

k=n

k
(−2−γ+2/p)p

p−1

)(p−1)/p

≤ C
(

∞
∑

ν=n

νp+pγ−2ap
ν

)1/p
.

Therefore,

(26) J22 ≤ Cn−1
(

n−1
∑

ν=1

ν2p+pγ−2ap
ν

)1/p
+ C

(

∞
∑

ν=n

νp+pγ−2ap
ν

)1/p
.

Combining (21)–(26), we complete the proof of Theorem 2.
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