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Open partial isometries and positivity

in operator spaces

by

David P. Blecher (Houston, TX) and Matthew Neal (Granville, OH)

Abstract. We first study positivity in C
∗-modules using tripotents (= partial isome-

tries) which are what we call open. This is then used to study ordered operator spaces
via an “ordered noncommutative Shilov boundary” which we introduce. This boundary
satisfies the usual universal diagram/property of the noncommutative Shilov boundary,
but with all the arrows completely positive. Because of their independent interest, we also
systematically study open tripotents and their properties.

1. Introduction. We are interested here in cones of positive operators
X+ = {x ∈ X : x ≥ 0}, for a space X of bounded linear operators on a
Hilbert space, where ≥ denotes the usual ordering of such operators. Besides
the intrinsic interest of such objects (for example, operator positivity plays
a central role in many areas of mathematical physics today), our work is a
sequel to [13], which was a first step in a new approach to positivity in an op-
erator space X, namely studying it in terms of the “noncommutative Shilov
boundary” of X (see [6, 26, 12]). The latter object is a Hilbert C∗-module,
or, equivalently, a ternary ring of operators (or TRO for short), by which we
will mean a closed subspace Z of a C∗-algebra A such that ZZ∗Z ⊂ Z. If X
contains positive operators, then so will any containing TRO. The starting
point of the present investigation and [13] was the question of whether, in
this case, all morphisms in the universal property of the noncommutative
Shilov boundary can also be chosen to be positive (allowing this bound-
ary to be used as a new tool in the study of ordered operator spaces). To
answer this, one is led immediately to study positivity in TROs, and we
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address this topic first (the last section of our paper concerns positivity in
general operator spaces). In [13] we considered the case of selfadjoint TROs
Z in a C∗-algebra A. In the first part of the present paper, we are able
to generalize, to arbitrary TROs, a fundamental correspondence from [13]:
we show that the natural cones in a TRO, namely Z ∩ A+ in the notation
above, are in a bijective correspondence with tripotents (= partial isome-
tries) which are open (1) in the sense of [13]. The emphasis we place on the
relation between positivity and the underlying algebra has its philosophical
origin in [22]. Open tripotents generalize the notion of open projections in
C∗-algebra theory [36], which in turn generalize the notion of open sets in
topology. Since there appears to be no theory of general open tripotents (in
our sense) in the literature, we give a careful development of this topic here.
We also briefly discuss compact tripotents, a notion which has been treated
in the literature in a more general setting (see e.g. [5, 15, 19, 21, 24]). We
believe that these objects should play a role in operator space theory in
the future, in view of the importance of TROs in that subject (see e.g. [12,
Chapter 8] and references therein). For example, it has strong relations with
the recent study of peak projections and peak tripotents [27, 10, 9]. In any
case, our paper, like its predecessor, in some sense “marries” the notion of
positivity of Hilbert space operators to ideas from the basic structure theory
of JBW ∗-triples.

Section 4 is mostly devoted to maximal orderings on TROs. For example,
we analyze a conjectured characterization of maximal operator space order-
ings on ∗-TROs from [13]. Indeed, 1) we show that the proposed charac-
terization is not true for all ∗-TROs, and 2) we isolate the precise class of
∗-TROs for which the characterization is true in general (we call these the
completely orderable ∗-TROs).

In Section 5, we apply some of our theory from earlier sections to con-
struct, for an ordered operator space X, an ordered version of the noncom-
mutative Shilov boundary of X. More particularly, we assign to the usual
noncommutative Shilov boundary of X the natural cone associated with an
open tripotent, which in turn is a supremum of certain “range tripotents”
studied in Section 3. This “ordered boundary” answers the question raised
at the start of this paper: it satisfies the usual universal diagram/property
of the noncommutative Shilov boundary of X, but all the arrows are com-
pletely positive. We usually do not assume, unlike in the predecessor [13]
and in the companion paper [11], that X has an involution ∗. This is simply
because of the greater generality and freedom available in our framework,
and because the analogous results in the involutive case are in some sense
just a special case (with some exceptions that are discussed in [11]). Our

(1) These are not the same as the open partial isometries of [19].
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results yield, for example, a very algebraic characterization of the possible
operator space orderings on a given operator space (see e.g. Theorem 5.5),
and interesting facts about such orderings which are maximal. The results
are particularly good for spaces X whose positive cone densely spans X,
which is a common assumption in the theory of ordered vector spaces. In-
deed, it is often a very reasonable assumption since “order theory” can say
very little about elements not in the span of the cone. In any case, it seems
to be true that ordered operator spaces with densely spanning cones, which
as far as we know have not hitherto been considered in the literature, con-
stitute a setting to which much of the theory of (unital) operator systems
generalizes in a natural and satisfactory way. We initiate the study of such
spaces here and in the sequel [11], where, for example, we obtain a new uni-
tization of such spaces (which is universal in that it has the biggest possible
positive cone, as opposed to the unitization from [39, 40, 31] which has the
smallest), and a striking rigidity property (see the end of Section 2 in [11]).
This class certainly deserves further study in the future.

We now turn to precise definitions and notation. Any unexplained terms
below can probably be found in [12], or any of the other recent books on
operator spaces. All vector spaces are over the complex field C. A given
cone in a space X will often be written as X+, and we write ≥ for the
associated ordering: x ≥ y iff x − y ∈ X+. Indeed, we will use the terms
“cone” and “ordering” somewhat interchangeably. A matrix cone c for us
will simply be a sequence (cn), where cn is a cone in Mn(X), such that if
[xij ] ∈ cn then xii ∈ c1. A linear map T : X → Y between spaces with cones
is positive if T (X+) ⊂ Y+. If the matrix spaces Mn(X) and Mn(Y ) also each
have a given cone, for each n ∈ N, and if the canonical “amplification” Tn :
Mn(X) →Mn(Y ) is positive for each n ∈ N, then we say that T is completely

positive. A (resp. complete) order embedding is a (resp. completely) positive
map T such that T−1 is (resp. completely) positive on Ran(T ). An operator

space ordering or operator space cone on an operator space X is a specified
matrix cone c = (cn) so that there exists a complete isometry T from X
into a C∗-algebra B, which is at least completely positive. That is, T is a
complete isometry with Tn(cn) ⊂Mn(B)+ for all n ∈ N. Of course, it is more
natural in some sense to strengthen this last definition by also requiring T
to be a complete order embedding; and we remark that the ordered spaces
satisfying this strengthened definition have been abstractly characterized in
[39] as the “matrix ordered operator spaces” whose matrix norms coincide
with the “modified numerical radius” norms (this follows from e.g. Corollary
4.11 there). Nonetheless, the convention we adopt seems to fit better with
our results. Moreover, by the characterization from [39] just mentioned, one
can easily see that the two definitions actually coincide for operator space
cones (in our sense) also satisfying the mild conditions in [39, Definition 3.3].
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We will sometimes be sloppy, and use c interchangeably for c1 and for the
entire collection {cn}, and vice versa. Similarly, T (c) often denotes (Tn(cn)).
We say that one ordering on X is majorized by another ordering if the
positive cones for the first ordering are contained in the positive cones for
the second ordering. We write X ′ for the dual Banach space (resp. dual
operator space) of a Banach space (resp. operator space) X, and regard
X ⊂ X ′′.

We refer to e.g. [26, 12] for the basic theory of TROs. TROs were
characterized as operator spaces in [34], but we shall not need this here.
A ternary morphism on a TRO Z is a linear map T such that T (xy∗z) =
T (x)T (y)∗T (z) for all x, y, z ∈ Z. A tripotent is an element u ∈ Z such that
uu∗u = u. We order tripotents by u ≤ v if and only if uv∗u = u. This turns
out to be equivalent to u = vu∗u, or to u = uu∗v, and implies that u∗u ≤ v∗v
and uu∗ ≤ vv∗ [8]. A WTRO is a weak∗ closed TRO in a W ∗-algebra. We
write L(Z) for the linking C∗-algebra of a TRO; this has four “corners”
ZZ∗, Z, Z∗, and Z∗Z. Here ZZ∗ is the closure of the linear span of prod-
ucts zw∗ with z, w ∈ Z, and similarly for Z∗Z. If E is a WTRO, then
we write L̄(E) for the W ∗-algebra linking algebra; this has four “corners”

EE∗weak∗

, E, E∗, and E∗E
weak∗

. The second dual of a TRO Z is a WTRO,
and L(Z)′′ = L(Z ′′) (see e.g. the proof of [12, 8.5.17]). We will denote by I
the injection from Z into L(Z) given by I(z) = z⊗ e12 + z∗⊗ e21. Note that
I(z)2 = zz∗ ⊗ e11 + z∗z⊗ e22. For a tripotent u, we set û = 1

2(I(u) + I(u)2),
and ŭ = 1

2(−I(u)+I(u)2); these are projections. Define Θ : L(Z) → L(Z) to
be the period 2 ∗-automorphism which changes the sign of the off-diagonal
entries. Note that ŭ = Θ′′(û). We say that a projection r ∈ L(Z)′′ is anti-

symmetric if r ⊥ Θ′′(r), or equivalently, if r = v̂ for a tripotent v ∈ Z ′′ (see
Lemma 3.6).

A subTRO of a TRO Z is a closed subspace of Z which is closed under
the ternary product xy∗z. We write 〈S〉 for the smallest subTRO containing
a given subset S of Z. An inner ideal (resp. ternary ideal) of Z is defined to
be a closed subspace J with JZ∗J ⊂ J (resp. JZ∗Z ⊂ J and ZZ∗J ⊂ J).
Clearly inner and ternary ideals are subTROs. A ∗-TRO is a selfadjoint
TRO Z in a C∗-algebra B, and by an inner ∗-ideal or ternary ∗-ideal we
mean an inner or ternary ideal which is selfadjoint (that is, closed under the
involution). A tripotent in a ∗-TRO is selfadjoint if u = u∗, and central if
uz = zu for all z ∈ Z.

The Peirce 2-space of a tripotent u in a TRO Z is the subset

Z2(u) = {z ∈ Z : z = uu∗zu∗u} = uu∗Zu∗u = uZ∗u.

Clearly Z2(u) is an inner ideal of Z, and if Z is a WTRO then it is weak∗

closed. There is a natural product (namely x · y = xu∗y) and involution
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(namely x♯ = ux∗u) on Z2(u) making the latter space into a unital C∗-
algebra. The identity element of course is u. If u ≤ v then Z2(u) is a heredi-
tary C∗-subalgebra of Z2(v), and u becomes a projection in the last algebra.
If Z is a WTRO then Z2(u) is a W ∗-algebra. The positive cone in the C∗-
algebra Z2(u) will be written as cu. Strictly speaking, we should probably
write c

Z
u for this cone, but to avoid excessive notation we will write the

simpler expression. We leave it to the reader to make sense of the space
which cu lives in (it will always be the TRO that u belongs to). It is easy
to check that u∗Z2(u) is a C∗-subalgebra of Z∗Z, and the map z 7→ u∗z is
a ∗-isomorphism from Z2(u), with the product and involution above, onto
this C∗-subalgebra. From this it is easy to see that

cu = {z ∈ Z2(u) : u∗z ≥ 0} = {z ∈ Z : u∗z ≥ 0, z = uz∗u},
and also equals {uu∗zu∗uz∗u : z ∈ Z}, where these inequalities are in the
C∗-algebra Z∗Z. If u ∈ Z ′′, we define du to be the cone cu ∩ Z in Z. We
also write c

′
u for the weak∗ closure of du in Z ′′. In contrast to cu, the cone

du lies in Z, and not in the space Z ′′ which u lies in in this case. Finally, we
will write Z(u) for Z ′′

2 (u) ∩ Z. Following [13], we say that a tripotent u in
the WTRO Z ′′ is open if when we consider Z ′′

2 (u) as a W ∗-algebra in this
way, then u is the weak∗ limit in Z ′′ of an increasing net from du = cu ∩ Z.
Beware that this definition differs from the one given in [19] (for example,
all unitaries are open in the sense of that paper). We will show that the
spaces du, for open tripotents u, are exactly the natural cones in Z, and
that this sets up an order preserving bijection between open tripotents and
natural cones.

Lemma 1.1. Apositive ternarymorphismbetweenC∗-algebras is a ∗-homo-

morphism, and hence it is completely positive. In particular , a positive linear

completely isometric surjection between C∗-algebras is a ∗-isomorphism.

Proof. The first assertion may be found in the proof of [13, Corollary
4.3(2)]. The second we shall not need (it is stated as background), and it fol-
lows from the well known fact that the surjective linear complete isometries
between TROs are exactly the ternary isomorphisms.

2. Open tripotents and natural cones. We begin with the following
simple but fundamental observation, which we have not seen in the litera-
ture:

Lemma 2.1. Let Z be a TRO inside a C∗-algebra A. Then the subspace

J(Z) = Z ∩Z∗ ∩Z∗Z ∩ZZ∗ is a C∗-subalgebra of A which is also an inner

ideal in Z. Moreover , the positive cone J(Z)+ of this C∗-subalgebra equals

Z ∩A+.
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Proof. The proof is left to the reader, except for the last assertion.
Clearly J(Z)+ ⊂ Z ∩A+. Conversely, if x ∈ Z ∩A+ then of course x ∈ Z∗.
Also, x2 ∈ Z∗Z, so that x ∈ Z∗Z since square roots remain in a C∗-algebra.
Similarly, x ∈ ZZ∗, so that x ∈ J(Z).

The positive cone J(Z)+ will be called a natural cone for Z, and the
corresponding ordering on Z is called a natural ordering. Since Mn(Z) is
a TRO in Mn(A), of course one has a sequence of cones, Mn(J(Z))+ =
J(Mn(Z))+, but since the cone J(Z)+ determines the others (see Corollary
2.2), it will not often be necessary to mention these other cones. Thus we
often suppress the obvious facts concerning them (in Section 4 we will start
to be more careful in this regard). We also use the term “natural cone”
even when the C∗-algebra A is not in evidence. Thus, a cone d in Z is
natural if there exists a one-to-one ternary morphism ϕ : Z → B, for a
C∗-algebra B, such that ϕ(d) = ϕ(Z)∩B+. Natural dual cones for a WTRO
E are defined analogously (a weak∗ closed cone such that there exists a one-
to-one weak∗ continuous ternary morphism into a W ∗-algebra satisfying
ϕ(d) = ϕ(Z) ∩ B+). If Z is a WTRO in a W ∗-algebra M , then J(Z) =

Z ∩ Z∗ ∩ Z∗Z
weak∗

∩ ZZ∗weak∗

, a W ∗-subalgebra of M . To see this, note
that the latter space is a W ∗-subalgebra, and if x is positive there then
x = (x∗x)1/2 ∈ Z∗Z. Similarly, x ∈ ZZ∗, and so x ∈ J(Z).

Remark. There seems to be no way to reduce the study of cones on
TROs to the ∗-TRO case studied in [13]. Clearly if Z is a TRO in a C∗-
algebra A, then W = Z∩Z∗ is a ∗-TRO, and W ∩W 2 = J(Z) and W ∩A+ =
Z ∩ A+. However, the space Z ∩ Z∗ depends crucially on the particular
ambient C∗-algebra A chosen. That is, if θ : Z → B is a ternary morphism
and complete order embedding into another C∗-algebra B, there is no nice
relation in general between W and θ(Z) ∩ θ(Z)∗.

Corollary 2.2. If θ : Z →W is a ternary morphism between subTROs

of C∗-algebras, and if θ is positive, then θ is completely positive.

Proof. Clearly θ is positive iff θ|J(Z) is positive as a map from J(Z) to
J(W ). By Lemma 1.1, θ|J(Z) is completely positive. Thus, θn is positive as
a map from J(Mn(Z)) = Mn(J(Z)) to J(Mn(W )) = Mn(J(W )).

Proposition 2.3. Let Z be a TRO , and u a tripotent in Z ′′. Then du

is a natural cone in Z.

Proof. We define two one-to-one ternary morphisms θ and π from Z into
L(Z ′′) as follows:

θ(z) =

[
0 (1 − uu∗)z

0 u∗z

]
, π(z) =

[
zu∗ z(1 − u∗u)

0 0

]
, z ∈ Z.
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Let T (z) = θ(z) ⊕ π(z) ∈ L(Z ′′) ⊕∞ L(Z ′′); this is a one-to-one ternary
morphism. If T (z) ≥ 0 then clearly (1 − uu∗)z = z(1 − u∗u) = 0 so that
z ∈ Z ′′

2 (u). Since u∗z ≥ 0 we have z ∈ Z ∩ cu = du. Conversely, if z ∈ du

it is even easier to see that T (z) ≥ 0. Thus we have a one-to-one ternary
morphism into a C∗-algebra which is an order embedding.

Lemma 2.4. If u is a tripotent in a TRO Z, and x ∈ cu, then u∗x =
|x| ∈ Z∗Z.

Proof. We have u∗x ≥ 0 and u∗xu∗x = (x♯)∗x = x∗x. The result then
follows from the uniqueness of square roots.

We recall that c
′
u is the weak∗ closure of du = cu ∩ Z in Z ′′.

Lemma 2.5. For every open tripotent u ∈ Z ′′, Z(u) is a weak∗ dense

C∗-subalgebra of Z ′′
2 (u), and is an inner ideal of Z. Also, c

′
u = cu. Con-

versely , every inner ideal of Z which is ternary isomorphic (or equivalently ,
completely isometrically isomorphic) to a C∗-algebra arises this way.

Proof. Let A = Z(u) = {z ∈ Z : z = uu∗zu∗u}, which is an inner
ideal. Let (ut) be a positive net in A converging weak∗ to u. As remarked
earlier, z 7→ zu∗ is a ∗-homomorphism on Z ′′

2 (u), and so utu
∗ ≥ 0. By a

variant of Lemma 2.4, it follows that utu
∗ ∈ ZZ∗. If z ∈ A then utu

∗z →
uu∗z = z weak∗. On the other hand, utu

∗ ∈ ZZ∗ as mentioned above, so
that utu

∗z → z weakly in Z. Thus convex combinations of utu
∗z converge

to z in norm. It follows that convex combinations of u∗utu
∗z converge to

u∗z in norm, and u∗utu
∗z = (u♯

t)
∗z = u∗t z ∈ Z∗Z, so that u∗z ∈ Z∗Z.

Thus A is a subalgebra of Z ′′
2 (u). To see that it is a ∗-subalgebra, note

that a similar argument shows that uz∗ ∈ ZZ∗. Since z∗ is a norm limit of
convex combinations of z∗uu∗t , we see that uz∗u is a norm limit of convex
combinations of uz∗uu∗tu = uz∗ut. The latter is in Z since uz∗ ∈ ZZ∗.

Suppose that η ∈ Z ′′
2 (u), and zλ → η weak∗, with zλ ∈ Z. Then usz

∗
λut

is in A, since A is an inner ideal. It follows that uz∗λu = z♯
λ is in the weak∗

closure of A. Hence also η♯ ∈ A⊥⊥. Thus A is weak∗ dense in Z ′′
2 (u), and

so A′′ = Z ′′
2 (u) as von Neumann algebras. Thus if η ∈ cu then there is an

increasing net in du with weak∗ limit η. So c
′
u = cu.

Conversely, assume that I is an inner ideal of Z which is ternary iso-
morphic to a C∗-algebra A via a ternary isomorphism ψ : A → I. Then
ψ′′ : A′′ → I ′′ = I⊥⊥ is a one-to-one ternary morphism. If u = ψ′′(1) then u
is a “unitary” tripotent in I, in the sense that I⊥⊥ = I⊥⊥

2 (u), and it is easy
to see that I⊥⊥ = Z ′′

2 (u) since I⊥⊥ is an inner ideal of Z ′′. Thus I = Z(u).
Moreover, it is clear that ψ′′ is a ∗-isomorphism with respect to the canoni-
cal product on Z ′′

2 (u). Since the identity of A′′ is open, it is evident that u
is open.
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We define an inner C∗-ideal of a TRO Z to be an inner ideal J of Z with
a specified positive cone J+, which is ternary isomorphic to a C∗-algebra via
an order isomorphism. If, further, J is weak∗ dense in Z ′′

2 (u) for a tripotent
u ∈ Z ′′ such that J+ ⊂ cu, then we say that u is a support tripotent for J .

Lemma 2.6. An inner C∗-ideal J of a TRO has a unique support tripo-

tent u, which is automatically open, and J = Z(u) and J+ = du.

Proof. That there exists a support tripotent u, which is open, is proved
in the last lemma. The proof shows that J = Z(u), and J+ = du. For the
uniqueness of u, note that if v were another support tripotent of J , then
cu = c

′
u ⊂ cv, since J+ = du ⊂ cv and the latter set is weak∗ closed. By the

well known equivalence of (i) and (ii) in the next proposition, u ≤ v. On the
other hand, v ∈ Z ′′

2 (v) = J⊥⊥ = Z ′′
2 (u), so that v = vu∗u = u.

It follows immediately from the last results and discussion earlier in this
section that every natural cone on a TRO Z gives rise to an open tripotent,
namely the support tripotent of J(Z). Conversely, every open tripotent gives
a natural cone by Proposition 2.3.

For the following result, we recall the definition û = 1
2(I(u)+I(u)2) from

the introduction.

Proposition 2.7. For tripotents u, v in a TRO Z, the following are

equivalent :

(i) u ≤ v in Z.

(ii) cu ⊂ cv.

(iii) Z2(u) is a C∗-subalgebra of Z2(v).
(iv) u ∈ Z2(v) and u is a projection in that C∗-algebra.

(v) û ≤ v̂.

Proof. These are all essentially well known (see e.g. [8]), and easy ex-
ercises, except perhaps the equivalence with (v). If û ≤ v̂, then uu∗ ≤ vv∗

and u∗u ≤ v∗v. Since ûv̂ = û, we see that u/2 = uu∗v/4 + uv∗v/4, and thus
u = uu∗v and u ≤ v. The other direction is obtained by multiplying û by v̂
and using the equations uu∗v = vu∗u = u.

Corollary 2.8. If u, v are open tripotents in the second dual of a TRO

Z, then the following are equivalent :

(i) u ≤ v in Z ′′.

(ii) du ⊂ dv.

(iii) Z(u) is a C∗-subalgebra of Z(v).

Also, the correspondence established above between natural cones on Z and

open tripotents in Z ′′ is bijective, and preserves “order” (ordering cones by

inclusion).
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Proof. Suppose that du ⊂ dv. Taking weak∗ closures yields cu ⊂ cv,
so that u ≤ v by Proposition 2.7. We leave the other implications as an
exercise, using of course that proposition and the earlier established facts
summarized in the remark above Proposition 2.7.

Remarks. 1) Variants of the arguments above show that there is a
bijective order preserving correspondence between natural dual cones in a
WTRO E, and tripotents in E.

2) It follows from Corollary 2.8 that maximal natural cones for Z will
correspond to maximal open tripotents in Z ′′. Maximal open tripotents in
Z ′′ are studied in the second half of Section 4 below.

Lemma 2.9. Let Z be a TRO , and let E = Z ′′, also a TRO in the

canonical way. Let u be a tripotent in E, so that du is a natural cone by

Proposition 2.3. We have:

(1) c
′
u ⊂ cu.

(2) c
′
u = cv for an open tripotent v ∈ E with v ≤ u.

(3) The closed span Ju of du is a C∗-subalgebra of E2(u), the latter

regarded as a C∗-algebra in the canonical way. Also, du is the positive

cone of this C∗-algebra Ju.

Proof. Item (1) is obvious, and (2) follows from Proposition 2.7, and
Lemmas 2.5 and 2.6. For (3) note that du = dv, and so Ju is a C∗-subalgebra
of E2(v), which in turn is a C∗-subalgebra of E2(u) by Proposition 2.7(iii).

Remark. We do not know if it is true that if Z is a TRO in a C∗-algebra
A, and if Z ′′ is regarded as a TRO in A′′, then J(Z) is weak∗ dense in J(Z ′′).

Theorem 2.10. Let Z be a TRO , set E = Z ′′, and let u be a tripotent

in E. The following are equivalent :

(i) u is an open tripotent (i.e. there is a net (xt) in Z converging

weak∗ to u, satisfying : u∗xt ≥ 0, ux∗tu = xt for all t, and (u∗xt) is

an increasing net).
(ii) u ∈ c

′
u.

(iii) û = 1
2(I(u) + I(u)2) is an open projection in L(Z)′′.

(iv) ŭ = 1
2(−I(u) + I(u)2) is an open projection in L(Z)′′.

(v) u is a support tripotent for an inner C∗-ideal in Z.

(vi) c
′
u = cu.

(vii) The closed span Ju of du is weak∗ dense in E2(u).
(viii) −u is an open tripotent.

Proof. Lemmas 2.5 and 2.6 give (i)⇔(v), and the fact that (i) implies
(vi) and (vii). It is easy to see the equivalence of (viii) with (i) from the
definition. Clearly (i) implies (ii), and (vi) implies (ii).
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(vii)⇒(ii). By Lemma 2.9, Ju is a C∗-subalgebra of E2(u). If also J⊥⊥
u =

E2(u) it follows that Ju = E2(u) ∩ Z, and E2(u) is the “second dual C∗-
algebra” of Ju. Thus (Ju)+ = du, and u ∈ c

′
u.

(ii)⇒(iii). Suppose that (xt) is a net in du converging weak∗ to u. Let

rt =
1

2

[
xtu

∗ xt

x∗t u∗xt

]
.

Since xt is selfadjoint in Z ′′
2 (u), we have u∗xt = x∗tu and xtu

∗ = ux∗t . Thus
rt is selfadjoint, and it clearly converges weak∗ to û. In fact rt ∈ L(Z).
Indeed, xtu

∗ ∈ ZZ∗ and u∗xt ∈ Z∗Z as in Lemma 2.4. Then û is open, since
rtû = rt.

(iii)⇒(i). Suppose that û is open. Let

rt =
1

2

[
at xt

x∗t bt

]

be a positive net in L(Z) increasing up to û. We have 1
4atu+ 1

4xtu
∗u = 1

2xt,
and multiplying by u∗u yields xt = atu, and xt = xtu

∗u. Similarly xt =
uu∗xt, so that xt ∈ Z(u). Since (at) is positive and increasing, and xt = atu,
we find that (xt) is positive and increasing in Z ′′

2 (u). Thus u is an open
tripotent.

(iii)⇔(iv) follows from the equivalence of (viii) with (iii).

Remark. One may prove directly that (ii) implies (i). Indeed, the proof
of Lemma 2.5 shows that A = Z(u) is a C∗-subalgebra of Z ′′

2 (u), and
A′′ = Z ′′

2 (u) as von Neumann algebras. It follows that there is an increasing

positive net in A with weak∗ limit u. This gives (i).

Corollary 2.11. If Z is a TRO and u, v are tripotents in Z ′′, with v
open and u ≤ v, then u is open iff it is open as a projection in Z ′′

2 (v).

Proof. If zt → u weak∗, with (zt) an increasing net in du, then zt is an
increasing net in cv. So u is an open projection in Z ′′

2 (v). Conversely, if u
is an open projection in Z ′′

2 (v), then there is a net xt ∈ dv with xt ≤ u
in Z ′′

2 (v), and xt → u weak∗. We have uv∗xt = xt = uu∗xt, and similarly
xtu

∗u = xt. Thus xt ∈ Z(u), and indeed xt ∈ du since u∗xt = v∗xt ≥ 0.
Thus u is open by Theorem 2.10(ii).

Remark. The open tripotents in the second dual of a C∗-algebra that
are projections, are exactly the usual open projections [36].

More generally, if u is an open tripotent in Z ′′, then it is easy to see from
the proof of (iii)⇒(i) in Theorem 2.10 that uu∗ and u∗u are open projections
in (ZZ∗)′′ and (Z∗Z)′′ respectively (cf. [19]).

Proposition 2.12. An increasing net (ut) of open tripotents in Z ′′ has

a least upper bound tripotent u in Z ′′, namely its weak∗ limit , and u is also
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open. In terms of cones, du is the norm closure of the union of the cones dut
.

That is, the norm closure of a union of a nested collection of natural cones

is a natural cone.

Proof. It is well known [8, Proposition 3.8], and easy to argue directly by
a weak∗ limit argument using separate weak∗ continuity of the product, that
the net has an upper bound tripotent w. Working in Z ′′

2 (w), the ut become
an increasing net of projections. Hence they have a supremum projection
u, which they converge to strongly. It is easy to check that u is also the
supremum as a tripotent in Z ′′. The spaces Z ′′

2 (ut) are W ∗-subalgebras of
Z ′′

2 (u). To see that u is open, by Theorem 2.10(ii) it suffices to show that ut

is in the weak∗ closure of du. But ut is in the weak∗ closure of dut
, and

dut
= cut

∩ Z ⊂ cu ∩ Z = du.

Since the ut are open projections in the C∗-algebra Z ′′
2 (u) by Corollary

2.11, the final assertion is essentially well known. We include a proof for
completeness. It is clear that du contains the norm closure of the union of
the cones dut

. To get the reverse inclusion, let At be the C∗-subalgebra Z(ut)
of A = Z(u). In turn A is a C∗-subalgebra of Z ′′

2 (u), and indeed Z ′′
2 (u) is

the second dual C∗-algebra of A. The positive cones of At and A are dut

and du respectively. The weak∗ closure of
⋃

t Z
′′
2 (ut) equals Z ′′

2 (u), since any
η ∈ Z ′′

2 (u) is the strong limit of utu
∗ηu∗ut, and we have utu

∗ηu∗ut ∈ Z ′′
2 (ut).

It follows by basic functional analysis that the norm closure of
⋃

tAt is A.
From this it is clear that the closure of

⋃
t(At)+ is A+.

We leave the following as an exercise.

Corollary 2.13. The L∞-direct sum
⊕∞

i Zi of naturally ordered TROs

(resp. dual naturally ordered WTROs), with the obvious cone, is again a

naturally ordered TRO (resp. dual naturally ordered WTRO).

3. Further properties of open tripotents. We begin with some facts
and lemmas on range tripotents, almost all of which are well known: in the
literature (see e.g. [5, 8] and the cited papers of Edwards and Rüttimann,
especially [21]) or folklore. However, since the arguments are short and
simple we include them here for the reader’s convenience. Later in this sec-
tion we establish the basic “calculus” of open tripotents, following (and
freely using ideas from) the basic calculus of open projections, and the cal-
culus of tripotents established in the aforementioned papers. In view of the
bijective correspondence from Corollary 2.8, this calculus may be reread as
constituting most of the basic “theory of natural cones”. We will not usually
explicitly state the cone version of each result below, but leave this to the
reader.
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Let E be a WTRO. For each x ∈ E, we consider the range tripotent
r(x) in E. This is the tripotent in E with the property that x = r(x)|x| and
r(x)∗r(x) is the support projection of |x| (namely, r(x) is the partial isometry
in the polar decomposition of x, see e.g. 8.5.22 in [12]). Such a tripotent is
unique: it is the smallest tripotent u in E with the property that x = u|x|.
(To see this, note that if x = u|x|, then ur(x)∗r(x)|x| = u|x| = x = r(x)|x|,
and so ur(x)∗r(x) = r(x).) We have

xr(x)∗r(x) = r(x)|x|r(x)∗r(x) = r(x)|x| = x,

since 1 − r(x)∗r(x) is the projection onto Ran(|x|)⊥ = Ker(|x|). Also,

|x|r(x)∗r(x) = (r(x)∗r(x)|x|)∗ = |x|,
and so

r(x)x∗r(x) = r(x)|x|r(x)∗r(x) = r(x)|x| = x.

This shows that x ∈ Z ′′(r(x))+, since r(x)∗x = |x| ≥ 0.
Define C0(x) to be the norm closure of the span of odd polynomials of x.

By [19, Lemma 3.2], C0(x) is a commutative C∗-subalgebra of Z ′′
2 (r(x)),

and odd polynomials in x are the same in either product. It follows easily
that C0(x) is ternary isomorphic to C0(Sp(x)) where the spectrum is taken
in Z ′′

2 (r(x)). Thus the elements in C0(x) coincide with the usual functional
calculus in the W ∗-algebra Z ′′

2 (r(x)). If Z is a ∗-TRO and if x ∈ Zsa, then
clearly r(x) is selfadjoint.

Lemma 3.1. If u is a tripotent in a WTRO Z, then cu ={z ∈Z : r(z)≤ u}.
If Z is a TRO and u ∈ Z ′′, then du = {z ∈ Z : r(z) ≤ u}.

Proof. If r(z) ≤ u then z ∈ cr(z) ⊂ cu, by Proposition 2.7. Conversely,
if z ∈ cu, then u|z| = uu∗z = z by Lemma 2.4, so that r(z) ≤ u. The final
assertion follows immediately from the first one.

Lemma 3.2. If u is a tripotent in a WTRO E, and if x ∈ cu, then r(x)
is the support projection of x in the W ∗-algebra E2(u).

Proof. Since x ∈ cu we have r(x) ≤ u by Lemma 3.1, and so r(x) is
a projection in E2(u). We have r(x)u∗x = r(x)r(x)∗x = x. If v is another
projection in E2(u) with vu∗x = x then vu∗r(x)|x| = r(x)|x|. This implies
that vu∗r(x) = r(x) so that v ≥ r(x). Thus r(x) is the support projection
of x in E2(u).

Lemma 3.3. Let Z be a TRO. The range tripotent r(x) of any x ∈ Z
coincides with the weak∗ limit of x1/(2n−1), the power taken in the W ∗-algebra

Z ′′
2 (r(x)), and is open. Furthermore, Z(r(x)) is the smallest inner ideal in Z

containing x.

Proof. We work in the W ∗-algebra Z ′′
2 (r(x)). As we said earlier, x ≥ 0

in Z ′′
2 (r(x)). The first statement then follows from Lemma 3.2, and well
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known properties of support projections in a W ∗-algebra. As mentioned at
the beginning of this section, odd polynomials of x are the same in either
of the two products, and lie in Z. Since x1/(2n−1) is a norm limit of odd
polynomials of x in Z ′′

2 (r(x)), we see that x1/(2n−1) lies in Z. Thus r(x) is
open by (ii) of Theorem 2.10. For the last statement, it is clear that any
weak∗ closed inner ideal of Z ′′ containing x must contain r(x), and thus all
of Z ′′

2 (r(x)) by definition of inner ideal. Hence, any inner ideal I of Z must
contain Z(r(x)) since Iweak∗

is an inner ideal of Z ′′ (see also see Lemma 3.7
of [19]).

In the last proof we showed that if x ∈ Ball(Z), then r(x) is an increas-
ing weak∗ limit of powers x1/(2n−1), which in turn are norm limits of odd
polynomials in x. This is also true if x ∈ E for a WTRO E, with the weak∗

limit being in the weak∗ topology of E. We will use these facts frequently
below, often silently.

Corollary 3.4. A tripotent is open iff it is a weak∗ limit of an increas-

ing net of range tripotents.

Proof. A tripotent which is a limit of an increasing net of range tripotents
is open by Proposition 2.12 and Lemma 3.3. Conversely, suppose that u is
open. Then u is a weak∗ limit of an increasing net (zt) in Z(u). By Lemma
3.2, r(zt) is the support projection of zt in the W ∗-algebra Z ′′

2 (u). Thus, the
net (r(zt)) of range tripotents is increasing, and we have zt ≤ r(zt) ≤ u. It
follows that r(zt) → u weak∗.

Remark. One may also construct “open spectral tripotents” as follows.
If x is an element in a TRO Z, then x is positive in the W ∗-algebra Z ′′

2 (r(x)).
If U is any open set in Sp(x) ⊂ [0,∞), then the spectral projection χU (x) in
the W ∗-algebra Z ′′

2 (r(x)) is open, and hence it is an open tripotent in Z ′′.
A special case of course is if we take U = (0,∞); then the associated open
spectral tripotent u is just r(x). Indeed, this is a well known formula for a
support projection in a W ∗-algebra.

We now turn to properties of general open tripotents.

Proposition 3.5. If θ : Z →W is a ternary morphism between TROs,
and if u is an open tripotent in Z ′′, then v = θ′′(u) is an open tripotent

in W ′′. Also, θ restricts to a ∗-homomorphism Z(u) → Z(v), and θ(du) ⊂ dv.

If also θ is surjective, then θ(du) = dv.

Proof. Suppose that zt ∈ Z with u∗zt ≥ 0, zt = uz∗t u, and zt → u weak∗.
Applying θ we obtain a net (θ(zt)) with analogous properties, so that v is
open by Theorem 2.10(ii). Clearly θ′′ is a ∗-homomorphism Z ′′

2 (u) → Z ′′
2 (v),

and thus restricts to a ∗-homomorphism Z(u) → Z(v). If also θ is surjective,
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then θ′′(Z ′′
2 (u)) is an inner ideal containing v, so that θ′′(Z ′′

2 (u)) = Z ′′
2 (v).

From this it follows that θ(Z(u)) = Z(v) and θ(du) = dv.

Remark. Thus θ will be completely positive on Z with its ordering
determined by u.

Lemma 3.6. If r is an antisymmetric projection in L̄(E) for a WTRO E,
then r = v̂ for a tripotent v ∈ E.

Proof. Suppose that r = a⊗ e11 + b⊗ e12 + b∗ ⊗ e21 + c⊗ e22. Squaring
r yields a2 + bb∗ = a. Antisymmetry yields a2 − bb∗ = 0. Thus 2a2 = a.
Hence 2a is a projection. Since (2b)(2b)∗ = 4a2 = 2a, we see 2b is a partial
isometry. Similarly (2b)∗(2b) = 2c. The result follows.

We now turn to the supremum u ∨ v of two tripotents. Most of the
following result is in [5], but for convenience we give quick proofs.

Lemma 3.7. Suppose u, v are tripotents in a WTRO E. The following

are equivalent :

(i) u ∨ v exists.

(ii) û ⊥ v̆.
(iii) uv∗v = uu∗v and vv∗u = vu∗u.
(iv) {u, v} is dominated by a tripotent w ∈ E.

In this case, û ∨ v = r(û+ v̂) = û ∨ v̂ and u ∨ v = r(u+ v).

Proof. (i)⇒(iv). Obvious.
(iv)⇒(iii). Suppose that u ≤ w and v ≤ w. We have

uv∗v = uw∗wv∗v = uw∗v = uu∗uw∗v = uu∗v.

The proof of the other statement is similar.
(iii)⇒(ii). Clear from direct multiplication, noting that uu∗vv∗ = uv∗

and u∗v = u∗uv∗v.
(ii)⇒(i). Multiplication shows that (û+ v̂)Θ(û+ v̂) = 0. Consequently,

p(û+v̂)Θ(q(û+v̂)) = 0 for any odd polynomials p and q. Taking weak∗ limits,
it follows that r(û+ v̂)Θ(r(û+ v̂)) = 0, and so r(û+ v̂) is an antisymmetric
projection, and thus equals ŵ for a tripotent w by Lemma 3.6. As is well
known, û ∨ v̂ = r(û + v̂), so that û ∨ v̂ = ŵ. By Proposition 2.7 we have
u ≤ w and v ≤ w, and so u∨ v ≤ w. If w0 = u∨ v then ŵ0 ≥ û and ŵ0 ≥ v̂,
so that ŵ0 ≥ û ∨ v̂ = ŵ. Proposition 2.7 gives w0 ≥ w, so that w = u ∨ v.
Finally, r(u+ v) = u ∨ v by [8, Proposition 3.9(i)].

Proposition 3.8. Let Z be a TRO. A family {ui : i ∈ I} of open

tripotents in Z ′′, which are bounded above by a tripotent in Z ′′, has a least

upper bound amongst the tripotents in Z ′′, and this is an open tripotent.

Proof. We first show that if u, v are open tripotents in Z ′′, which are
bounded above by a tripotent, then the sup tripotent w = u ∨ v (which
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exists by the previous lemma) is open. By Lemma 2.9 and its proof, Span(dw)
= Z(e) for an open tripotent e ≤ w with dw = de. Since du ⊂ dw = de, we
have u ≤ e. Similarly v ≤ e, and so e = w.

It now follows by induction that the supremum of any finite family of
open tripotents which are bounded above by a tripotent, is open. The result
then follows easily from Proposition 2.12.

We say that tripotents u and v commute if v∗u = u∗v and vu∗ = uv∗

(Harris calls this ∗-commuting). We write u ⊥ v if these quantities are zero.

Corollary 3.9. Let Z be a TRO , and let u, v be two commuting open

tripotents satisfying vu∗u = vv∗u. The supremum u∨v in the set of tripotents

in Z ′′ exists, is open, and is given by the formula u+v−vv∗u. In particular ,
u ∨ v = u+ v is open if u ⊥ v.

Proof. Let u, v be as stated. Then, by Lemma 3.7, w = u∨v exists, and it
is open by Proposition 3.8. By commutativity, uw∗v = uu∗v = vu∗u = vw∗u,
so u and v commute as projections in Z2(w). As is well known in this case,
w = u ∨ v = u+ v − uw∗v = u+ v − uu∗v. The result follows.

Remark. We do not know how to describe cones corresponding to
suprema of tripotents, even if they are orthogonal. For example, the usual
cone in M2 seems not nicely related to dE11

and dE22
.

Corollary 3.10. Let Z be a TRO. The infimum u∧v of two commuting

open tripotents u and v in Z ′′ is open, and is given by the formula 1
2(vv∗u+

vu∗u).

Proof. Let u, v be two commuting open tripotents. Then û and v̂ are two
commuting open projections in L(Z)′′. It is well known that the infimum
of two commuting open projections is open [1, 2], and so ûv̂ is open. But
ûv̂ = ŵ, where w = 1

2(vv∗u + vu∗u). Since w is a tripotent, w is open by
Theorem 2.10. It is easy to check that w = u ∧ v (or see e.g. [5]).

The infimum of a collection of open tripotents amongst all tripotents
in Z ′′ need not be open. However, there is an infimum amongst the open

tripotents in Z ′′:

Lemma 3.11. Suppose that Z is a TRO and that F = {uα : α ∈ I} is

a collection of open tripotents in Z ′′. Then there exists an infimum u for F
amongst the open tripotents in Z ′′. Also, du =

⋂
α∈I duα

.

Proof. Clearly the infimum is the supremum of the open tripotents v
such that v ≤ uα for every α ∈ I. This is open by Proposition 3.8. Since
u ≤ uα for every α ∈ I, we have cu ⊂ cuα

, and so cu ⊂ ⋂
α∈I cuα

. Conversely,
if x ∈ ⋂

α∈I cuα
then by Lemma 3.1 we have r(x) ≤ uα for every α ∈ I, and

so r(x) ≤ u. By Lemma 3.1 again, x ∈ cu. Thus cu =
⋂

α∈I cuα
, and the

result is now obvious.
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The lemma asserts that an intersection of natural cones is a natural
cone. This is valid at the matrix level too, and it will play a role later.
That is, (du)n =

⋂
α(duα

)n for all n ∈ N. A direct proof of this: if {cα} is
a family of natural dual cones in a WTRO E, and if Tα : E → Bα is a
ternary morphism which is an order embedding for the cone cα, then the
map T : Z → ⊕∞

α Bα taking z ∈ Z to
⊕

α Tα(z) is a ternary morphism
which is an order embedding for the cone c =

⋂
α cα. Hence it is a complete

order embedding by Corollary 2.2. Thus if [zij ] ∈ Mn(E) then [zij] ∈ cn iff
[T (zij)] ≥ 0 iff [Tα(zij)] ≥ 0 for each α. In turn, this happens iff [zij] ∈ (cα)n

for each α, that is, iff [zij] ∈ ⋂
α(cα)n. Thus cn =

⋂
α(cα)n. In terms of

tripotents,

(
∧
α
uα) ⊗ In =

∧
α

(uα ⊗ In).

The same argument works for natural cones in a TRO Z, or this can be
deduced from the above by taking E = Z ′′.

Corollary 3.12. Let n ∈ N. The map z 7→ z ⊗ In from a WTRO

E into Mn(E) is a one-to-one ternary morphism that preserves infima of

tripotents, and suprema of tripotents where they exist.

Proof. The statement about infima is demonstrated above. Next, if {uα}
is a family of tripotents in E which are bounded above by a tripotent u,
then uα ⊗ In ≤ u ⊗ In, so that {uα ⊗ In} is bounded above by u ⊗ In,
where u =

∨
α uα. Conversely, suppose that {uα ⊗ In} is bounded above by

a tripotent w ∈Mn(E). It is easy to see that wiju
∗
αuα = uα for each i, j, α.

Thus u(wij) ≥ uα. Hence {uα} is bounded above by v =
∧

i,j u(wij), so that
u ≤ v where u =

∨
α uα. Note that

wiju
∗u = wiju(wij)

∗u(wij)u
∗u = u(wij)u

∗u = u.

Thus uα ⊗ In ≤ u⊗ In ≤ w. Hence the supremum of {uα ⊗ In} amongst the
tripotents in Mn(E) is u⊗ In.

We will need a few matrix tricks which we have not seen in the literature.
For x ∈ Ball(Z) define

x̂ =
1

2

[
|x∗| x

x∗ |x|

]
∈ L(Z).

Writing this as a sum of a diagonal matrix and an off-diagonal matrix, we
see that ‖x̂‖ ≤ 1. Letting

z =
1√
2

[
0 r(x)|x|1/2

0 |x|1/2

]
,

we have zz∗ = x̂. Thus x̂ is positive.
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Lemma 3.13. If Z is a WTRO and y ∈ L̄(Z) then y = x̂ for an x ∈
Ball(Z) iff 0 ≤ y ≤ û for a tripotent u ∈ Z. If these hold then x ∈ cu.

Proof. If y = x̂ then matrix multiplication shows that 0 ≤ y ≤ r̂(x).
For the converse, if 0 ≤ y ≤ û then multiplying y with û, we find that
1
2uu

∗y11 + 1
2uy

∗
12 = y11 and 1

2u
∗y11 + 1

2u
∗uy∗12 = y∗12. Since y11 ≤ 1

2uu
∗, it

follows that uy∗12 = y11 = y12u
∗ and u∗y11 = u∗uy∗12 = y∗12. Thus it is easy

to see that y2
11 = y12y

∗
12. A similar argument shows that y2

22 = y∗12y12. The
equalities above also show that y12 ∈ Z2(u), and since y12u

∗ = y11 ≥ 0, it
follows that y12 lies in cu.

Corollary 3.14. If {ui} is an increasing net of tripotents in a WTRO

Z then ui → u weak∗ iff ûi → û weak∗.

Proof. If ui → u weak∗, then {ûi} is an increasing net of projections
dominated by û. Its weak∗ limit, by Lemma 3.13, equals v̂ for some v.
Looking at convergence in the 1-2 corner, we see u = v. So ûi → û weak∗.
The other direction is easier.

Corollary 3.15. Let {uλ} be a family of tripotents that pairwise satisfy

any one of the conditions in Lemma 3.7. Then
∨̂

λ uλ =
∨

λ ûλ. If also the

uλ are all open, then so is
∨

λ uλ.

Proof. If v̂ ⊥ ŭ, ŵ ⊥ ŭ, and v̂ ⊥ w̆, then by Lemma 3.7 we have v̂ ∨ w =
r(v̂+ŵ). Since p(v̂+ŵ) ⊥ ŭ for any odd polynomial p, we have ŭ ⊥ r(v̂+ŵ) =
v̂ ∨ w. By Lemma 3.7, u ∨ (v ∨ w) exists. By induction,

∨
λ∈F uλ exists for

any finite set F , and
∨̂

F uλ =
∨

F ûλ. We leave the rest as an exercise, using
the last corollary.

The material in the rest of this section is used in [9].
If Z is a TRO and x ∈ Ball(Z), then Edwards and Rüttimann define u(x)

to be the weak∗ limit in Z ′′, or equivalently in the W ∗-algebra Z ′′
2 (r(x)), of

x2n+1, where x2n+1 = xx∗x · · ·x∗x, a product of 2n + 1 terms (see [17,
Lemma 3.4]).

Definition 3.16. If Z is a TRO then a tripotent v in Z ′′ is compact

if it is the weak∗ limit of a decreasing net of tripotents u(xλ), where each
xλ ∈ Ball(Z).

Remarks. (1) We do not need this here, but it is an easy exercise to
show that u(x) is the largest tripotent v such that v = vx∗v (see also [17,
Lemma 3.4]).

(2) Clearly u(x) is compact for any x ∈ Ball(Z).
(3) If Z is a C∗-algebra A, and x ∈ A+, then u(x) is a projection. Note

that in this case, if 0 ≤ x ≤ y ≤ 1 then u(x) ≤ x ≤ y, so that u(x) ≤ yn for
any n ∈ N. Thus u(x) ≤ u(y).
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(4) It is essentially implicit in the main result from [17] that if Z is a
WTRO, and x, y ∈ Ball(Z), then u(x) ∧ u(y) = u((x+ y)/2). This is used
in [9].

Lemma 3.17. If Z is a TRO and x ∈ Ball(Z) then u(x̂) = û(x) and

r(x̂) = r̂(x).

Proof. A simple computation shows that

x̂2n+1 =
1

2

[
|x∗|2n+1 x2n+1

(x∗)2n+1 |x|2n+1

]
,

where x2n+1 is as above Definition 3.16. The weak∗ limit of x̂2n+1 is a pro-
jection q say, whose 1-2 entry is 1

2u(x) by the last displayed formula. As we

said earlier, x̂ ≤ r̂(x). This, together with Lemma 3.13, shows that q = û(x).

That is, u(x̂) = û(x). If p is an “odd polynomial”, then

p(x̂) =
1

2

[
p(|x∗|) p(x)

p(x∗) p(|x|)

]
.

It follows by a norm approximation that the same relation holds with p
replaced by the function t1/(2n+1). All of these quantities are bounded above

by r̂(x). In the weak∗ limit, and using Lemma 3.13, it follows that r(x̂)

= r̂(x).

Let v be a tripotent in Z ′′, for a TRO Z. Following [5], we say that v
belongs locally to Z if v∗v is a closed projection in (Z∗Z)′′ and v = xv∗v for
an element x ∈ Ball(Z). The following known result [5, 21], which we give
a quick alternative proof of for the reader’s convenience, shows that this is
equivalent to v being compact:

Proposition 3.18 (Akemann–Pedersen, Edwards and Rüttimann). Let

u be a tripotent in Z ′′ for a TRO Z. The following are equivalent :

(i) u is compact.

(ii) û is a compact projection in L(Z)′′ (that is, there exists a decreasing

net in L(Z) converging weak∗ to û).
(iii) u belongs locally to Z.

Also, a weak∗ limit of a decreasing net of compact tripotents is compact.

Proof. (i)⇒(ii). There is a family of norm one elements xλ such that

u(xλ) is a decreasing net of tripotents converging weak∗ to u. Then û(xλ)
is a decreasing net of projections converging weak∗ to a projection p ≥ û,
say. By Lemma 3.13, we have p = x̂ for some x ∈ Z ′′, and looking at the

1-2 entry we see that x = u. So û(xλ) → û weak∗. By Lemma 3.17, we have

û(xλ) = u(a) for some a ∈ L(Z), and is thus a compact projection. Thus û
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is closed, being a decreasing limit of closed projections. Since it is bounded
above by an element in L(Z), it is compact.

(ii)⇔(iii). This is Proposition 4.9 of [5].
(iii)⇒(i). If u = xu∗u for an element x ∈ Ball(Z), then u = uu∗x =

uu∗xu∗u (see [5, Lemma 4.8]), which implies that

x = uu∗xu∗u+ (1 − uu∗)x(1 − u∗u) = u+ (1 − uu∗)x(1 − u∗u).

It follows that x2n+1 = u + (1 − uu∗)x2n+1(1 − u∗u), where x2n+1 as usual
means xx∗x · · ·x∗x, a product of 2n+ 1 terms. This implies that r(x) ≥ u.
Since r(x)∗r(x) ≥ u∗u, by the Urysohn lemma for C∗-algebras there is a
decreasing net (yλ) in Z∗Z converging to u∗u with yλ ≤ r(x)∗r(x). Now
r(x)yλ lies in Z ′′

2 (r(x)), and so (r(x)yλ) is decreasing in Z ′′
2 (r(x)). Hence

x(r(x)yλ)∗x is a decreasing net in Z(r(x))+ ∩ Ball(Z) converging weak∗

to xu∗ur(x)∗x = uu∗x = u. Thus the projections u(x(r(x)yλ)∗x) are a
decreasing (by Remark (3) after Definition 3.16) net converging weak∗ to u.

Finally, given a decreasing net of compact tripotents with limit u, a slight
modification of the first paragraph of the proof shows that û is compact.

We now give an Urysohn lemma for TROs, based on Akemann’s Urysohn
lemma for C∗-algebras [1, 2, 3, 5]. See also [23] for a related result, with a
different proof strategy (which relies on results of the second author [33]).

Theorem 3.19. Suppose that Z is a TRO and that v and u are tripotents

in Z ′′ such that v is compact , u is open, and v ≤ u. Then there exists an

element x ∈ Z such that v ≤ x ≤ u in the W ∗-algebra Z ′′
2 (u).

Proof. By Proposition 2.7 we have v̂ ≤ û. By the Urysohn lemma for
C∗-algebras, there is an element y ∈ L(Z)+ such that v̂ ≤ y ≤ û. By
Lemma 3.13, we have y = x̂ for some x ∈ cu ⊂ Z ′′. By Lemma 3.17 it

follows that u(y) = û(x) and r(y) = r̂(x). By Proposition 2.7 we have
v ≤ u(x) ≤ r(x) ≤ u. Hence v ≤ x ≤ u.

Remarks. (1) It is easy to see from this Urysohn lemma that if v ≤ u
are tripotents in Z ′′ with u open, then v is compact in Z ′′ iff v is compact
as a projection in Z(u)′′ = Z ′′

2 (u).
(2) There are also regularity properties for open and compact tripotents,

analogous to the case of projections in a C∗-algebra (see e.g. Akemann’s
regularity property described in [27, Section 2]). Theorem 3.20 below cor-
responds to the normality separation property one has in locally compact
topological spaces.

The following variant of Urysohn’s lemma solves an open problem from
[23], in the special case of TROs (see [23, Problem 2.13]).

Theorem 3.20. Suppose that Z is a TRO and that v and w are compact

tripotents in Z ′′ with v∗w = vw∗ = 0. Then there exist elements x, y ∈
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Ball(Z) such that r(x)∗r(y) = r(x)r(y)∗ = 0, and v ≤ x and w ≤ y in the

C∗-algebras Z ′′
2 (r(x)) and Z ′′

2 (r(y)) respectively.

Proof. Clearly v̂ ⊥ ŵ are compact, and so v̂ + w = v̂ + ŵ is a closed
projection. Since both v̂ and ŵ are dominated by an element in L(Z)+, so
is v̂ + ŵ. Hence v̂ + w is a compact projection [5], and so v + w is a com-
pact tripotent. Thus there exists an open tripotent u ≥ v + w. Working
inside Z ′′

2 (u), we see that v, w are compact mutually orthogonal projections
(see Remark (1) above), and by [4, Proposition 2.6] there exist mutually
orthogonal open projections p, q in Z ′′

2 (u) with v ≤ p, w ≤ q. By the non-
commutative Urysohn lemma, there exist elements x, y ∈ Ball(Z) ∩ Z ′′

2 (u)
such that v ≤ x ≤ r(x) ≤ p and w ≤ y ≤ r(y) ≤ q, all inequalities in the
C∗-algebra Z ′′

2 (u). We leave the rest as an exercise.

One might ask if there is an Urysohn lemma for the case that one of
the tripotents is merely “closed”, as in [4, Proposition 2.6]. It is clear by
the methods above that this equivalent to asking if every closed tripotent
is dominated by an open one, and we are not sure if the latter holds in all
TROs.

We end this section with a couple of results which are interesting in their
own right, and which we will need later.

Lemma 3.21. Let A be a C∗-algebra and x = [xij] ∈Mn(A)+. Then

(
∧
i
u(xii)) ⊗ In ≤ u(x) ≤ x ≤ r(x) ≤ (

∨
i
r(xii)) ⊗ In.

Proof. By an obvious induction argument it suffices to prove the case
that n = 2. Let p =

∨
i r(xii). Clearly xiip = xii for each i. We claim that

xijp = xij for each i, j. Note p⊥r(x22)p
⊥ = 0. Thus 0 ≤ (1 ⊕ p⊥)x(1 ⊕ p⊥),

which forces, by elementary operator theory, that x12p
⊥ = 0. A similar

argument shows that x21p
⊥ = 0. Thus x(p⊗ In) = x, so that r(x) ≤ p⊗ In

as desired.

By elementary operator theory, if q is a projection with qxq = q then
qx(1 − q) = (1 − q)xq = 0. Using the principle in the first paragraph of the
proof again, and the fact that u(xii) = xiiu(xii) = u(xii)xii, we find that
xiju(xii) = 0 if i 6= j. This gives x((

∧
i u(xii)) ⊗ In) = (

∧
i u(xii)) ⊗ In, so

that (
∧

i u(xii)) ⊗ In ≤ u(x).

In the following result, for a ∗-TRO Z we write L̃ for the C∗-subalgebra
of L(Z) whose two main diagonal entries are equal, and whose off-diagonal
entries are equal (see e.g. [13, Section 2]). We call this the restricted linking

algebra.

Lemma 3.22. Let Z be a ∗-TRO , and let p be a selfadjoint projection in

the center of L̃′′. Then p is of the form 1
2(I(u)+I(u)2)⊕∞ (q⊗e11+q⊗e22),
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where u is a central selfadjoint tripotent in Z ′′, and q is a central projection

in (Z2)′′ such that qu = uq = 0. If p is open in L̃′′ then q is open in (Z2)′′.

Proof. Let Θ as usual be the canonical ∗-automorphism on L(Z), namely
changing the sign of the off-diagonal corners. Then Θ(p) is central too. Let
u = p−Θ(p). A computation shows that u is a tripotent, and 1

2(u+ u2) =

p−pΘ(p). Since p is the orthogonal sum of pΘ(p) and 1
2(u+u2), it is easy to

see the first assertion. If p is open then so is Θ(p) by an obvious argument
using the canonical ∗-automorphism on L(Z). Since a product of central

open projections is open, pΘ(p) = q ⊗ e11 + q ⊗ e22 is open in L̃′′, and now
it is easy to see that q is open in (Z2)′′.

Remark. Simple examples show that in the last lemma one cannot hope
that u is an open tripotent necessarily, if p is open, even if Z is the commu-
tative C∗-algebra C([0, 1]). See, however, Lemma 4.7 for something along
this line.

4. Maximal cones on TROs. We will need to develop TRO general-
izations of facts from [13, Section 5]. The reader may wish to follow along
with that paper.

If Z is a TRO, and if u is a tripotent in Z, then u⊗ In is a tripotent in
Mn(Z), and hence there is an associated C∗-algebra Mn(Z)2(u⊗ In), which
equips Mn(Z) with a cone cn. Of course c1 = cu. Indeed,

cn = cu⊗In
= {[xij ] ∈Mn(Z2(u)) : [u∗xij ] ≥ 0} = Mn(Z2(u))+.

Similarly, if u is a tripotent in Z ′′ then we have a canonical natural cone on
Mn(Z):

dn = du⊗In
= {[xij ] ∈Mn(Z(u)) : [u∗xij ] ≥ 0} = Mn(Z(u))+.

Sometimes we will write du for the entire sequence (du⊗In
), and similarly

for cu.
We will need a fact about quotients of TROs. First recall that if Z is a

TRO, and if J is a ternary ideal in Z, then Z/J may again be viewed as a
TRO (see e.g. [12, Section 8.3]).

Lemma 4.1. If J is a ternary ideal in a naturally ordered TRO Z, then

the TRO Z/J possesses a natural cone for which the canonical quotient

ternary morphism Z → Z/J is completely positive.

Proof. If Z is a TRO in a C∗-algebra A, we consider Z ′′ as a TRO in
the W ∗-algebra A′′. Now J⊥⊥ is a weak∗ closed ternary ideal in Z ′′, and
hence equals Z ′′q for a central projection q in (Z∗Z)′′, as is well known (for
example, it is a special case of [14, Theorem 7.4(vi)]). If p = 1 − q then
(Z/J)′′ ∼= Z ′′/J⊥⊥ ∼= Z ′′p. We may thus identify Z/J as a TRO inside the
WTRO Z ′′p. This endows Z/J with natural matrix cones. Let qJ : Z → Z/J
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be the quotient ternary morphism. If z ∈ Z+ then z ≥ 0 in A′′, and so
z = (z∗z)1/2. Thus zp = (z∗z)1/2p = p(z∗z)1/2p ≥ 0, and so qJ(z) is in the
cone just defined in Z/J . A similar argument applies to matrices, so that
qJ is completely positive.

Lemma 4.2. Let Z be a TRO with matrix cones C = (Cn) for which there

exists a completely positive complete isometry from Z into a C∗-algebra.

Then the given cones C in Z are contained in a natural cone for Z.

Proof. Just as in [13, Lemma 5.3].

Definition 4.3. We say that an operator space ordering (cn) on an
operator space X is maximal , or that X is maximally ordered , if (cn) is
maximal amongst the operator space orderings on X. This is equivalent
to saying that every completely positive complete isometry X → B into a
C∗-algebra is a complete order embedding.

It follows from Lemma 4.2 that the maximal (operator space) orderings
on a TRO are precisely the maximal natural orderings.

Theorem 4.4. Suppose Z is a TRO with an operator space ordering.

Then Z has a maximal (operator space) ordering majorizing the given one,
and this cone is natural.

Proof. Just as in [13, Theorem 5.4], but including an appeal to Propo-
sition 2.12.

As mentioned after Corollary 2.8, natural dual cones in a WTRO W
correspond bijectively to tripotents in W . This gives a very satisfactory
characterization of the maximal natural dual cones. Maximal natural dual
cones in a WTRO W correspond to maximal tripotents, which are exactly
the extreme points of Ball(W ). Indeed, the extreme points of Ball(W ) are
well known to be the tripotents such that (1 − uu∗)W (1 − u∗u) = (0). Any
such tripotent is maximal, since if v ≥ u then

0 = (1 − uu∗)v(1 − u∗u) = (v − u)(1 − u∗u) = v − u.

Conversely, if the WTRO (1 − uu∗)W (1 − u∗u) is not (0) then it has a
nonzero tripotent w ⊥ u, and w + u ≥ u. Thus u is not maximal.

In a TRO Z, maximal natural cones correspond to maximal open tripo-
tents. These exist by Zorn’s lemma, since any increasing chain of open tripo-
tents is bounded above by an open tripotent (Proposition 2.12). We consider
maximal open tripotents in Theorem 4.5 below, also settling an issue raised
in [13, Section 5], which we now describe.

Let A be a C∗-algebra and let p and q be an open and a closed central
projection in A′′. We say that q is contained in the boundary of p if p ⊥ q and
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if whenever r is an open central (2) projection in A′′ which is perpendicular
to p, then r is perpendicular to q. We shall not use this, but if q + p is
closed, which will be the case for us below, then it is easy to see that q
is contained in the boundary of p iff q + p is the smallest closed central
projection dominating p. In [13, Proposition 5.11] it was shown that if Z
is a ∗-TRO and u is a selfadjoint central open tripotent in Z ′′, then u is
maximal amongst the selfadjoint central open tripotents in Z ′′ if 1 − u2

is contained in the boundary (3) of both 1
2(u + u2) and 1

2(−u + u2). Here
the C∗-algebra A is Z + Z2. It was also noted there that the converse of
this is true in the “commutative case”; however, an inspection of the proof
of this converse (see [13, Corollary 6.8]) shows that we were also assuming
there that Z ∩ Z2 = (0). This is not a serious restriction, since any ∗-
TRO is ternary ∗-isomorphic to one satisfying this property, and below we
shall always assume that Z ∩ Z2 = (0) when we use the phrase “1 − u2

is contained in the boundary of 1
2(u + u2)”. It was suggested in [13] that

such a “contained in the boundary” condition might characterize maximal
selfadjoint central open tripotents for any ∗-TRO. By results in that paper,
such a characterization would immediately give a characterization of the
maximal ordered operator space cones, and thus also the maximal cones
which are natural in the sense of [13], on any ∗-TRO.

To motivate the value of having such a characterization, it is very in-
structive to look at a commutative example studied in [13, Section 6]. Let
S2 be the unit sphere, and Z the ∗-TRO {f ∈ C(S2) : f(−x) = −f(x)}. In
this case open selfadjoint tripotents u in Z ′′ correspond precisely to open
subsets U of the sphere (called blue), which do not intersect −U (called red).
Suppose that S2 \(U ∪(−U)) is colored black. The “contained in the bound-
ary” characterization discussed in the last paragraph says precisely (4) that
u (and hence the associated ordering of Z) is maximal iff the black region
is the boundary of the red region (and hence also of the blue region). Thus,
for example, a sphere whose top hemisphere is red and whose bottom hemi-
sphere is blue, with a black equator line, is maximal; whereas if one were
to thicken the equator to a black band one loses maximality. From the ge-
ometry of such examples, it seems clear that one could not improve on this
characterization.

(2) Dealing with central projections here yields a simpler characterization without
introducing any additional complications.

(3) We shall not use this, but it is easy to see that 1−u
2 is contained in the boundary

of û = 1

2
(u + u

2) iff 1

2
(u2

− u)⊥ is the smallest closed central projection dominating
1

2
(u + u

2).

(4) This is misstated in the fourth last line of p. 709 of [13], but the typographical
error should be clear in the context.
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In the “noncommutative case” it is unfortunately not true that if u is
maximal amongst the selfadjoint central open tripotents in Z ′′ then 1 − u2

is contained in the boundary of 1
2(u + u2). For example, take Z to be the

subspace of M2 with main diagonal entries zero. In this case, u = 0 is
a maximal selfadjoint central open tripotent in Z ′′, but r = I2 satisfies
r 1

2(u + u2) = 0 but r(1 − u2) = r 6= 0. It does not help if we replace

A = Z +Z2 by the restricted linking C∗-algebra L̃ mentioned at the end of
Section 4; indeed, this situation is equivalent since Z + Z2 is ∗-isomorphic
to L̃ if Z ∩ Z2 = (0).

This problem can be remedied in several ways. For example, we can put
a restriction on the projections r considered in the definition of “contained
in the boundary”. If A = Z + Z2 and Z ∩ Z2 = 0, we say that a projection
r in A′′ is antisymmetric if Θ′′(r) ⊥ r. Here Θ : A → A is the period 2
∗-automorphism Θ(z + a) = a− z for z ∈ Z and a ∈ Z2. If r is a projection
(resp. central projection) in A′′, then it is easy to see that r is antisymmetric
iff r = 1

2(v+v2) for a selfadjoint tripotent (resp. central selfadjoint tripotent)
v ∈ Z ′′. If r is an open central projection in A′′, then it is easy to check
using Lemma 3.22 and [13, Proposition 4.18] that r is antisymmetric iff r
dominates no nontrivial open central projection in (Z2)′′. We say that q is
antisymmetrically contained in the boundary of p if p ⊥ q and whenever r is
an open antisymmetric central projection in A′′ which is perpendicular to p,
then r ⊥ q.

For a general TRO Z, we use the definition of antisymmetric projections
from the introduction. Let A = L(Z), and let p and q be respectively open
and closed projections in A′′. We say that q is antisymmetrically contained

in the boundary of p if p ⊥ q and whenever r is an open antisymmetric
projection in A′′ which is perpendicular to p, then r ⊥ q.

The following is a characterization of maximal open tripotents in a TRO:

Theorem 4.5. Let Z be a TRO. Suppose u is an open tripotent in Z ′′.

Then u is maximal amongst the open tripotents if and only if 1 − I(u)2 is

antisymmetrically contained in the boundary of û.

Proof. Since u is maximal iff −u is maximal, we may replace û by ŭ.
Suppose that 1−I(u)2 is antisymmetrically contained in the boundary of ŭ.
If v ≥ u and if v is open, then v commutes with u, and r = v̂ is (by Theorem
2.10) an open projection in L(Z)′′. It is easy to check that rŭ = 0. Thus
r(1 − I(u)2) = 0, which gives v = vu∗u = u. Thus u is maximal.

Conversely, suppose that u is a maximal open tripotent in Z ′′. Suppose
that r = v̂ is an open antisymmetric projection with rŭ = 0. From the
commutator relations coming from this last equality, we see that u∨v exists
by Lemma 3.7, and thus it is open by Proposition 3.8. Since u is maximal,
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u = u ∨ v, and so v ≤ u. Hence v = vu∗u. Inspection now reveals that
v̂(1 − I(u)2) = 0.

The following result, whose proof we omit since it is essentially the same
as the proof of Theorem 4.5, characterizes maximal cones in a ∗-TRO.

Proposition 4.6. Let Z be a ∗-TRO , and let u be a selfadjoint central

open tripotent in Z ′′. Then u is maximal amongst the selfadjoint central

open tripotents if and only if 1 − u2 is antisymmetrically contained in the

boundary of 1
2(u+ u∗).

Remark. It follows easily from what we have done that the conjecture
from [13] that we have been discussing is true for the class of TROs Z which
have the following property: whenever p and q are respectively open and
closed central projections in (Z + Z2)′′, which are not orthogonal to each
other, then p dominates an antisymmetric open central projection r which is
not orthogonal to q. This condition is always satisfied in the “commutative
case” of [13, Section 6]. We remark too that the fact that the conjecture is
true in this commutative case, also follows from the result below (since in
the commutative case, in the notation below, r is necessarily antisymmetric,
for if it were not then the existence of v below contradicts the maximality
of u).

Lemma 4.7. Let Z be a ∗-TRO with Z ∩Z2 = (0). Suppose that r is an

open central projection in (Z+Z2)′′ which is perpendicular to û = 1
2(u+u2)

for a maximal central selfadjoint open tripotent u ∈ Z ′′. Then either r is

antisymmetric (and thus orthogonal to 1 − u2), or there exists a nonzero

selfadjoint open tripotent v ∈ Z ′′ which is perpendicular to u and r ≥ v̂.

Proof. By Lemma 3.22, r = q + 1
2(u + u2) where q is an open central

projection in Z2, u is a central selfadjoint tripotent, and q ⊥ u. If q = 0 then
we are done: r is antisymmetric and is orthogonal to 1 − u2 by Proposition
4.6. If not, suppose that xλ is a net in Z2 converging up to q. Clearly there
exists an element y ∈ Z, which we can take to be selfadjoint, and a λ with
z = xλyxλ 6= 0 (for otherwise, taking a strong limit in (Z + Z2)′′, we have
qyq = qy = 0 for all y ∈ Z, so that q = 0). Of course r(z) is open in Z ′′. We

have z = zq ⊥ u, and so r(z) ⊥ u and r(z)q = r(z). Clearly r̂(z) ≤ q ≤ r.

Let Z be a ∗-TRO. For any set S ⊂ Z ′′, we denote by S⊢ the set {x ∈ Z :
yx = xy = 0 ∀y ∈ S}. If c is a natural dual cone in Z ′′ in the sense of [13],
then c = cu for an open central selfadjoint tripotent u ∈ Z ′′. In this case,
c⊢ = u⊢, and this is a ternary ∗-ideal in Z. It follows from [13, Lemma
3.4] that u⊢ = {z ∈ Z : rz = z}, and (u⊢)⊥⊥ = rZ ′′, for an open central
projection in (Z2)′′ such that rz = zp for all z ∈ Z. We claim that ru = 0.
Indeed, ru ∈ rZ ′′ = (u⊢)⊥⊥, and if xt ∈ u⊢ with xt → ru weak∗, then
0 = u2xt → ru, so that ru = 0.
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Corollary 4.8. If Z is a ∗-TRO , and u is an open selfadjoint tripotent

in Z ′′ then 1−u2 is contained in the boundary of 1
2(u+u2) iff u is maximal

amongst the open selfadjoint central tripotents and u⊢ = (0).

Proof. (⇒) Under this hypothesis, u is maximal as before. If u⊢ 6= 0,
then if r is as above Corollary 4.8 then r 6= 0. On the other hand, r 1

2(u+u2)
= 0, and so r(1 − u2) = r = 0, a contradiction.

(⇐) If v is open and perpendicular to u, and if xt → v weak∗ with
xt ∈ Z(v), then xt ∈ u⊢ = (0). Thus v = 0. The result then follows from
Lemma 4.7.

We now isolate the class of ∗-TROs for which the conjecture from [13] is
correct.

Definition 4.9. A ∗-TRO Z is said to be completely orderable if for
every natural dual cone c in Z ′′, either c⊢ = (0) or c⊢ has a nontrivial
natural ordering in the sense of [13].

Lemma 4.10. A ∗-TRO Z is completely orderable iff for every maximal

open selfadjoint central tripotent u ∈ Z ′′ we have u⊢ = (0).

Proof. We may assume without loss of generality that Z∩Z2 = (0), and
we denote Z + Z2 by A.

Suppose that u⊢ = (0) for every maximal open selfadjoint central tripo-
tent u. If Z is not completely orderable, then there is an open central self-
adjoint tripotent u such that u⊢ is not orderable (and nontrivial). Write
u⊢ = {z ∈ Z : rz = z} as above Corollary 4.8. Let v be a maximal central
open tripotent with v ≥ u. Since by hypothesis v⊢ = (0), we must have
vr 6= 0 (for if vr = 0 then if 0 6= x ∈ u⊢ then xv = xrv = 0 = vrx = vx,
so that 0 6= x ∈ v⊢ = (0)). Let w = vr, a central selfadjoint tripotent in
Z ′′ which is perpendicular to u by the line above Corollary 4.8. Note that
r is also an open central projection in A′′, and that v is an open selfadjoint
central tripotent in A′′, so that w is an open selfadjoint central tripotent
in A′′ by e.g. Corollary 3.9. Suppose that (xλ + yλ) is an increasing net
in A(w)+ which converges to w, with xλ ∈ Z2 and yλ ∈ Z. Let Θ be the
map mentioned above Theorem 4.5. Since −Θ is a ternary isomorphism
on A and −Θ(w) = w, we have −θ(A(w)+) = A(w)+ by Proposition 3.5.
Hence, −Θ(xλ + yλ) = −xλ + yλ is also an increasing net with limit w in
A(w)+. Thus yλ ∈ A(w)+ ⊂ A′′

2(w)+. Since yλ ∈ Z ′′
2 (w), and since Z ′′

2 (w)
is a C∗-subalgebra of A′′

2(w), we see that yλ ∈ Z ′′
2 (w)+ ∩ Z = dw. Since

yλ → w weak∗ we conclude that w is open in Z ′′. Since w is perpendicular
to u we must have Z(w) ⊂ u⊢, and so w is a tripotent in (u⊢)⊥⊥ which is
open in that space. By [13, Corollary 5.7] we see that u⊢ is orderable. This
is a contradiction, and so Z is completely orderable.
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For the other direction, suppose that Z is completely orderable. If u is
a maximal open selfadjoint central tripotent in Z ′′ with u⊢ 6= (0), then u⊢
has a nontrivial natural ordering. Thus by [13], there is a nontrivial open
selfadjoint central tripotent w ∈ (u⊢)′′ ∼= (u⊢)⊥⊥. This tripotent w is also an
open selfadjoint tripotent in Z ′′. Since (u⊢)⊥⊥ = rZ ′′ as above Corollary 4.8,
and since wr⊥ = 0, it is easy to see that w is central in Z ′′. Since w ∈ (u⊢)⊥⊥,
we have w ⊥ u. Since u + w ≥ u we have arrived at a contradiction. Thus
u⊢ = (0).

Theorem 4.11. If Z is a completely orderable ∗-TRO with Z∩Z2 = (0),
then an open selfadjoint central tripotent u ∈ Z ′′ is maximal amongst the

open selfadjoint central tripotents iff 1 − u2 is contained in the boundary

of 1
2(u+ u2). If Z is not completely orderable, then there exists a maximal

open selfadjoint central tripotent u such that 1 − u2 is not contained in the

boundary of 1
2(u+ u2).

Proof. If Z is completely orderable, and if u is a maximal open selfadjoint
central tripotent in Z ′′, then u⊢ = (0), and so 1 − u2 is contained in the
boundary of 1

2(u+ u2) by Corollary 4.8. The converse direction also follows
from Corollary 4.8.

Suppose that Z is not completely orderable. By Lemma 4.10, there is a
maximal open selfadjoint central tripotent u, with u⊢ 6= (0). By the lines
above Corollary 4.8, there is a nonzero open central projection r ∈ (Z2)′′

with r ⊥ u. Thus r is an open central projection in A′′, and r ⊥ 1
2(u + u2)

but r(1 − u2) = r 6= 0.

Remark. Commutative ∗-TROs are completely orderable, by results in
[13, Section 6] or by a simple direct argument. C∗-algebras also satisfy this
condition. In this case, for any maximal open selfadjoint central tripotent u,
we deduce that u⊢ is a two-sided ideal. If p is the support projection of
this ideal, then p ⊥ u. Thus u + p is an open selfadjoint central tripotent
dominating u. By maximality of u we have p = 0 and u⊢ = (0).

5. Cones on operator spaces and the Shilov boundary. In this
section we study an operator space X with a given cone c, or with a sequence
of matrix cones cn ⊂Mn(X). One of the advantages of our approach is that
it can be done in either of these two settings, that is, for nonmatricial or
for matricial cones. Nonetheless we will usually focus on the matricial cone
case, leaving the nonmatricial case to the reader, with the following lemma
being an exception:

Proposition 5.1. Suppose that X is an operator space with a cone c

which densely spans X, and that i : X → B is a positive complete isometry

from X into a C∗-algebra. Then the TRO W generated by i(X) is a C∗-
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subalgebra of B, and W ′′ is a W ∗-subalgebra of B′′. Moreover , if u is the

tripotent associated with the natural cone of W , then W = W (u).

Proof. If x ∈ c then i(x) ∈ W ∩ B+ ⊂ J(W ) (see Lemma 2.1). Hence
i(X) ⊂ J(W ), so that W ⊂ J(W ). Thus W = J(W ) is a C∗-subalgebra
of B. The other assertions are obvious.

Lemma 5.2. Let (cn) be an operator space ordering on an operator

space X, and let i : X → B be a completely positive complete isometry

into a C∗-algebra. If W = 〈i(X)〉, set u =
∨

x∈c1
r(i(x)), an open tripotent

in W ′′. Then in(cn) ⊂ du⊗In
.

Proof. We need to show that if [xij] ∈ cn, and x = [i(xij)], then x ∈
du⊗In

. By Lemma 3.1 this is equivalent to saying that r(x) ≤ u⊗ In, which
in turn follows from Lemma 3.21.

As we said early in Section 4, the cone du⊗In
in the last lemma is the

natural cone in Mn(Z) corresponding to the tripotent u (that is, it is the
nth cone in the sequence of matrix cones associated with u).

Next, we construct an ordered version of the “noncommutative Shilov
boundary” or “ternary envelope” [26, 12]. We recall its universal property,
which we use frequently. The ternary envelope of an operator space X is a
pair (T (X), j) consisting of a TRO T (X) and a completely isometric linear
map j : X → T (X) such that T (X) is generated by j(X) as a TRO (that
is, there is no closed subTRO containing j(X)), and which has the following
property: given any completely isometric linear map i from X into a TRO
Z which is generated by i(X), there exists a (necessarily unique and surjec-
tive) ternary morphism θ : Z → T (X) such that θ ◦ i = j. A pair (T (X), j)
with this universal property is unique up to ternary isomorphism “fixing the
copy of X”. By considering simple examples (for example, orderings on C!),
one quickly sees that if one wants an ordered version of this that works for
operator spaces with sensible positive cones, the embeddings i : X → Z
occurring in the universal property above cannot be allowed to be arbitrary
completely positive complete isometries, or even arbitrary completely iso-
metric complete order embeddings (unless we have a strong extra condition,
such as X+ densely spanning X). We will usually need to limit the size of
the cone of Z.

More specifically, suppose thatX is an operator space possessing a cone c

(resp. sequence of matrix cones c = (cn)) such that there is a positive (resp.
completely positive) complete isometry i : X → B into a C∗-algebra B.
Then we can assign a canonical cone (resp. sequence of matrix cones) to
the ternary envelope (T (X), j), namely the intersection of all natural cones
containing j(c) (resp. (j(cn))). We call T (X) equipped with this cone struc-
ture the ordered ternary envelope T o(X). To see that there exists at least
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one such cone, note that if i : X → B is as above, and if W is the TRO
generated by i(X), then by the universal property of the ternary envelope
above, there is a ternary morphism θ : W → T (X) with θ ◦ i = j. Thus
T (X) is ternary isomorphic to a quotient of W . By Lemma 4.1, this quo-
tient of W has a natural cone containing the image of i(c) in the quotient.
Hence T (X) has a natural cone containing j(c) (resp. containing the se-
quence (jn(cn))). In particular, j : X → T o(X) is positive (resp. completely
positive). It is easy to see (using Lemma 5.2 in the matricial cone case)
that the open tripotent corresponding to the ordering which we have given
T o(X) is u =

∨
x∈c

r(j(x)).

If (T o(X), j) is the ordered ternary envelope of (X, c), then we define
the order completion of c to be the cone c = j−1(T o(X)+ ∩ j(X)) in X. It
is of interest to know when c is complete, that is, c = c, or equivalently, that
the canonical embedding of X in T o(X) is a (complete) order embedding.
Later in this section we will give some sufficient conditions for this.

The following theorem is stated in the matricial cone case; in the non-
matricial case delete the occurrences of the word “completely”, and ignore
matrix cones.

Theorem 5.3. Suppose that X is an operator space with matrix cones

c = (cn), and that i : X → B is a completely positive complete isome-

try from X into a C∗-algebra, such that if W is the TRO generated by

i(X) then there is no smaller natural cone than W ∩ B+ on W which con-

tains i(c) (or , equivalently , that W ∩ B+ is the intersection of the natural

cones containing i(c)). Let (T o(X), j) be the ordered ternary envelope of X.

Then there exists a completely positive ternary morphism θ : W → T o(X)
such that θ ◦ i = j. Moreover , θ restricts to a surjective ∗-homomorphism

between the C∗-algebras associated with the natural orderings. In particular ,
θ(W ∩B+) = T o(X)+.

Proof. Let c be the cone on X. By the universal property of T (X), there
exists such a map θ; we need to prove that θ is completely positive. Note
that all of the positivity in Z resides in the W ∗-algebras Mn(Z ′′

2 (u)), where
u is the open tripotent giving the ordering on W . Similarly for T (X), and
write w for the open tripotent giving its ordering. Let π be θ′′ restricted to
Z ′′

2 (u), which is a weak∗ continuous ∗-homomorphism (and therefore auto-
matically completely positive) from Z ′′

2 (u) onto Z ′′
2 (π(u)). Products below

are taken in those algebras. It suffices to show that π(u) = w. Observe
that π(i(x)2n−1) = j(x)2n−1 for any x ∈ c ∩ Ball(X) and n ∈ N. Using
the fact stated after Lemma 3.3, we see that π(i(x)1/(2n−1)) = j(x)1/(2n−1),
and in the weak∗ limit, π(r(i(x))) = r(j(x)). Taking suprema, since weak∗

continuous ∗-homomorphisms preserve suprema, we know that π(u) is the
supremum in the W ∗-algebra Z ′′

2 (π(u)) of the projections r(j(x)) in that
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algebra. By definition of w, we have w ≤ π(u). Hence w is a projection in
Z ′′

2 (π(u)), and now it is clear that w = π(u). The desired surjectivity follows
from Proposition 3.5.

Remark. The ordering we have given to T (X) does not depend on the
particular ternary envelope chosen. This follows immediately for example
from the universal property in the theorem.

The ordered noncommutative Shilov boundary is particularly nice in the
case that X has a densely spanning cone, for example this boundary is a
C∗-algebra. In this case, it is easy to see that we may assume that X is
a selfadjoint operator space, and then the following result is in [11]. We
include an alternative proof:

Corollary 5.4. Suppose that X is an operator space with a cone c

which densely spans X, and that i : X → B is a positive complete isometry

from X into a C∗-algebra. Then the TRO A generated by i(X) equals the

C∗-subalgebra of B generated by i(X), and the hypothesis on the cone of A
in Theorem 5.3 holds automatically. Moreover , the ordered ternary envelope

of X is a C∗-algebra, and the canonical ternary morphism θ : A → T o(X)
such that θ ◦ i = j is a ∗-homomorphism.

Proof. The first assertions follow from Proposition 5.1. Write (D, j) for
the ordered ternary envelope of X, viewed as a C∗-algebra. By the universal
property of the ternary envelope, there exists a surjective ternary morphism
θ : A → D with θ ◦ i = j. Let d be the intersection of the natural cones
containing i(c). This is a natural cone in A, and its span is an inner ideal J
of A. Since J is a subTRO too, J contains the subTRO generated by i(c).
Since c densely spans X, J contains the subTRO generated by i(X). So J
= A, and it follows that d = A+. Hence, and by the nonmatricial case of
Theorem 5.3, θ is positive on A. By Lemma 1.1, θ is a ∗-homomorphism.

Theorem 5.5. Suppose that X is an operator space with matrix cones

c = (cn), and let j : X → T (X) be the canonical Shilov boundary embedding.

Then there exists a completely positive complete isometry from X into a C∗-

algebra if and only if c ⊂ j−1(du), where u is an open tripotent in T (X)′′.
If these hold and if c1 densely spans X, then c = j−1(du) for some open

tripotent u in T (X)′′ if and only if (X, c) is maximally ordered.

Proof. The (⇐) directions are easy, by looking at j : X → T (X); equip-
ping the latter space in the proof of the first “iff” with the natural cone du,
and in the second “iff” with the natural cone of T o(X).

For the (⇒) direction of the first “iff”, let i : X → B be a completely
positive complete isometry fromX into a C∗-algebra B, and letW = 〈i(X)〉,
the TRO generated by i(X). Endow W with the smallest natural cone which
contains i(c). Let (T o(X), j) be the ordered ternary envelope of X, and let
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u be the open tripotent discussed above the last theorem. By that result,
there exists a completely positive ternary morphism θ : W → T o(X) such
that θ ◦ i = j. This implies that j(c) ⊂ du.

Finally, if c = j−1(du) for some open tripotent, then this holds with u
the open tripotent corresponding to the natural cone of T o(X). That is,
c = c. If i(x) ≥ 0 for a completely positive complete isometry i from X into
a C∗-algebra, then by Corollary 5.4 we have j(x) ≥ 0, so that x ∈ c = c. So
i is an order embedding, and similarly it is a complete order embedding.

Remark. The nonmatricial cone case of the last result is valid with the
same proof. Thus if X is an operator space with a cone c, then there exists
a positive complete isometry from X into a C∗-algebra if and only if c ⊂ du,
where u is an open tripotent in T (X)′′.

The previous results have nice consequences concerning unitizations,
which are explored a bit further in [11]. If (X, c) is an operator space with a
densely spanning operator space cone, let A = T o(X) be its ordered ternary
envelope, which we now know is a C∗-algebra. Let X1 be the span of X
and the identity of the C∗-algebra unitization of this C∗-algebra. Then if
H is a Hilbert space, and i : X → B(H) is a completely positive complete
isometry, then it is easy to show, from the universal property of T o(X), that
there is a completely positive unital map from i(X)+C IH → X1 extending
the canonical map i(X) → X. One clearly has the following rigidity result:
a unital completely positive linear map Φ : X1 → B(H) is a complete order
embedding if its restriction to X is a completely isometric complete order
embedding.

Corollary 5.6. Let X be an operator space with an operator space cone

which densely spans X. The following are equivalent :

(i) The embedding of X in the unitization X1 is a complete order em-

bedding.

(ii) X is maximally ordered.

(iii) The cone c is complete (that is, the canonical embedding of X in

T o(X) is a complete order embedding).

Proof. We already saw in Theorem 5.5 that (ii)⇔(iii), and the equiva-
lence of (i) and (iii) is obvious from the definition of X1.

For the next result we recall that a unital operator space is an operator
space X for which there exists a linear complete isometry ϕ : X → A into
a unital C∗-algebra with 1A ∈ ϕ(X). We will write 1 for ϕ−1(1A). Any
unital operator space has a C∗-envelope (C∗

e (X), j) (see e.g. [12, Section
4.3]) which is a unital C∗-algebra together with a complete isometry j :
X → C∗

e (X) with j(1) = 1 such that j(X) generates C∗
e (X) as a C∗-algebra,
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and possessing a certain universal property spelled out in the last reference.
This C∗-algebra obviously has a canonical cone C∗

e (X)+.

Corollary 5.7. If X is a unital operator space and if X also has an

operator space cone c which densely spans X, and which contains 1, then

the C∗-envelope C∗
e (X) (in the sense of [12, Section 4.3]) is also the ordered

ternary envelope of X, with C∗
e (X)+ = T o(X)+.

Proof. It is known that the unital C∗-algebra A = C∗
e (X) is a ternary

envelope of X, and hence there does exist a natural cone d in A containing
j(c), and therefore also containing 1. The span J of d is a subTRO of A
containing j(c), and therefore containing j(X), and 1. This forces J = A. If
u is the open tripotent corresponding to d in A′′, then A′′(u) = A′′, and so u
is unitary. Since 1 ∈ d we have u∗ = u∗1 ≥ 0, so that u = 1. Thus d = A+.

Remark. The spaces X as in the last corollary, which are also maxi-
mally ordered (resp. complete in the sense defined just above Theorem 5.3),
are exactly the unital operator systems.

Example. As a sample illustration of how our results may be applied
in concrete situations, we show that if A′ is the dual of a C∗-algebra A,
with its usual cone, then there may exist no isometric positive map from
A′ into another C∗-algebra. (A later more elementary proof of this fact was
found in [11].) We prove it in the case that A = ℓ∞2 . In this case the map
j : (α, β) 7→ α1 + βz, where z(eiθ) = eiθ, is a unital complete isometry
from ℓ12 into the C∗-algebra B of continuous functions on the unit circle,
and in fact the circle is well known to be the Shilov boundary of ℓ12 (see [12,
Example 4.1.9(1)]), and so (B, j) is the C∗-envelope C∗

e (A′). If there existed
an isometric positive map from A′ into another C∗-algebra, then this map
would be completely isometric, since it was noticed by Paulsen that ℓ12 has
exactly one operator space structure (see [37, Proposition 3.2] for a simple
proof of the latter fact). Equivalently, the usual cone on A′ is an operator
space cone. By the nonmatricial cone case of Corollary 5.7, (B, j) is also the
ordered ternary envelope of A′. Hence j((0, 1)) = z is a positive function on
the unit circle, which is absurd.

We remark in passing that the fact proved in the last paragraph shows
that the main results about unitizations of ordered spaces in the paper [30]
are not correct as stated, and this led to the correction [31].

We now turn to some other interesting conditions that a cone might
satisfy, some of which also ensure that the cone is “complete” (that is, the
embedding j : X → T o(X) is a complete order embedding).

Any natural cone c in a TRO Z has the property that any element in
Span(c) may be written as x = c1−c2 + i(c3−c4), where ci ∈ c and c∗1c2 = 0
and c∗3c4 = 0. (We remark that if u is the tripotent associated with the cone,
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then the product of c1 and c2 in Z(u) is c1u
∗c2 = uu∗c1u

∗c2 = u(c♯1)
∗c2 =

uc∗1c2, which is 0 iff c∗1c2 = 0.) With this in mind, it is natural to consider
operator space cones c in an operator space X with the property that any
element in Span(c) may be written as x = c1 − c2 + i(c3 − c4), where ci ∈ c

and j(c1)
∗j(c2) = 0 and j(c3)

∗j(c4) = 0. Here j : X → T (X) is the Shilov
boundary embedding. We say that an operator space cone is orthogonalizing

if it has this property.

Proposition 5.8. Let X be an operator space with an orthogonalizing

operator space cone c. If d is the natural cone of T o(X), then d∩Span(c) = c.

If in addition c densely spans X, then X is completely order embedded in

T o(X), and so X is maximally ordered.

Proof. To see this, we view Z = T o(X) as a subTRO in a C∗-algebra B
and J(Z) as a C∗-subalgebra of B. We are also viewing Span(c) ⊂ J(Z), so
that, if x ∈ d∩Span(c), we may write as above x = c1 − c2 + i(c3 − c4), with
ci ∈ J(Z)+. Since x = x∗ in J(Z), we must have x = c1 − c2. Since (using
the product of J(Z))

0 ≤ c2xc2 = −c32 ≤ 0,

we deduce that c2 = 0 and x = c1 ∈ c. The last assertion is obvious (using
also Corollary 5.6).

In a similar spirit, we remark that since the span of a natural cone in a
TRO is an inner ideal, it seems of interest to consider operator space cones
on an operator space X such the the span of the cone is the analogue of an
inner ideal in X. More specifically, we say that an operator space cone on X
is inner if J = Span(c) is a generalized quasi-M -ideal of X. The term “quasi-
M -ideal” is due to Kaneda [29] (and is a variant of the one-sided M -ideals
considered e.g. in [14]). By a generalized quasi-M -ideal, we mean a subspace
J of X such that the weak∗ closure J⊥⊥ of X ′′, viewed as a subspace of the
ternary envelope W = (T (X ′′), j) of X ′′, equals pj(X ′′)q, where p and q are
projections on W which are, respectively, right and left module maps on W .
(In the language of [14] for example, p and q are orthogonal projections
in Aℓ(W ) and Ar(W ) respectively.) The generalized quasi-M -ideals in a
TRO are exactly the inner ideals (by e.g. the proof in the discussion before
Proposition 5.2 in [10]).

Theorem 5.9. Let X be an operator space with an operator space cone c

which is inner.

(1) If d is the natural cone of T o(X), then Span(d)∩X = Span(c), and

d ∩X = d ∩ Span(c).
(2) If also c is orthogonalizing then c is complete (that is, the embed-

ding of X in its ordered ternary envelope T o(X) is a complete order

embedding).
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Proof. Write iX : X → X ′′ for the canonical injection. We use the
notation above, so that W = (T (X ′′), j) is the ternary envelope of X ′′.
By [10, Lemma 5.3], (〈j(iX(X))〉, j ◦ iX) is a ternary envelope of X. Here
〈j(iX(X))〉 is the subTRO of W generated by j(iX(X)). Let E = W ′′, and
Z = 〈j(iX(X))〉. Then Z ′′ ∼= Z⊥⊥ is a subWTRO of E. Since Z is the
ternary envelope of X, there is a natural cone d on Z making Z the ordered
ternary envelope. Let u be the associated tripotent in Z ′′ ⊂ E. For any
x ∈ c we have pj(iX(x))q = j(iX(x)). It follows that pr(x)q = r(x), and so
puq = u. It follows that pzq = z for any z ∈ Z(u). Thus

Z(u) ∩ j(iX(X)) ⊂ pj(X ′′)q ∩ j(iX(X)) = j(iX(J)).

That is, Z(u) ∩X = J , and d ∩X = d ∩ J .
The second part follows from the first part and Proposition 5.8.

Remark. It seems possible that a converse may hold, that is, if the cone
is complete then it is inner.

Closing remark. In the sequel paper [11], we study the case of operator
spaces X which have an involution ∗ and matrix cones cn ⊂ Mn(X)sa. The
morphisms in this category are all ∗-linear, of course. In this case, the ordered
ternary envelope becomes a ∗-TRO, and one must use the ordered ∗-TRO
theory developed in [13] in place of the ordered TRO theory in the present
paper. Thus all tripotents u occurring are also selfadjoint, and central in the
sense that uz = zu for all z ∈ Z. If X is such an ordered operator space, and
if T (X) is its ternary ∗-envelope, then there exists a natural (in the sense
of [13]) cone on T (X) containing the (image of the) cone of X, and one can
then take the intersection of all such natural cones to obtain the ordered

ternary ∗-envelope T o(X). The statement of the universal property of this
envelope is similar to that of Theorem 5.3, but curiously, the proof seems
to be completely different, for the reason that range tripotents need not be
central. Most of our other results from this section have obvious analogues
in this “selfadjoint case”, which we shall not take the time to spell out. The
first author began to investigate such results in discussions with Werner at
the time we were working on [13].

Acknowledgements. We thank Upasana Kashyap for comments on a
draft of our paper. She has also pointed out to us the validity of the analogue
of [13, Theorem 4.20] for TROs and natural cones in the sense of the present
paper.
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